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Abstract: A fourth - order virial equation of state was combined with the Lennard – Jones potential and the Axilrod - Teller 

triple - dipole potential to determine the thermodynamic properties of argon in the gas phase. The fourth virial coefficient is 

exact at the level of graphs with at most three non - additive three - body potentials. The model parameters were determined in 

a fit to the speed - of - sound data. The equation of state predicted the second (volumetric and acoustic) and the fourth acoustic 

virial coefficients of argon, but failed to give quantitative predictions of the third (volumetric and acoustic) and the fourth 

volumetric virial coefficients. For the third and fourth volumetric virial coefficients in which the equation of state failed to 

provide quantitative predictions, it nevertheless provided qualitatively accurate information on the variation of thesefunctions 

with temperature.In the region of the critical point, the model can be used for exploratory calculations at densities up to about 

0.9ρc. 

Keywords: Lennard - Jones Potential, Volumetric Virial Coefficients of Argon, Acoustic Virial Coefficients of Argon, 

Fourth Virial Coefficients of Argon, Axilrod - Teller Triple - Dipole Potential 

 

1. Introduction 

The Lennard - Jones (12 - 6) potential, Eq. (1), is the 

simplest function that accounts for the shape of interatomic 

potential in the short, medium and long range regions of 

interatomic separation. 
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The attractive part of the potential is the leading dipole - 

dipole dispersion energy that arises in the second - order of 

the Rayleigh - Schrodinger perturbation theory [1]; the 

repulsive partis purely empirical. Although partly based on 

theory, it has long been recognized that the 12 - 6 functional 

form has several deficiencies, which include; (a) the well - 

depth parameter as obtained from fitting to bulk properties is 

smaller than in real potentials and, (b) at large separations, 

the function decays too slowly, leading to a C6 coefficient 

that is overestimated by some 80 percent. However, despite 

its deficiencies the 12 - 6 function remains one of the most 

used potentials, especially in computer simulation studies 

where it has found extensive use. The reasons for its 

popularity may be its mathematically simple form and that it 

does not predict physical absurdity. Moreover, it is desirable 

to keep the number of model parameters to a minimum at the 

pure fluid level so that the number of parameters does not 

become unmanageablewhen one proceeds to mixtures. The 

simplicity of the function is important in computationally 

demanding applications; for example, it takes about 16 hours 

to calculate the third virial coefficient (volumetric plus 

acoustic) for a real, symmetric linear molecule with the 

Maitland - Smith potential, but only 8 hours if one uses the 

12 - 6 potential. 

In computer simulation, the Lennard - Jones model fluid is 

defined as one that interacts according to Eq. (1) and, two, 

the N - body potential is pairwise additive. The concept of a 

model fluid is useful because it offers an unambiguous 

standard against which statistical mechanical theories can be 

tested. However, in general, the N - body potential is not 

pairwise additive in real fluids and there are nonadditive 

contributions to the total potential from clusters of three or 

more molecules. Barker showed that, using an accurate pair - 

potential, calculated third volumetric virial coefficients of 

argon did not agree with experimental values unless 

nonadditivetriple - dipole contributions were included [2]. 
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Unfortunately, there are few published simulation studies that 

include non - additive three - body forces and the few that 

exist pertains only to the third virial coefficient [3, 4]. 

Therefore, thermodynamic properties that are derived from 

the Lennard - Jones fluid cannot be compared to the data of 

real fluids in any meaningful way. 

Recent works haveshown that a fourth - order virial 

equation of state predicted the P - V - T properties of argon to 

within an accuracy of 0.05 percent at densities up toρc/2, or 

in pressure up to 12 MPa [5, 6]. In ref. 5, the equation of 

state was based on the Maitland - Smith potential function 

and non - additive interaction was modelled by the Axilrod - 

Teller potential. The purpose of this work is, therefore, to use 

the 12 - 6 potential and the Axilrod - Teller triple dipole 

potential to implement a fourth - order virial equation of state 

and to compare interesting derived thermodynamic properties 

from this model with experimental data and the equation of 

state from the method of ref. 5. 

