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Abstract: Malaria is a serious public health problem worldwide. Globally concerted efforts are underway to control and 

eliminate it. Despite recent slowdown, substantial achievements have been recorded in the last 20 years. However, its 

eradication requires successful elimination of all Plasmodium parasites among symptomatic, asymptomatic, and sub-

microscopic infections. This review is aimed at assessing the role of molecular diagnostic tools in malaria elimination. Quality 

assured malaria diagnosis is fundamental to control and elimination of malaria. High-throughput molecular diagnostic tools are 

important for the diagnosis, and monitoring of interventions to mitigate malaria. Molecular techniques such as real-time PCR, 

LAMP, nPCR, RT-PCR, multiplex-PCR, NASBA, and CLIP-PCR have been instrumental for malaria control and elimination. 

They enabled the detection and identification of symptomatic, asymptomatic, and sub-microscopic parasitemia. They are also 

important in the discovery, and development of drugs. Despite their tremendous contribution and immense potential, they are 

not readily available in malaria-endemic settings, fail to detect hypnozoites and infectious gametocytes as well as not 

sufficiently optimized for fieldwork. Those challenges might delay malaria elimination thereby threatening the quest to reach 

the goal of a malaria-free world by 2050. Therefore, we need novel tools fit for field application and for detecting hypnozoites, 

infectious gametocytes, and in vitro analysis of Plasmodium vivax. 
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1. Introduction 

Malaria elimination is breaking the local transmission of a 

particular species of Plasmodium across a demarcated 

geographical area through thoughtful interventions [1-3]. It 

involves reducing the incidence of indigenous cases to zero [2, 

3] and sustaining this achievement for at least three years [2]. 

Sustained interventions such as improved case management, 

robust surveillance, and vector control are fundamental to 

achieving and maintaining malaria elimination [2, 4, 5]. 

The World Health Organization in its 2015 Global Health 

Assembly has set a strategic framework structured with three 

major pillars to eliminate malaria. These pillars are: 1) 

ensuring universal access to malaria prevention, diagnosis, and 

treatment; 2) accelerating efforts towards elimination and 

attainment of malaria-free status; and 3) transforming malaria 

surveillance into a core intervention. The first pillar focuses on 

improving access and utilization of quality-assured 

management of malaria cases [6]. Interventions focusing on 

the Plasmodium parasite include early diagnosis and prompt 

treatment of cases and monitoring of their productivity by a 

robust surveillance system [4, 5, 7, 8]. It is equally important 

to monitor the productivity of interventions to ensure they 

meet the goals put in place [2, 6]. A strong surveillance system 

is central to ensure not only cases are declining, but also follow 

the effectiveness of interventions and early notification of 

potential resistance to interventions deployed [2, 9, 10]. 

A robust laboratory tool is fundamental to achieving malaria 

elimination by fine-tuning information obtained from clinical 
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diagnosis and monitoring of antimalarial interventions [11, 12]. 

In areas where malaria transmission is declining, more sensitive 

laboratory tools are required for the detection of cases, 

especially those with low-density parasitemia, asymptomatic 

infections, and individuals carrying gametocytes that can serve 

as potential human reservoirs of transmission [11-13]. Molecular 

diagnostic tools play an essential role in identifying the above-

mentioned segments of the population. These tools 

revolutionized the control and elimination of malaria and 

underpinned the successes made in the last 20 years [13, 14]. 

Moreover, they have improved the detection limit for malaria 

infection from 50 parasite/µL to below 0.02 parasite/µL [15, 16]. 

Lack of a clear understanding of the ever-evolving parasite 

not only lags the achievement of the milestones set in the 

march toward a world free of malaria; but also sustains 

wastage of expendable resources that no longer works for the 

contemporary parasite. It seems like re-arranging the 

deckchairs on the Titanic. Precise and up-to-date data allows 

devising and implementation of timely intervention. The 

effectiveness of a given intervention and its implementation 

strategy at a given place during a given time does not 

guarantee its effectiveness for everyone-everywhere-forever. 

Moreover, in a worst-case scenario, the mere adoption of 

certain applauded interventions and their strategy from 

somewhere might exacerbate the crippling public health of an 

area. Failure to properly address a local situation might also 

put us in a position incompetent to deal with the possible risk 

of epidemic in particular and pandemic in general [17]. Alas, 

resistance to antimalarials and insecticides is expanding. This 

is a bold signal to intensify the search for at least a temporary 

replacement until a lasting solution is in place. This review is 

aimed at assessing the application of molecular diagnostic 

tools in malaria elimination and identifying their strength and 

weakness. It also covers the their contribution to the 

achievements made, and remaining works to fill the 

identified gaps as well as raises outstanding questions to 

drive future researches. 

