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Abstract: The present paper justifies the application of the temperature-dependent potential to the molecular dynamics 
method through the example of uranium dioxide. Substantiation of the temperature dependence of interatomic potential is 
carried out based on the Newton quantum equation. Mean force can be represented as a sum of derivative of potential at the 
average atomic coordinate and the summand that depends on square dispersion of the coordinate depending on the 
temperature of the crystal. Temperature dependence of potential is introduced as linear slightly varying functions of the 
Coulomb plus Buckingham potential. The selection of parameters of potential was done at three temperature values: the 
initial temperature and temperatures of phase transitions – 2670 and 3120K, parameters of potentials for all other 
temperatures were found by approximation. We calculated temperature dependencies for the lattice constant, enthalpy, heat 
capacity under constant pressure and volume. Application of the temperature-dependent potential well complies with 
experimental data; the difference did not exceed 0.5% in the entire temperature range of 300-3120K. 
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1. Introduction 

At present, the molecular dynamics method (MD) is 
widely employed for the simulation of thermodynamic and 
nonequilibrium processes. However, the classical method 
of the molecular dynamics has some significant restrictions. 
For example, it is impossible to take into account changes 
in the crystal electron subsystem and, hence, their effects 
on the heat transfer and cohesive energy. Besides, this 
method employs the Newtonian mechanics equations 
contradicting the quantum character of the atomic 
interaction. Also, the quantum molecular dynamics method 
does not take into account some quantum effects like 
tunneling effects and requires significant computational 
power and thus are substantially constrained by simulation 
time. High requirements to computing power constrain the 
application of quantum MD and that is why the method of 
classical MD is applied for the simulation of 
nonequilibrium processes in solids. For example, long time 
and box large size are required to calculate the 
displacement cascade of atoms in the crystal during 

irradiation. 
In the classical molecular dynamics method the form and 

the type of the interatomic potential are postulated, and its 
parameters are constant regardless of the purpose of 
calculation. Recent works [1, 2] devoted to the analysis of 
the interatomic forces revealed the dependence of 
interatomic potential on the temperature and density of the 
electron states. Thus, in terms of the perturbation theory, 
the authors of [1] perform averaging of the interaction 
energy on the field states with the temperature-dependent 
weight coefficients. As a result, a linear temperature 
dependence of the interatomic potential has been obtained.  

The temperature-dependent potential in the molecular 
dynamics method is still not used widely, or is applied to 
specific simulation tasks only [1-3]. Apparently, if a heat 
transfer process with temperature gradient is simulated, or 
if local hot spot is simulated, there is uncertainty in 
selection of temperature-dependent potential parameters. 
That is why introducing temperature parameter to the 
potential opens new possibilities in the adjustment 
procedure on one hand, but allows simulation of isothermal 
processes only on the other hand, which limits the choice of 
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simulated process to some degree. The present work aims 
to justify application of temperature-dependent potential for 
classic molecular dynamics in general terms, and also to 
define the principle of selection of coefficients of potential.  

In [2] temperature dependence of potential was used to 
simulate overheated electron gas in a crystal exposed to 
radiation. The model took into account two temperatures – 
the temperature of the crystal and the temperature of the 
electron subsystem; this is a so called two-temperature 
model [4-6]. The authors used the MD method based on the 
Finnis-Sinclair potential and embedding atom model. In 
order to perform parameterization of the potential in terms 
of the density functional theory, the electron density was 
calculated using the following expression [2]: 

( )∑=
i

ii rfr
22)( ψρ                (1) 

where fi are the occupation numbers of the state i, in 
accordance with the Fermi-Dirac statistics, ψi(r) is the wave 
function of the electron in the state i. Thus, the electron 
density used with the semi-empirical Finnis-Sinclair 
potential depends on the temperature and leads to 
exponential dependence of the interatomic forces on the 
temperature of the electron subsystem. It is worth 
mentioning that in [2] the temperature of electrons in the 
crystal reached 105 K, while arbitrary measurable effects 
on the form of the potential were observed at temperatures 
of 1000K and higher.  