2. Theoretical Approach 

The Lennard - Jones 12 - 6 potential contains two 

parameters: the well - depth parameter, ε, and hard - core 

parameter, σ. In this work, the two parameters were 

determined by a fit to the speed - of - sound data of Estrada - 

Alexanders and Trusler, [7]. The basic physical equations 

that relate equilibrium speed of sound, w, to other 

thermodynamic properties may be set out as follows [8]: 
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In Eq. (2) – (9), Z is the compressibility factor and B, C, D 

are, respectively, the second, third and fourth volumetric 

virial coefficients, which are functions only of temperature. 

The other quantities have their usual meanings. 

The volumetric virial coefficients are related to the 

potentials of interaction by integral expressions; in the 

language of linear graph 

  (10) 

In Eq. (10), an unbroken line represents the two - body 

Mayer function, a dashed line represents the Boltzmann 

factor and a shaded triangular plate represents the three - 

body Mayer function. Explicit expressions for all the graphs, 

except for Dg, have been given elsewhere, [8, 9]. 

In Eq. (3) the expansion of compressibility factor in 

powers of density assumes that the total intermolecular 

potential energy φ (r
N
) is the sum of pair and triplet 

interactions 
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Where, φij is the pair - potential energy and ∆φijk is the non 

- additive three - body potential energy of interaction. 

Furthermore, in Eq. (10) whereas the graph prescriptions for 

B and Care exact, the prescription for Dis exact only at the 

level of graphs with no more than three triplet potentials; the 

graph with four triplet potentials and the non - additive four - 

body potential have been neglected. The computational 

integral expression for the Dg graph is: 
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All the quantities in Eq. (12) are as defined in previous 

works, [8, 9].Non - additive three - body forces are modeled 

by the Axilrod - Teller triple dipole energy, Eq. (13) 
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Eq. (13) adds the third parameter to the molecular model 

namely, ϑ123, the three - body strength coefficient. 

When experimentalists analyse experimental speed - of - 

sound isotherms of gaseous substances, the preferred 

methodology is not the procedure outlined above, rather 

acoustic data along an isotherm are expanded in powers of 

density as in Eq. (14) 

I�
JK

= 1 � ;LM � NLM� � OLM' � P                 (14) 

Where, ρn is the amount - of - substance density, β, γ and δ 

are, respectively, the second, third and fourth acoustic virial 

coefficients. Acoustic virial coefficients, like their volumetric 

counterparts, are functions only of temperature. The quantity 

A0 is defined by Eq. (15) 

QR = #"STU
V                                      (15) 
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In Eq. (15), R is the molar gas constant, M is the molar 

mass and N>W = 4>
>W/4@

>W
; where, 4>

>W
 and 4@

>W
 are, 

respectively, the isobaric and isochoric heat capacity of the 

hypothetical perfect - gas. 

Volumetric and acoustic virial coefficients are not 

independent, but are related as set out in Eq. (16) – (18) 

below: 
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In Eq. (16) – (18), X
 (1)

 represents dX/dT and X
 (2)

 

represents d
2
X/dT

2
; where, X is one of the volumetric virial 

coefficients, B, C orD, [10, 11]. 

3. Numerical Methods 

The three parameters in the molecular model were 

determined by solving the non - linear least square problem 

_� = �&�                                       (19) 

as explained in a previous publication [9]. In Eq. (19), 
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and x is the parameter vector, wi, expt is the i - th experimental 

speed of sound value, wi, cal is the calculated value for the 

speed of sound at the i - th data point, N is the total number 

of acoustic data points, Np is the number of adjustable 

parameters in the model and si is the estimated standard 

deviation of wi, expt. 

Parameter optimisation using the systems of equations (2) 

- (9) and (19) was performed as described in previous 

works, [8, 9]. The second virial coefficient, B, and its two 

temperature derivatives were calculated as described in ref. 

9. Numerical integration of C and its temperature 

derivatives were truncated beyond r=20rm, the range of 

integration was divided into 40 equal panels each of which 

was evaluated by an eleven - point Gaussian quadrature. 

The graphs in D (including Dg) and their temperature 

derivatives were also calculated as described in ref. 9; 

except that each graph was assumed to be zero beyond 

r=8rm and for each integral the range was divided into 16 

equal panels each of which was evaluated by an eleven - 

point Gaussian quadrature. 