2. Role of Molecular Diagnostic Tools in 

Malaria Elimination 

Molecular diagnostic tools are pivotal for the diagnosis of 

malaria and follow response to treatment. They are important 

to characterize transmission intensity and dynamics by 

determining the connectivity of the parasite population 

through the identification of the gene flow of a parasite strain 

[3, 18]. Besides, these tools detect and distinguish local and 

imported cases, which is an essential indicator for assessing 

the closeness of an area to declare elimination [2]. 

Molecular diagnostic tools help identify hot pops and 

hotspots, thereby revealing the local transmission chain and 

identifying foci of transmission which is vital for targeted 

intervention [18, 19]. These tests are essential for in vivo 

efficacy studies to detect treatment failure, molecular 

signatures responsible for drug resistance, and predict 

resistance by monitoring markers of negative selection [2, 20]. 

They also help detect histidine-rich protein 2/3 (HRP2/3) 

deletions affecting malaria rapid diagnostic test (RDT) efficacy 

to inform decision-makers in the selection of diagnostics. This 

is important to address concerns about the origin, spread, and 

impact of resistance to antimalarial interventions [3, 21]. 

Furthermore, molecular diagnostic tools are useful to evaluate 

the efficacy of malaria vaccine and to check the range of 

vaccines against which species and/or strain it confers 

protection from infection and/or severe disease [3, 22]. In the 

following sub-sections we will discuss some of these tools 

with their application, strength and weakness. 

2.1. Real-Time PCR 

Real-time polymerase chain reaction (PCR), usually 

denoted as quantitative PCR (qPCR), is characterized by 

continuous monitoring of the production of target amplicons 

from the parasite deoxyribonucleic acid (DNA). It is a 

molecular technique involving the collection of data on the 

target DNA as it occurs throughout the PCR process [23]. 

This technique uses DNA-binding fluorescent-labeled probes 

whose fluorescence emission rises in response to binding to a 

target DNA. The florescence is analyzed and graphically 

presented corresponding to the presence and quantity of the 

parasite DNA [23]. 

The fluorescence labels include double-stranded DNA 

(dsDNA) intercalating dyes such as SYBR Green, and 

sequence-specific oligonucleotide probes such as TaqMan probe. 

However, the SYBR Green probe binds to the double-stranded 

PCR product and emits light that allows monitoring the total 

amount of the amplicon without distinguishing between 

different sequences. On the other hand, the TaqMan probe 

system involves incorporation of sequences complementary to 

the target DNA thereby making the probes specific to ensure the 

amplification of only target DNA sequences and result in 

fluorescence [23]. The TaqMan probe system enables the 

production of fluorescence directly proportional to the amount 

of the specific target sequence that has been amplified as 

displayed by the figure below [24]. (Figure 1). 

Application 

Real-time PCR is a central molecular tool with multiple 

application for various malaria elimination works [24]. It is 

an ideal tool for active case detection in epidemiological and 

clinical studies, mainly asymptomatic and sub-microscopic 

infections [24, 25]. It can also be used for monitoring 

therapeutic efficacy and assessing genes liable for resistance 

to drugs and insecticides [24]. 

Strength 

Real-time PCR carries numerous advantages beyond a 

limited number of laboratory room requirements. It allows 

simultaneous amplification, detection, and quantification of 

the parasite in a single step by eliminating the need for gel 

electrophoresis. Besides, avoiding post-amplification 

manipulation reduces the risk of contamination and quick 

availability of results [13, 26]. It allows multiplexing; as well 

as can help detect genes responsible for resistance to 

antimicrobials [26, 27]. According to the report by 

Haanshuus et al. (2019), a genus-specific conventional 
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cytochrome b (cytb) SYBR real-time PCR has shown high 

sensitivity in field studies by detecting 70% sub-microscopic 

parasitemia. Such a highly sensitive, specific, and user-

friendly real-time qPCR can be useful in both 

epidemiological and clinical studies [28]. 

This test provides direct information on the resistance 

status of the parasite and reveals the spread of drug resistance 

species and/or strain, both of which serve as crucial evidence 

to modify policies in malaria control and elimination [29]. 