The authors of [3] used temperature dependence of the 
potential for molecular mechanics simulations. The 
molecular static simulations involve minimization of the 
system energy with respect to the atomic positions. 
However, molecular static simulations are valid only at 0 K 
(absolute zero). The idea of work [3] is to develop 
temperature dependent interatomic potentials that are valid 
at elevated temperatures (T > 0 K) so that static molecular 
simulations can be performed to model high temperature 
phenomena. The authors proposed the equivalent static 
molecular simulation technique that can model high 
temperature (T > 0 K) phenomena at a fraction of the 
computing time of conventional MD simulations. The 
advantage of the proposed method is achieved by invoking 
some readily available material properties to extend the 
interatomic potential function to describe thermal effects. 
Temperature dependent interatomic potentials are 
developed in order to facilitate the desired equivalent static 
simulations at elevated temperatures. The Lennard-Jones 
potential is represented as a function with a lattice 
parameter that is linearly dependent on the temperature:  
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where εT=-φ0(RT)-kBT is a parameter depending on the 
temperature T, kB is the Boltzmann constant, RT=(1+αT)R0  
is a lattice parameter at the temperature T, α is a linear 

expansion factor, R0 is the initial value of the parameter. The 
given method allowed to find minimum energy states, 
elastic constants and thermomechanical tensions. 

We have to emphasize that the molecular mechanics has 
some significant restrictions. It does not allow simulating 
dynamical effects such as radiation damage and cascades, 
the phonon oscillation spectrum etc. Thus, application of 
the temperature-dependent interatomic potential for MD 
modeling is of particular interest. Few works devoted to 
temperature dependence of the potential aim to solve a 
narrow class of problems, like in [2-6], in which the 
potential takes into account the overheated electron gas in a 
crystal. Therefore, in general terms of classic molecular 
dynamics, the substantiation of using the 
temperature-dependent potential as well as comparison of 
computation results for various potentials with 
experimental data have not been made. 

2. On Application of the 
Temperature-Dependent Potential for 
MD 

Since the temperature dependence of the interatomic 
potential is explained individually in any particular case 
[1-7], generalization is required. To do this, we determine 
atomic potential energy in a crystal at various temperatures 
and estimate the effect of the change of this energy on the 
solution of the Newtonian equations within the MD method. 
In terms of the quantum mechanics formalism and, in 
compliance with the Ehrenfest theorems, the mechanical 
quantities are substituted for the corresponding operators of 
momentum, force and coordinate [8]. A consequence 
deriving from Ehrenfest theorems for ensemble average of 
mechanical values in the one-dimension case is the Newton 
quantum equation: 

2

2

( )x U x
=

xt
µ ∂ ∂⋅ −

∂∂
               (3) 

where µ is the mass of the atom wave packet, )(xU  – 
describes the averaged potential energy of the atom in a 
crystal, x  is coordinate of the wave packet (or its center) in 
a crystal. 

The atom is represented as the wave packet, i.e. its wave 
function ψ notably differs from zero in a small spatial 
domain ∆x only. The wave function includes wave functions 
of all electrons and nucleus. We do not distinguish nucleus 
wave functions from electron wave functions here. 
Therefore, we calculate the atom impact force as a sum of 
forces acting on the nucleus and the electrons of the atom. If 
the average value of the coordinate varied in accordance 
with the classical Newton equation and the wavepacket 
shape did not change, the motion of the atom or the wave 
packet |ψ|2 could be considered as the motion of a point 
particle that obeys the classical mechanics the MD method is 
based on. But the description of atomic motion in terms of 



20 Nagornov Yuri and Katz Andrey:  Parametrically Temperature-Dependent Potential for Molecular Dynamics  
Simulation of Uranium Dioxide Properties 

quantum mechanics does not allow this for two reasons. 
First, the wave packet spreads; second, in order to make the 

center of mass of the x  packet coincide with the point 
particle motion in the U(x) field, the following condition is 
required: 

x
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x

U
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∂=

∂
∂ )(                  (4) 

The last equation is generally not fulfilled and is valid 
only under certain conditions that put restrictions to the MD 
method as well. By convention, the average value of the 
force could be determined with the operator -∂Û/∂x [8]: 
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We assume the atom takes place near the average position 

and fluctuates slightly by the value of ξ, i.e. ξ+= xx , then  
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The crystal meets conditions under which the function 
U(x) is a slowly varying function of the variable x in a region 

where |ψ|2 notably differs from zero. Then x

xU

∂
+∂ )( ξ

 can be 
expanded into power series of ξn (n=0,1,2,3,4…) for the 
following result:  

2 3

2 3

( ) 1 ( ) 1 ( )
1! 2!