4. Results and Discussion 

The values (in reduced units) of the graph Dg are tabulated 

in table 1 at selected reduced temperatures for a Lennard - 

Jones potential. 

Table 1. Values of the graph 3

g g 02D D b∗ = − . 

T* `a
∗  T* `a

∗  

0.6 - 0.05513 1.2 - 0.00023 
0.8 - 0.00394 1.4 - 0.00014 

1.0 - 0.00074 1.5 - 0.00009 

3

0 A2 3b Nπ σ= , 0.342746σ = nm, / 121.306kε = K, 

123 / 0.000489749kν = Knm9, T* = kT/ε. 

4.1. The Fit to the Speed of Sound 

The experimental speed - of - sound data on argon 

performed by Estrada - Alexanders[10],were given on 17 

isotherms in the region 0.72≤T/Tc≤1.47 and ρ≤ρc/2; all the 

experimental isotherms were used in the parameter fitting. 

However, on each isotherm we limited acoustic data 

employed in the fit to those at densities that were no higher 

than 1.03 moldm
-3

 and each datum was assigned an 

uncertainty of 0.003 percent. The following set of parameters 

minimized Eq. (19): 

9

123

0.34275 nm

/ 121.306 K

0.00048975 K nm

k

k

σ
ε
ν

=
= 
= 

                (21) 

4.2. Potential Parameters 

The potential parameters obtained in this work (Eq. 21) 

were compared with current best theoretical estimates: LJP, 

model based on the Lennard - Jones potential (this work); 

MSP, model based on the Maitland - Smith potential [5]. The 

references in the table refer to the theoretical estimates. 

Table 2. Potential Parameters Determined in Fits toAcoustic Data. 

Potentialparameter 
Percentage error 

Ref. 
LJP MSP 

rm 2. - 0.1 [12] 

ε/k - 15 0.5 [12] 

C6/k 76 - 8 [13] 

ϑ123/k - 4 4 [13] 

4.3. The Virial Coefficients of Argon 

Fig. 1 compares the experimental second volumetric 

virial coefficients of Gilgen et al.[14],with results obtained 

from the present work and the obvious conclusion is that, in 

spite of the wide temperature range, the 12 - 6 potential is 

able to correlate the data. However, as fig. 2 shows, with 

the 12 - 6 function deviations in calculated second virial 

coefficient can exceed2cm
3
/mol, which may be compared 

with a maximum discrepancy of about 0.4 cm
3
/mol 

obtained with the Maitland - Smith potential. In fig. 3 we 

compare the experimental second acoustic virial coefficient 
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data of Estrada - Alexanders and Trusler [7], with values 

obtained from the present work; the agreement is good. 

Indeed, as the deviation plotin fig. 4 shows, both volumetric 

and acoustic virial coefficients are correlated with nearly 

comparable levels of accuracies. As fig. 1 and 3 have 

shown, the two parameters in the 12 - 6 potential can be 

chosen to give a reasonably good representation of the 

second (volumetric and acoustic)virial coefficients of argon; 

however, when the pair - potential is combined with the 

triple - dipole potential, it appears that the pair - potential is 

not sufficiently flexible to determine the three - body 

strength coefficient. The result is that the 12 - 6 function 

fails to correlate, quantitatively, the third virial coefficient 

of argon, as fig. 5 and 6 show. Similarly, the 12 - 6 potential 

when combined with the triple - dipole potential is unable 

to accurately represent the fourth volumetric virial 

coefficient of argon, as fig. 7 also shows. However, in all 

cases, the 12 - 6 potential does provide qualitatively correct 

representation of the properties concerned. 

Considering that the 12-6 potential failed to correlate the 

third (volumetric and acoustic) virial coefficients and the 

fourth volumetric virial coefficients, the situation displayed 

in fig. 8 is a rather curious one. The plausible explanation is 

that the apparently good representation achieved in that plot 

was the result of fortuitous cancellation of errors in the 

other virial coefficients and their temperature derivatives. 

 

Fig. 1. Second volumetric virial coefficient of argon as afunction of 

temperature: ● experimental data from Vrabec et al., (2001); —— values 

calculated from Lennard - Jones (12 - 6) potential function. 