Furthermore, combining, the Real-time PCR with High-

Resolution Melt (HRM) showed a promising result to 

identify recrudescent P. falciparum in treated malaria 

patients. This test is good in terms of sensitivity, specificity, 

simplicity, speed, low risk of contamination, reasonable cost, 

and easy result interpretation [26, 29, 30]. 

Weakness 

Real-time PCR cannot show the expression of a particular 

gene. Therefore, results from Real-time PCR should be 

augmented by biochemical assays and phenotypic tests 

including HRM to help a strong evidence-based decision [26, 

31]. Sometimes real-time PCR may persist positive after 

treatment or recovery rendering overestimation of parasite 

prevalence after treatment [32]. 

 

Figure 1. Graphical display of real-time PCR using sequence-specific oligonucleotide probe (TaqMan System). 

The TaqMan System real-time PCR involves the use of probe sequence extending 18 to 25 nucleotides that is labelled at the five prime end with a floresent 

reporter dye (F) and at the three prime end with a quencher dye (Q). During the strand displacement step of the PCR, the five prime to three prime exonuclease 

activity of Taq Polymerase cleaves the florescent reporter from the probe sequence. This causes emission of floresence signal that is measured at every cycle 

of the amplification process. In intact probes, floresence of the reporter quenched by close presence of the quencher. Probes and the complementary DNA 

strand are hybridized and the reporter’s floresence is still quenched. During extension step of the PCR, the probe is degraded by Taq Polymerase and the 

floresence reporter is released resulting in emission of floresence, which is an essental information to detect and quantify the target DNA. PCR: Polymerase 

Chain Reaction; Taq Pol: Taq Polymerase; Q: Quencher; F: Fluorophore 

2.2. Nested PCR 

Nested PCR is a type of PCR that involves two sets of 

primers used in two sequential runs of PCR. It is a technique 

whereby the first PCR generates a mix of all Plasmodium 

species DNA products, which can be used in the second PCR 

run with primers internal (nested) to the first pair of primers. 

The first set of primers binds outside of the flanking region 

of target DNA sequence thus called outer primer, and results 

in amplification of larger fragments. The second set of 

primers binds to the inner sequence of the first run reaction 

thus called inner primer, and results in amplification of 

smaller fragments [33]. The first amplification allows 

detection of genus-specific genes of the Plasmodium. 

Products of samples tested positive in the first reaction will 

then be subjected to a further four independent reactions (for 

four species of Plasmodium) to determine the species 

composition [33-36]. 

The nPCR assay genotypes malaria parasites by targeting 

genus-level-marker genes for 18S rRNA, followed by 

species-level-marker genes for the second round of four 

independent reactions meant for specie identification [33]. 

Merozoite surface proteins (MSP1 and MSP2), and gene of 

the Glutamate-rich Protein (GLURP) are highly polymorphic 

repetitive regions on different genes of the Plasmodium 
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species that are commonly used as markers for genotyping by 

nPCR. Detection of the amplicons from nPCR is usually 

done by agarose gel electrophoresis [37]. (Figure 2). 

Application 

Nested PCR is an important molecular tool to characterize 

recurrent Plasmodium infections, detect sub-microscopic 

parasitemia, and monitor the therapeutic efficacy of malaria 

drugs. Besides, its good sensitivity and specificity make 

nPCR suitable for diagnostic, research and epidemiological 

purposes [34, 38]. Furthermore, in areas with known species 

and low prevalence of malaria it can also be applied for 

epidemiological surveys, as there will be few samples for the 

second run [33]. 

Strength 

Nested PCR is an ideal tool to assess the therapeutic 

efficacy of malaria drugs thereby signaling for the lurking 

potential drug resistance [39]. Its high sensitivity helps to 

detect asymptomatic and sub-microscopic parasitemia. It also 

helps to differentiate between recrudescent and reinfections 

due to P. falciparum [10, 40, 41]. This assay is not easily 

affected by DNA template quality and has reduced 

susceptibility to minor variations in the amplification 

conditions [33]. By involving the use of two sets of primers, 

nPCR reduces the risk of non-specific binding thereby 

enhancing the specificity of the PCR reaction [33, 42]. 