U U x U x U x
d d d

x x x x
ψ ψ ξ ψ ξ ψ ξ ψ ξ ψ ξ∗ ∗ ∗∂ ∂ ∂ ∂− = − ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ ⋅ −

∂ ∂ ∂ ∂∫ ∫ ∫ 
2 3

2
2 3

( ) 1 ( ) 1 ( )
1! 2!

U U x U x U x
d d d

x x x x
ψ ψ ξ ψ ξ ψ ξ ψ ξ ψ ξ∗ ∗ ∗∂ ∂ ∂ ∂− = − ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ ⋅ −

∂ ∂ ∂ ∂∫ ∫ ∫ …            (7) 

Taking into account the normalization condition and the 
determination of the mean and dispersion we obtain: 
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As a result, the Newton quantum equation can be written 
as follows: 
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Thus, the quasiclassical approximation applies and the 
molecular dynamics calculations give the correct result only 
if the following condition is satisfied:  
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The state of the particle coincides with the classical one 
only if the kinetic energy coincides with its classical 
analogue. This means, the uncertainty in the kinetic energy 
should be much less than its average value. Taking into 
account the Heisenberg relation, this condition can be 
written as: 
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Thus, the quasiclassical approximation and the Molecular 
dynamics method are valid if the conditions (10, 11) are 
satisfied. Both inequalities are simultaneously fulfilled only 
at high kinetic energies of the atom and slightly varying 
fields. We can see that as the temperature grows, the kinetic 
energy grows as well, so the inequality (11) remains valid 
unlike the expression (10). 

To see, how dispersion changes as the temperature grows 
and if the inequality (8) is fulfilled, we have to use quantum 

statistics apparatus. Let us review a mixed ensemble for each 
atom in the lattice: 
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where ψα is the state of the atom having energy Eα, Pα is 
probability of the atom to be in the state ψα. Average 
dispersion for the mixed ensemble can be written as [9]: 
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where ψS = ψS(x,T) is the wave function of the atom in the 
state S, N is the number of the atoms in the ensemble, eα is 
the normalization coefficient, gS represents the number of 
the single-particle states within the state interval S, εS is the 
atom energy in the state S. We can see that dispersion of the 
mixed ensemble strongly depends on the temperature. As the 
temperature grows, this effect becomes even stronger. That 
is why the expression (10) is less strictly fulfilled as the 
temperature grows, which in turn results in substantial 
discrepancy between the molecular dynamics calculation 
and experimental data. However, the temperature 
dependence can be taken into consideration by introducing a 
temperature dependent effective potential Ueff(x,T), which 
depends on the temperature parameter so, that for each 
temperature T the following Newton quantum equation is 
fulfilled: 
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The equation (14) does not define the form of interatomic 
potential, but it provides the way to modify the classical MD 
potential. Taking into account the inequality (10), the type of 
the potential Ueff(x,T) has the same restrictions as U(x) does. 
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On the other side, variation of the potential as the 
temperature changes should be much less than the initial 
absolute values. Considering expressions (10) and (14) the 
first-order approximation of the potential Ueff(x,T) can be 
defined as a function linearly dependent on the temperature, 
similarly to [3], so that temperature variations are small 
quantities of the second-order with respect to U(x). In other 
words, we can set the problem of finding the efficient 
potential as: 

Ueff (x,T) = U(x)+δU(x,T),                (15) 

where |U(x)|>>|δU(x,T)|. 

3. Choosing the Form and Parameters of 
the Potential 

Apparently, the advantage of the temperature-dependent 
potential is observed at higher temperatures, thus as a 
testing ground for the method we select uranium dioxide 
that has wide practical applications and high melting 
temperature of 3120 K. Uranium dioxide is ionic crystal 
with cubical structure similar to fluorite CaF2. 