 

Fig. 2. Deviations ∆B = Bexpt–Bcal of experimental second volumetric virial 

coefficient of argon from values calculated from different pair - potential 

functions: ▲, Bcal is from the Maitland - Smith potential function; ♦, Bcalis 

from the 12 - 6 potential function. 

 

Fig. 3. Second acoustic virial coefficient of argon as a function of 

temperature: ■ values from Estrada - Alexander and Trusler, (1995); ——, 

values calculated from the 12 - 6 potential function. 

 

Fig. 4. Deviations ∆β = βexpt – βcal of experimental second acoustic virial 

coefficient of argon from values calculated from different pair - potential 

functions: ●, βcal is from the Maitland - Smith potential function; ▲, βcalis 

from the 12 - 6 potential function. 

 

Fig. 5. Third volumetric virial coefficient of argon as a function of 

temperature: ▲ experimental data from Estrada - Alexander and Trusler, 

(1995); ———, values calculated from the Maitland - Smith potential 

function; - - -  - -, values calculated from the 12 - 6 potential function. 

 

Fig. 6. Third volumetric virial coefficient of argon as a function of 

temperature: ● experimental data from Estrada - Alexander and Trusler, 

(1995); ———, values calculated from the Maitland - Smith potential 

function; - - -, values calculated from the 12 - 6 potential function. 
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Fig. 7. Fourth volumetric virial coefficient of argon as a function of 

temperature: ———, values calculated from the Maitland - Smith potential; 

- - - - - - - - - - -, values calculated from the 12 - 6 potential function. 

 

Fig. 8. Fourth acoustic virial coefficient of argon as a function of 

temperature: ♦, experimental data from Estrada - Alexanders (1995); ———

——, values calculated from the 12 - 6 potential function. 

4.4. Comparison with Other Experimental Data 

It is the aim of applied statistical thermodynamics to 

generate molecular models that relate macroscopic properties 

to their underlying causes in intermolecular interaction [15]. 

Although the virial equation of state, because it is 

inapplicable at liquid densities, is not suitable for vapour - 

liquid equilibrium calculations, given experimental vapour 

pressure data it can be used to calculate the vapour densities 

at saturation. Fig. 9 shows such calculations for the 

experimental vapour pressure data of argon [16].It shows that 

the 12 - 6 potential can predict saturated vapour densities 

with reasonably good accuracy up to aboutρc/2. Furthermore, 

one may use the 12 - 6 function for exploratory calculations 

up to about 0.8ρc. Another area of process thermodynamics 

in which the virial equation has found use is in the field of 

supercritical fluids extraction. In fig. 10 we show the 

performance of the current equation of state model when it is 

used to calculate fluid densities along the critical isotherm 

(150.69 K). The figure shows that the current equation of 

state can provide useful volumetric data on argon up to a 

density of about 0.9ρc. Of course the present model being 

analytic cannot be expected to reproduce the actual vapour - 

liquid critical point itself for argon, or for any other fluid for 

that matter [17]. 

 

Fig. 9. Reduced Vapour density of argon as a function of reduced 

temperature: ●, experimental data from ref. 14; —————, values 

calculated from the 12 - 6 potential. The superscript σ denotes saturation. 

 

Fig. 10. Reduced pressure of argon along the critical temperature as a 

function of reduced density: ●, experimental data from ref. 14; —————, 

values calculated from the 12 - 6 potential. 

5. Conclusion 

In this work, the Lennard - Jones pair potential was 

combined with the Axilrod - Teller triple dipole potential to 

derive a fourth - order virial equation of state. The fourth 

virial coefficient is exact at the level of graphs with at most 

three triplet potentials andthe method was applied to argon in 

the gas phase. The model predicted reasonably accurate 

values for the second volumetric and acoustic virial 

coefficients and the fourth acoustic virial coefficient, but 

failed to predict quantitatively accurate third volumetric and 

acoustic virial coefficients and the fourth volumetric virial 

coefficient. However, for those coefficients that the model 

failed to predict quantitatively, it nevertheless predicted their 

values as functions of temperature, which were qualitatively 

accurate.We investigated the performance of the virial 

equation of state in the region of the critical point and found 

that the model can be used for exploratory calculations at 

densities up to about 0.9ρc. 
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