Weakness 

Despite its remarkable benefits, nPCR is prone to 

contamination due to its high sensitivity, and the involvement 

of sample manipulation during and post-amplification [33, 

34]. Besides, it cannot differentiate between relapse, 

recrudescence, and reinfection as P. vivax infection might 

involve parasites with similar or different genotypes to the 

parasite found in an initial infection [30, 36]. It is a resource-

demanding technique, particularly time and extra primers 

[30]. Due to its high cost, nPCR is not widely available in 

developing countries suffering from a high burden of malaria. 

Even the cost will radically rise tests repeated due to 

contamination [36]. In the case of therapeutic efficacy study, 

nPCR may potentially over-estimate treatment failures 

resulting from poor absorption, inadequate biotransformation 

of pro-drugs, and rapid elimination due to diarrhea and/or 

vomit that is arising from inter-individual variations [29]. 

 

Figure 2. Schematic diagram of nested PCR. 

Nested PCR technique involves a two-stage amplification of a target DNA of malaria parasites by using two sets of primers. These primers target markers at 

the genus-level and species-level of the Plasmodium. The outer primer sets target genus-level marker: 18S rRNA, whereas the inner primer sets (nested) target 

species-level markers. The first run may produce wanted and unwanted products, but no unwanted product amplification in the second run. A portion of the 

amplicons from the first run is used as a template in each of the subsequent four separate runs to provide uncontaminated species-level final products. nPCR: 

nested PCR; F: Forward; R: Reverse 

2.3. Multiplex PCR 

Multiplex PCR is a simultaneous detection of multiple 

targets within a single reaction using different pairs of 

primers designed for each target [27]. A multiplex assay is a 

type of assay allowing the simultaneous analysis of several 
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analyte in a single run of the assay. In malaria context, it 

enables detecting the presence of multiple species of 

Plasmodium in a particular sample with the help of specific 

primers designed to detect a universal malaria marker and 

species-specific markers [43]. Recent developments of a 

Multiplex Malaria Sample Ready PCR showed a promising 

result in Sierra Leone, where it showed twice and four times 

increased sensitivity compared to RDT and microscopy, 

respectively [44]. (Figure 3) 

Application 

Multiplex PCR is used for diagnosis of malaria, and to 

characterize recurrence showing its application in malaria 

control endeavors [45]. It plays an important role in malaria 

elimination since it can be used to monitor diversity of 

parasites after transmission-blocking intervention [44]. 

Strength 

Multiplex PCR provides more information with fewer 

samples in a reasonably short time. It allows the detection of 

many species of Plasmodium from a single sample with a 

single run. Multiplexing is a good cost-saving option, with 

particular implications for resource-limited areas [46]. 

Moreover, by avoiding the sample manipulation compared to 

nested PCR, multiplex PCR is less prone to contamination 

[30]. 

Weakness 

Multiplex PCR suffers from process complexity, 

variability in efficiency for different templates, and poor 

universality. When multiplex PCR was used to replace nPCR 

for Plasmodium species, the sensitivity gets compromised 

due to competition among different amplified fragments for 

limited supplies available in the reaction well. Multiplex 

PCR suffers from self-priming among a diverse set of 

primers, and a lack of equal amplification efficiency on 

various templates [46, 47]. 

 

Figure 3. Diagram showing multiplex PCR. 

Multiplex PCR is type of PCR whereby multiple target sequences are simultaneously amplified in a single reaction well. It involves use specific primers that 

can specifically combine with their corresponding DNA template, hence allow amplification of more than one DNA fragment from a single and/or multiple 

samples. 

2.4. Reverse Transcription-PCR 

Reverse transcription-PCR is a type of PCR characterized 

by the synthesis of complementary deoxyribonucleic acid 

(cDNA) from single-stranded ribonucleic acid (RNA) 

templates by reverse transcriptase followed by amplification 

of the cDNA by PCR [48]. Nowadays, RT-PCR has 

generally become a real-time RT-PCR (qRT-PCR) assay that 

utilizes a well-established three-step protocol. These steps are 

1) a reverse transcription step that converts RNA into cDNA; 

2) amplification of the cDNA using a heat-stable DNA 

polymerase known as Taq polymerase, and 3) detection and 

quantification of the amplified products in real-time [49]. 

Concerning malaria, RT-PCR indirectly assesses the 

parasite gene expression by targeting the translated RNA 

expressed in the nucleic acid sequence [13]. Gametocytes of 

P. falciparum and P. vivax are detected and quantified by 

qRT-PCRs targeting the two orthologous Pfs25 and Pvs25 

transcripts using specific primers and probes. For male 

gametocyte detection and quantification, specific primers and 

probes will target Pfs230p [50, 51]. (Figure 4). 