In classical MD the most popular model of the 
interaction of atoms in UO2 is the rigid ion model, which 
describes atoms as massive point charges interacting via 
electrostatic interactions and a short-range potential [10, 
11]. In this case interactions between ions are formulated in 
terms of a short-range potential in addition to the 
long-range Coulomb interactions. Three different forms of 
short-range potentials have been used by various authors 
[11]. The most used was the Buckingham potential: 

                 (16) 

where rij is the distance between ith and jth atoms. The 

Buckingham form yields unphysical attraction at very short 
distance because of the 1/r6 term. This zone is separated 
from the “conventional” zone by an energy barrier, the 
location and the height of which depend on the potential 
parameters. These short distances being potentially reached 
in MD runs at the high temperature, thus care has to be 
taken in order to avoid entering this unphysical zone. 

In order to solve the problem of hitting the unphysical 
region, the strong repulsive term is added to the potential at 
very short distance to the O–O and/or O–U interactions of 
the problematic potentials, with the exponential form [11]: 

                   (17) 

Different authors avoided this problem during the 
potential development using a “Buckingham-4 ranges” 
potential, defined by intervals [10, 11]: 

     (18) 

The two splines are such that the potential and its two 
first derivatives are continuous and that rmin is the 
potential’s minimum. This form was used only for the O–O 
interactions, and the above-mentioned hardening of 
potential had in some cases to be done for the O–U 
interactions [11]. 

The last form of potential found in MD simulations of 
UO2, is a composition of a Morse potential, used to 
describe a covalent bond, to a Buckingham potential. Such 
a model generally presumes partial ionization. The 
potential is expressed by: 

                      (19) 

In our case the choice of a potential form is not crucial, 
meaning the form of the potential does not affect adding 
temperature dependence to it. The particular choice of a 
potential form depends on other criteria, such as simulation 
conditions, computational power as well as subjective 
preferences of researchers. We took the most popular rigid 
ion model that takes into account Coulumb interaction and 
the short-range Buckingham potential: 
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Since such computation for UO2 was carried out for the 
first time and we operated in terms of the “zero-order” 
approximation, we decided to limit the number of 

temperature-dependent parameters and only used the 
fractional charge z(T) and the parameter f(T). Later, the 
number of temperature-dependent parameters can be 
increased. Taking into account expressions (10) and (14) 
we took coefficients in the following form: 

 (21) 

Taking the Coulumb potential Ueff (rij,T) as an example, 
let us show that the chosen form complies with the 
expression (15): 
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                 (22) 

In our case, values of fractional charges will be 
dependent on electron shell. As the temperature raises, the 
bind of the electron shell with the nucleus decreases, 
therefore, dipole moment decreases, and the value of 
fractional charges in the potential should decrease too. 
Taking into account expressions (10) and (14), and the fact 
that at the temperature of T0=2670K uranium dioxide 
moves to the superionic state, parameters of the potential 
are taken as piecewise linear slowly-varying functions of 
the temperature: 

  (23) 

Here, the fractional charge value is specified for ions of 
oxygen. The charge for uranium ion is obtained by 
multiplying the value by two. The linear functions for 
parameters intersect at T0=2670K, and linear coefficients at 
T change rather abruptly in the transition point. The rest 
parameters non-dependent on the temperature were taken 
from [12] and are listed in Table 1. Thus, the number of 
parameters in the potential increases by the number of 
linear coefficients at the temperature for the charge and the 
f parameter.  

Table 1. Temperature independent parameters of the potential represented 
as (20). 

 a, Å b, Å c, eV1/2·Å3 

U 1.318 0.036 0 

O 1.847 0.166 4.166 

The calculation was carried out on a supercomputer 
based on two Intel Xeon processors with 160 Gflops of 
computational power each, and four graphic processors 
Nvidia Tesla K10 with a peak computational power of 4.58 
Tflops each. The software used for simulation was the 
DL_POLY 4.04 system developed in Daresbury Laboratory 
(UK). Source codes of the program were obtained from the 
developer and were not modified. The system compiled 
with MPI (OpenMPI) and CUDA (CUDA 4.0) parallel 
processing technologies gives the edge by several orders in 
computation time over sequential implementation. This 
hardware-software appliance allowed to perform 
computations for simulation periods of 10 ns and more. The 
potential was set as a file with coefficients from the Table 1 
and calculated using (23), so we had a set of files for 
various simulation temperatures. 