Application 

An RT-PCR is an ideal tool for epidemiological study due 

to its application to determine gametocyte carriage, which is 

important to assess transmission dynamics [48, 52]. Besides, 

its high sensitivity makes an RT-PCR a good choice to assess 

asymptomatic and sub-microscopic infections [53, 54]. This 

qRT-PCR is a powerful tool to measure gene expression [49]. 

The capacity of RT-PCR to accurately quantify the 



12 Aklilu Alemayehu:  Molecular Diagnostic Tools and Malaria Elimination: A Review on Solutions at   

Hand, Challenges Ahead and Breakthroughs Needed 

gametocyte sex ratio and density makes it vital for 

elimination phase as it can be applied to identify human 

infectious reservoirs of transmission. Furthermore, this tool 

helps to evaluate efficacy of transmission-blocking 

interventions [55]. 

Strength 

As RNAs are more abundant than the corresponding gene, 

RT-PCR bears better sensitivity than PCR making them 

suitable for detecting sub-microscopic and asymptomatic 

Plasmodium infection [15, 56, 57]. These tools can be used 

to study the parasite at different stages, particularly at 

gametocyte stage [53, 54]. According to Schnieder et al., the 

Pfs25 and Pfs230p gametocyte-specific RT-qPCR have lower 

detection limit of 0.3 female and 1.8 male mature 

gametocytes per microliter of blood, respectively [55]. In 

general, RT-PCR method, targeting 18S rRNA of the parasite 

provides a service with high sensitivity that can reach up to 

2-20/mL [13]. 

Weakness 

An RNA-based test is usually less applicable in clinical 

settings due to inherent limitations. These tests are 

technically demanding due to their reliance on RNA 

purification and reverse transcription. Furthermore, RNA is 

susceptible to quick degradation [13]. Consequently, RT-

PCR is less applicable for large-scale use in field surveys 

[58]. 

 

Figure 4. Schematic display of RT-PCR. 

Reverse transcription-PCR (RT-PCR) involves conversion of RNA into compementary DNA (cDNA) by reverse transcriptase followed by amplification of the 

cDNA by PCR. 

2.5. Quantitative Nucleic Acid Sequence-Based 

Amplification (QT-NASBA) 

Nucleic acid sequence-based amplification (NASBA) is an 

isothermal (~41°C) nucleic acid amplification method 

involving RNA target. The method uses a combination of 

three enzymes (reverse transcriptase, T7 RNA polymerase, 

and RNase H). These enzymes act in collaboration to bring 

about a rapid amplification of target sequences without the 

involvement of thermal cycling to yield a single-stranded 

RNA from original RNA template [13, 59, 60]. (Figure 5). 

Application 

Nucleic acid sequence-based amplification technique can be 

applied to amplify and produce several copies of a specific 

segment of RNA/DNA. These amplified RNA and DNA 

molecules can be used for genotyping, sequencing, and 

detection of pathogens [59, 61]. It is also an important tool in 

the detection of sub-microscopic and asymptomatic 

Plasmodium infection [59, 61-63]. The QT-NASBA 

successfully enabled determining gametocyte carriage that can 

be utilized for fieldwork [59-62]. Application of gametocyte 

QT-NASBA can optimize understanding the biology and 

epidemiology of malaria transmission [60, 63]. This tool plays 

a pivotal role in malaria elimination efforts to characterize 

malaria transmission by detecting sub-microscopic 

gametocytemia, which is critical to guide targeted intervention 

[60, 64]. A QT-NASBA can serve as an ideal tool to monitor 

drug resistance and therapeutic efficacy in malaria [65, 66]. 

Strength 

The use of NASBA transformed RNA detection through 

its quick one-step isothermal process. It avoids the need for 

an expensive thermo-cycler as the reaction occurs 

isothermally, but it can also involve both isothermal and non-
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isothermal amplification [67]. The high sensitivity of 

NASBA makes it appropriate to detect sub-microscopic and 

asymptomatic infections [68]. Real-time NASBA is more 

convenient than real-time PCR for quantification of P. 

falciparum [59]. Quantification of various developmental 

stages of P. falciparum can be done by QT-NASBA [60]. 

Since the reaction does not require a DNA denaturation step, 

it avoids genomic DNA amplification, thus helping mRNA 

detection with no risk of DNA contamination [59, 61]. 

Weakness 

With due consideration of equipment and supplies, NASBA 

is estimated to have a high cost compared to other types of 

PCR [69]. In addition to that, NASBA is less reproducible than 

qRT-PCR in case of low density gametocytemia [70]. 

 

Figure 5. Schematic representation of NASBA. 

Nucleic acid sequence-based amplification method is a two-step molecular biology method to produce multiple copies of single stranded RNA. It takes RNA 

molecule and aneals it with specifically designed primers to amplify the target by making use of an enzyme cocktail. This enzyme cocktail, which is composed 

of Avian Myeloblastosis Reverse Transcriptase (AMV-RT), RNase H, and RNA polymerase, helps for successful amplification. An AMV-RT synthesises a 

cDNA strand from the RNA template once the primer is arranged. RNase H hten degrades the RNA template and the other primer binds to the cDNA to form 

double stranded DNA, which RNA Polymerase uses as a baseline to synthesize copies of RNA. cDNA: Complementary DNA; RNA: Ribonucleic acid; P1: 

Primer 1; P2: Primer 2. 

2.6. Loop-Mediated Isothermal Amplification (LAMP) 

Loop-mediated isothermal amplification (LAMP) is a one-

step amplification reaction of nucleic acids that employs self-

recurring strand-displacement synthesis at a single temperature. 

This tool is primed by a specially designed set of primers. It uses 

four to six different primers specifically designed to recognize 

the corresponding four to six particular regions by binding to 

distinct sequences on the target gene. These distinct regions in 

the target gene are F3C, F2C, and F1C regions at the 3’ end, and 

R1, R2, and R3 regions at the 5’ end [13, 69, 71]. This technique 

uses a DNA polymerase extracted from Bacillus 

stearothermophilus, which has strand displacement activity and 

can perform isothermal amplification. The amplification product 

can be detected visually under UV fluorescence or via 

densitometry and turbidimetry [72, 73]. (Figure 6). 

Application 

Its high sensitivity made LAMP a good tool to detect 

asymptomatic malaria and placental malaria from peripheral 

blood [74]. Also, its temperature range made it suitable for 

field surveillance of both symptomatic, asymptomatic and 

sub-microscopic parasitemia [13, 69, 71]. LAMP can serve 

as a point-of-care NAAT-based diagnostic test [75]. 

Furthermore, LAMP has been extensively applied to various 

operational researches on malaria [76]. 

Strength 

Loop-mediated isothermal amplification method is 

technically easy to operate and has excellent sensitivity and 

specificity at a relatively low cost compared to its return [30, 

74, 77]. Eyes, gel electrophoresis, and turbidimeter can be 

used to visualize the amplified DNA product. The reaction 

takes place at a single temperature without the need for 

expensive equipment [13, 69, 71]. The use of Bacillus 

stearothermophilus DNA polymerase made LAMP more 

resistance to inhibitors such as heme than TAQ polymerase-

based PCR [73, 76]. 

Weakness 

Loop-mediated isothermal amplification method has 

limited amenability to multiplexing and involves a complex 

approach to designing its primers [30]. It is still relatively 
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more expensive than the conventional techniques, thus not readily available in malaria endemic settings [76]. 

 

Figure 6. Schematic display of LAMP. 

Loop-mediated isothermal amplification (LAMP) works based on auto-cycling strand displacement DNA synthesis using strand displacing DNA polymerase 

and two-pairs of target-specific primers. A strand displacing DNA polymerase initiates the synthesis and two of the primers form loop structure to facilitae the 

subsequent rounds of amplification. The single stranded DNA forms stem-loop structure (dumb bell appearance) through self-annealing to the corresponding 

equence and therefore, acts as a template for cyclic exponental amplification. Forward loop primers and reverse loop primers help to increase the detection 

efficiency by accelerating the amplification reaction. FLP: Forward Loop Primer; RLP: Reverse Loop Primer; FIP: Forward Inner Primer; RIP: Reverse Inner 

Primer: R3: Reverse Outer Primer: F1C: Complemetary to Forward 1; R1C: Complemetary to Reverse 1. 

2.7. Capture and Ligation Probe PCR 

Capture and ligation probe-PCR (CLIP-PCR) is a 

molecular method involving isolation of 18S rRNA of the 

Plasmodium from the blood that will be captured onto 96-

well plates and quantified by the amount of ligated probes 

continually binding to it [16]. (Figure 7). 