The periodic boundary conditions were applied. The 
translated cell was selected as a cubic fluorite structure 
crystal containing from 768 to 12000 ions. Uncertainty in 
calculations decreases with increasing number of atoms N, 

and vice versa simulation time increases. Therefore, the 
parameters calculation occurred with N = 768, but the final 
calculation of all thermodynamic quantities occurred with 
N = 12000. 

All computations implied the integration step of 2 fs and 
the cut-off radius of 10 Ǻ. The Coulomb interactions were 
treated with the classical Ewald summation technique. 
Depending on the task, computations were performed for a 
microcanonical NVE ensemble (volume is constant) or a 
canonical NPT ensemble (pressure is constant), but both 
cases fulfilled isothermal conditions. Values of pressure and 
volume were chosen for the normal conditions. 

Errors were calculated in accordance with 
root-mean-square deviation, and for measuring the lattice 
parameter (Fig. 1) dependence on the temperature they 
were 0.016-0.018%, and for measuring enthalpy they didn’t 
exceed 0.01%.  

4. Calculating Thermodynamic 
Characteristics of Uranium Dioxide 

The present paper perform comparison of uranium 
dioxide thermodynamic characteristic calculation results 
obtained with the present method with results by other 
authors taken from overview papers [10,11], and also with 
experimental data taken from the overview paper [13]. We, 
like the bulk of authors, perform reconstruction of the 
potential of the parameter using experimental data of the 
thermal dilatation of the UO2 lattice and by enthalpy 
variation [11]. Parameters zi and f(T) calculated using the 
proposed method have two linear regions with a break at 
the temperature of 2670 K – this is temperature of 
transition to the superionic state [14]. This state is 
characterized by melting of the oxygen sublattice while the 
uranium ion structure remains intact. This is a so called 
λ-phase. We intentionally introduce two parameter regions, 
because they describe different phase states [13]. 

The method proposed in this paper allows calculating the 
lattice parameter and enthalpy of uranium dioxide with 
good consistency of calculated and experimental data for 
the whole temperature range (Fig. 1). Within the 
temperature range of 1500-3120K, variations of the 
effective charge in the potential and variations of the 
parameter f(T) are less than 2% and 7% respectively, which 
corresponds to the approximation of small deviations in the 
potential. Importantly, these dependencies calculated with 
the mostly employed potentials, such as Basak [15], 
Morelon [16], Yamada [17], Potashnikov [18], Arima [19], 
Lewis [20] exhibit significant disagreement with the 
experimental data obtained for the high temperature range 
of 1500-3120K. 

Interestingly, the lattice parameter calculated using the 
Basak and Morelon [15, 16] potentials well coincides with 
the experimental values (Fig. 1), but the enthalpy function 
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is in disagreement with the temperature increase. In 
contrast, the calculated data obtained with the use of 
Yamada potential exhibit significant errors for the lattice 
parameter, while the accuracy for the bulk modulus is 
rather good [11]. 

 

Figure 1. The comparison of experimental data taken from the overview 
paper [13], temperature dependence of the UO2 lattice parameter with the 
present paper calculation data and with applied various potentials Arima 
[19], Basak [15], Lewis [20], Yamada [17]. The error is denoted for the 
experimental data. 

The approach proposed in this paper results in good 
agreement with experimental values in the whole 
temperature range, and the discrepancy between 
calculations and experimental data does not exceed 0.5% 
(Figs 1 and 2). In the temperature range of 1500-3120K the 
discrepancy of calculated data based on the most accurate 
potentials varies from 2 to 90%. The selection of 
temperature-dependent potential parameters was performed 
for the temperature values of 300, 2670 and 3120K only, 
while for other temperatures a linear approximation of 
parameters was used. The adjustment of parameters of the 
rest of potentials, which do not depend on temperature, was 
carried out at either 0 or 300 K [10, 11, 15-21]. 