Application 

Due to its high sensitivity and high-throughput approach, 

CLIP-PCR is ideal to detect asymptomatic and sub-

microscopic infections. Furthermore, as it allows the 
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incorporation of pooling strategy, it is good for large-scale 

surveillance of malaria in elimination areas [16, 30]. 

Strength 

Capture and ligation PCR allows the use of dried blood spots 

with a matrix-pooling strategy providing a service with 

remarkable sensitivity and throughput [13, 16]. Besides, if pooling 

is done on 96 well plate, this method can cost-effectively detect 

asymptomatic and sub-microscopic infections [16, 30]. 

Weakness 

This method is relatively complex requiring for optimal 

training of laboratory personnel [30, 78]. CLIP-PCR is 

relatively expensive for dealing with individual samples [30]. 

 

Figure 7. Schematic illustration of CLIP-PCR. 

Capture and ligation probe-PCR (CLIP-PCR) involves isolation and capture of a target sequence by capture probes immobilized into 96-well plates and 

quantification by amount of ligated probes continually binding to it. Basically, CLIP-PCR involves three steps: 

1) Sample processing: Samples (often DBS) are lysed to release 18S rRNA. 

2) Formation of PCR template: During an overnight incubation of sample lysate, capture probes, and detection probes bind to a contigous part of the highly 

conserved region in 18S rRNA of the Plasmodium. The capture probe incorporates two regions: one for target binding and one for anchoring the target 

to a solid surface by hybridizing with probes on the solid surface. Following the removal of the unbound probes by washing, detection probes that bind 

adjacent to one another, are ligated to form a longer ssDNA. Besides, the detection probes located at both ends contain additional region that serve as a 

universal primer binding site. 

3) Detection and quantification: The newly ligated ssDNA, whose quantity is proportional to target RNA, is quantified by qPCR with a universal primer set 

and SYBR green approach. 

3. Achievements Made by Leveraging 

Molecular Diagnostic Tools into 

Mitigation of Malaria 

The introduction of molecular techniques substantially 

contributed in multiple ways to the control and elimination of 

malaria [79, 80]. Advances in molecular biology helped to 

unlock the gametocyte biology that led to progress in 

diagnostic and therapeutic approaches [81-84]. These tools 

were essential for the recently approved RTS, S/AS01 

vaccine for use in under-five children which marks a key 

milestone in the tenacious search for malaria vaccine [14]. 

Molecular techniques transformed diagnostic tests by 

detecting asymptomatic and sub-microscopic infections [9, 

85]. It also helped to monitor therapeutic efficacy and 

characterize recurrent infections with P. falciparum [9, 79]. 

Sequencing technology has enhanced our understanding of 

the mechanisms of action of current and new antimalarials 

through drug-resistant parasite selection in vitro [86]. In 

addition, sequencing technologies showed promises for 

characterizing genes and their products conferring resistance 

to antimalarial drugs [87-89]. Molecular diagnostic tools also 

enabled the use of non-invasive PCR-based assays to detect 

Plasmodium parasites in saliva, [90, 91], though efforts 

continued to make it suitable for routine diagnosis [92]. 

4. Remaining Works 

Despite our major triumphs in the last 20 years, there are 

areas to work on to optimize these gains and safeguard our 
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effective interventions. We need tools to study P. vivax 

gametocyte development; hypnozoite aspect; and ookinete 

biology [80]. Moreover, we need a robust molecular tool to 

diagnose hypnozoites of P. vivax [14, 93-95]. Hypnozoites 

can give rise to malaria recurrence and sustain onward 

transmission thereby jeopardizing elimination efforts [80, 94]. 

Malaria recurrence raises the efficiency, likelihood, and 

longevity of transmission [2, 18, 80, 96]. 

Basic science and operational researches are needed to 

optimize understanding and guide application. Lack of 

dependable studies supporting the efficient application of 

gene-editing technologies such as CRISPR/Cas-9 [80]. We 

need diagnostic tools that can help diagnose G-6-PD 

deficiency in fetuses and children under six months old for 

extensive use of primaquine as a radical cure [97, 98]. The 

need for effective therapeutic and diagnostic tools to unlock 

the puzzles of P. vivax remained widely open [99, 100]. To 

minimize the complexity and resource demand, assays for in 

vivo detection of infectious gametocytes are needed [99]. 

On the other hand, a big knowledge gap exists to 

characterize parasite resistome and mitigation strategies to 

improve the efficiency of therapeutics and protect them from 

premature removal by unproven resistance [80, 101]. 