Heat capacities at constant pressure CP and constant 
volume CV were calculated in a canonical NPT ensemble 
and in a microcanonical NVE ensemble respectively. For 
that purpose, the dependence of the atom system energy on 
temperature was approximated by polynomial functions. 
Then, the derivative function of the energy with respect to 
temperature was calculated as a derivative of obtained 
polynomials: 
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Figure 2 represents dependences of heat capacity on 
temperature CP(T) obtained from experimental data and 
calculations using the molecular dynamics method. The 
spread of experimental data in the temperature range up to 
1000K does not exceed 4-6%, and for temperatures higher 
than 2000K the spread increases up to 15-20%. The interval 
between 1000 and 2000K is not studied experimentally, and 
is described by a polynomial that “stitches” both areas 

together. Approximation functions and uncertainties are 
recommended in overview papers [13,22]. From 
interpretation of these experimental data, Ronchi and 
Hyland [23] calculated the contributions of each process to 
compare with available data and provided an excellent 
description of the theoretical understanding of the 
contributions of each physical process to the heat capacity. 
The dominant contributions in each of four temperature 
intervals for the solid discussed in detail by Ronchi and 
Hyland [23] are summarized below. 

1) From room temperature to 1000 K, the increase in 
heat capacity is governed by the harmonic lattice vibrations, 
which may be approximated by a Debye model. By 1000 K, 
this contribution becomes constant. A smaller contribution 
is provided by thermal excitation of localized electrons of 
U4+ (5f)2 in the crystal field levels. This crystal field 
contribution is proportional to T at low temperatures, but 
becomes temperature-independent at high temperatures 
where the concentration of U4+ decreases as the 
concentrations of U3+ and U5+ increase; 

2) From 1000 to 1500 K, the heat capacity increases due 
to increase in the anharmonicity of the lattice vibrations as 
evidenced in the thermal expansion. This contribution has 
been previously referred to as the thermal expansion or 
dilation contribution;  

3) From 1500 to 2670 K, the increase in heat capacity is 
caused by formation of lattice and electronic defects. The 
peak in the heat capacity at 2670 K (85.6% of the melting 
point) has been attributed to Frenkel defects both from 
theoretical considerations and neutron scattering 
measurements of the oxygen defect concentration as a 
function of temperature. A similar discontinuity and anion 
behavior was observed for ThO2 [24, 25]. Harding et al. [26] 
comment that because no excess enthalpy is evident in 
ThO2 below the corresponding transition, it is reasonable to 
suggest that the increase in UO2 below the phase transition 
is due to coupling between electronic disorder and Frenkel 
disorder; 

 
Figure 2. Comparison of experimental data taken from the overview work 
[13] with the present work calculated data of temperature dependence of 
uranium dioxide heat capacity CP using various potentials Arima [19], 
Basak [15], Lewis [20], Yamada [17]. 
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4) Above the phase transition temperature, the peak of 
the heat capacity drops sharply due to rapid saturation of 
the defect concentration. From 2700 K to the melting point, 
Schottky defects become important. 

As the calculations show (Fig. 2), the dependencies CP 
and CV, calculated using the temperature-dependent 
potential also are in good agreement with experimental data 
in the entire range. All potentials below the temperature of 
1500K exhibit heat capacity in accordance with the 
Dulong-Petit law, and above 1500-2000K only two 
potentials, Basak and Yamada, show small discrepancy 
from the constant value, but are still far from abnormal 
increase of heat capacity. Formation of lattice and 
electronic defects is the reason for abnormal increase of 
heat capacity at temperatures higher than 1500K, which is 
effectively taken into account in our model. We cannot 
explicitly separate the deposit of electronic excitations in 
our calculations, but this entropy term is taken into account 
implicitly during fitting of parameters of the potential. As 
shown below, the abrupt increase of heat capacity at 
temperatures higher than 2500K in our calculations can be 
caused by fast growth of Frenkel pairs. 

The calculated dependencies CV virtually coincide with 
CP [11], so it is interesting to take a look at the CP / CV ratio 
presented at Fig. 3. The heat capacity CV is not defined 
experimentally [13], but is calculated using the thermal 
expansion coefficient α, molar volume Vm and isothermal 
bulk modulus βT with the following expression [11]: 

               (25) 

From this expression we can see that CP > CV, so Fig. 3 
differentiates areas below and above one, correspondingly, 
the area above one is unphysical. The unphysical area of 
the CP / CV ratio gathers calculations based on all potentials 
except the temperature-dependent potential. Apparently, 
recalculation of errors for the experimental data plot 
produces high value of uncertainty that is mostly caused by 
measure errors of CP and βT. The calculation result based 
on the temperature-dependent potential is substantially 
better for few reasons. First, the obtained values lie in the 
physical area above one for the almost entire temperature 
range of 500-3000K. Second, taking into consideration low 
accuracy of experimental data our results fall within the 
uncertainty area. Third, the calculated and the experimental 
curves are similar and have breaks at 1300-1500K and 
maximums at 2500-2700K.  

The obtained conformity of the experimental data with 
calculation results can be explained by studying uranium 
dioxide atom oscillation spectrum using MD method for 
various potential. This is planned for the next paper. For 
now we can specify several considerations to put physical 
ground for temperature-dependent potential application.  

 

Figure 3. Comparison of experimental data calculated using the 
expression (25) and calculated temperature dependencies of the CP / CV 
uranium dioxide heat capacity using various potentials Arima [19], Basak 
[15], Lewis [20], Yamada [17]. Dotted line designates uncertainty of the 
experimental data, line at the value of one separates the physical area 
from the unphysical one. 

Uranium dioxide shows semiconductor properties at very 
high temperature, 1500K or higher. At such temperatures 
ambipolar conductivity appears, unbound electrons and 
holes appear, lattice and electronic defects are produced, 
which leads to abnormal growth of the heat capacity CP. 
Temperature dependence of the potential is in the first place 
related to changes in electron subsystem [2], such as 
changes of crystal’s valence band density state and 
appearance of unbound charge carriers. The potential 
change is small, but it should greatly influence atom 
behavior during high temperature region simulation. 
Calculations made with the classic MD do not allow to take 
into account changes in electron subsystem of a crystal, and 
thus, heat capacity is practically temperature-independent 
(Fig. 2). 

5. Conclusion 

On the example of uranium dioxide thermodynamic 
property simulation, the present study shows that 
application of the temperature-dependent potential to the 
molecular dynamics method allows obtaining good 
compliance of the calculated date with the experimental 
values. The temperature dependence of the interatomic 
potential is obtained as estimation of the average 
interaction force value in the Newton quantum equation. 
The paper shows that the averaged force value can be 
represented as a sum of derivative function of the potential 
of the average atom coordinate and a summand that 
depends on the square dispersion of the coordinate. If the 
first member complies with the classic Newton equation, 
then the second one depends on crystal’s temperature, 
according to quantum statistics.  

Temperature dependence of the potential was introduced 
to the semi-empirical potential for uranium dioxide that 
takes into account Coulomb interaction and the short-range 
Buckingham potential. The selection of parameters of the 
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potential was performed at three temperatures – the initial 
one (300K) and the temperatures of phase transitions – 
2670 and 3120K, for the rest of temperatures the potential 
was specified by linear approximation of parameters. 

Comparison of calculation results with the 
temperature-dependent potential and calculations based on 
the most employed today’s potentials has shown promising 
outlook to apply the suggested method. The temperature 
dependences of the constant lattice, bulk modulus, enthalpy, 
and heat capacity at constant pressure and volume have 
been calculated. The best compliance with the experimental 
data was acquired during the analysis of heat capacities and 
their ratio. The calculations conforms to experimental data 
in the entire temperature range of 300-3120K, while 
methods based on other potentials display significant 
discrepancy at temperatures higher than 1500K. Moreover, 
CP / CV heat capacity ratio goes to the unphysical area 
below one for all potentials, while the calculation based on 
the temperature-dependent potential is consistent within the 
experimental data accuracy. 
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