Molecular markers for drug resistance are often assessed in 

research only, but not thoroughly monitored in clinical work 

and surveillance by national malaria control programs [21]. 

Generally, it is fundamental that molecular diagnostic tools 

are efficient enough to address these problems to break 

transmission and thus, eliminate malaria [2, 18, 80, 96]. 

Summary of remaining works, their inter-relations, public 

health importance and potential research questions are 

diagrammatically displayed below. (Figure 8). 

 

Figure 8. Infection, recurrence, transmission, challenges and weak spots to intervene for malaria elimination. 

1) Human infection with Plasmodium occurs due to inoculation of sporozoites by a bite from infected female anopheles mosquito. Blue and pale blue solid 

lines show flow of malaria pathogenesis from new and reinfection following sporozoite inoculation. 

2) The inoculated sporozoites after arriving in the liver, either transform into hepatic schizonts or directly become hypnozoites that later become schizonts 

(P. vivax and P. ovale) that give rise to merozoites. 

3) The merozoites join the blood circulation to invade erythrocytes and produce asexual stages of the parasite. These asexual stages are responsible for 

signs and symptoms of malaria. New or recurrent infection with Plasmodium can cause symptomatic, asymptomatic and sub-microscopic malaria. 

Brown lines show the aftermath of sub-microscopic parasitemia left untreated. Red circular arrow show the erythrocytic cycle for the asexual 

reproduction of the parasite. 

4) Purple boxes and lines show young gametocytes localizing into the hematopoietic niche and rejoining the circulation for maturation purpose. 

5) Gametocytes may result from any untreated infection or unsuccessful treatment or after treatment with non-gametocytocidal drug. These gametocytes 

mediate the transmission of malaria. 

6) Broken red lines show asexual parasites that periodically sequester in hematopoietic niche and return into the circulation resulting in relapse-like 

parasitemia. Black line indicate parasites sequestering in the hematopoietic niche. Greenish and yellow boxes and lines show the result of unsuccessful 

treatment and sub-microscopic parasitemia, both of which can lead to recrudescence and/or transmission. Green T-shaped lines indicate possible weak 

spots for intervention (such as early diagnosis and prompt treatment with efficacious radical cure and transmission-blocker) to tackle recurrence and/or 

transmission. The four questions inside blue boxes with long arrow at periphery show potential areas for research. 
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5. Conclusion and Recommendation 

5.1. Conclusion 

A quality-assured laboratory test provides accurate, 

reliable, and timely information that can guide clinical and 

public health decision-making. Molecular diagnostic tools, 

which keep advancing daily, carry a tremendous potential to 

help achieve local elimination and global eradication of 

malaria. They guide the evidence-based choice of the right 

drug and monitor its efficacy. They fine-tune a piece of 

information generated at the clinical setting, public health 

level, and researches level. 

However, these molecular diagnostic tools are not readily 

available in areas carrying the largest share of the global 

malaria burden- the WHO African region. The sub-Saharan 

African countries largely depend on conventional diagnostic 

tools, such as RDT and light microscopy, despite carrying 

nearly 94% of the worldwide prevalence of malaria. 

Despite the remarkable success in the last 20 years, the 

malaria burden is rising in recent years. Even though the 

COVID-19 pandemic is partly blamable, the growing 

spread of resistance to treatments, insecticides, and 

diagnostic tools makes achieving the ambitious goal of 

malaria-free questionable. Generally, although molecular 

tests have considerably revolutionized malaria mitigation, 

lots of work remains to optimize their yield in the fight 

against malaria. 

5.2. Recommendation 

1) It is urgent to put a concerted effort to make molecular 

diagnostic tools available in areas heavily affected by 

malaria. It is essential to make them user-friendly, 

durable, and cost-effective while maintaining their 

quality. 

2) Stakeholders should attempt to avail field applicable 

molecular diagnostic tools to improve case detection, 

particularly for asymptomatic and sub-microscopic 

infections. 

3) It is equally important to continue searching for new 

tools with better resolution capacity to improve 

molecular surveillance for monitoring the efficacy of 

interventions currently used. 

4) Efforts should continue in the potential use of gene-

editing technologies such as CRISPR/Cas-9 to render 

the parasite no longer troublesome for the human host. 

5) Search should continue, mainly in metabolomics-based 

methods, to discover biomarkers that can serve as 

targets for drugs and diagnostics to accelerate efforts 

toward elimination. 
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