
 

International Journal of Astrophysics and Space Science 
2019; 7(4): 36-40 

http://www.sciencepublishinggroup.com/j/ijass 

doi: 10.11648/j.ijass.20190704.11 

ISSN: 2376-7014 (Print); ISSN: 2376-7022 (Online)  

 

The Dynamics of the Neutron Complexes: From Neutron 
Star to Black Hole 

Yuriy Nikolaevich Zayko 

Russian Presidential Academy of National Economy and Public Administration, Stolypin Volga Region Institute, Saratov, Russia 

Email address: 
 

To cite this article: 
Yuriy Nikolaevich Zayko. The Dynamics of the Neutron Complexes: From Neutron Star to Black Hole. International Journal of 

Astrophysics and Space Science. Vol. 7, No. 4, 2019, pp. 36-40. doi: 10.11648/j.ijass.20190704.11 

Received: June 27, 2019; Accepted: September 28, 2019; Published: October 11, 2019 

 

Abstract: The mechanism of the appearance of neutron complexes, which at the final stage of their development, evolve 

into neutron stars, is described. It is shown that for a quantitative description it is necessary to use a generalization of the 

Newton-Schrödinger equations taking into account the next terms in the decomposition of explicit Dirac – Maxwell equations 

on c
-2

. In this approximation, the problem is described by the well-known Gross-Pitaevskii equation, the numerical analysis of 

which is performed for the spherically symmetric case. The result depends on the value of the parameter α equal to the ratio of 

the gravitational radius of the neutron complex to twice the Compton wavelength. For small values of α <0.5, the solutions 

describe a neutron star; for α > 0.5, the description corresponds to its gravitational collapse. This is consistent with the analysis 

of the general 3-dimensional case. 

Keywords: Schrödinger-Newton Equations, Gravitational Potential, Neutron Star, Bosonic Condensate,  
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1. Introduction 

In the previous author’s work devoted to the numerical 

study of the Newton-Schrödinger (NS) equation, it was 

suggested that neutrons can combine into complexes 

containing a large number of particles and which determine the 

law of gravitational interaction at distances of the order of the 

size of galaxies [1]. The present work is devoted to the 

development of these ideas. As shown below, to solve the 

formulated problem, it is required to take into account in the 

NS equation the next-order terms in c
-2

 (c is the speed of light), 

which leads to the Gross-Pitaevskii equation. This allows us to 

draw an analogy between the description of neutron stars and 

condensed matter physics, where this equation is used to 

describe the Bose condensate of elementary excitations. The 

basis for this analogy is the phenomenon of neutron pairing 

and the appearance in them of the features characteristic of 

Bose gases. A numerical analysis of the obtained equation is 

performed in the case of spherical symmetry for various values 

of the parameter α, which represents the ratio of the 

gravitational radius of the neutron complex and it’s doubled 

Compton wavelength. For small values of α <0.5, the solutions 

describe a neutron star, for α > 0.5 - its gravitational collapse. 

Thus, the present consideration throws a kind of bridge 

between the quantum and relativistic picture of the 

phenomenon. At the same time, it can be considered as a result 

of quantization of the Newtonian theory of gravity. 

2. Schrödinger-Newton Equations 

Let's write the time-variant of the Schrödinger-Newton 

equations 

2
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here φ – complex-valued function: φ = φ1 + iφ2, which 

represents the neutron wave function, m = mn – neutron mass, 

Φ – gravitational potential, G- gravitational constant [2]. For 

the stationary spherically-symmetric variant (1) looks as 

follows (χ = rφ) 
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here ( )( r,t ) ( r )exp i t /φ φ ε= − ℏ , ω = ε –mc2. 

Let’s introduce values N and <R>, which have a sense of 

particles’ number and an average size (radius) of the neutron 

complex 

2
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N dV ,

R r dV

φ

φ

=

< >=
∫
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                                  (3) 

dV - is an elementary 3d-volume, integration is spread on 

all space. Using (1) we receive the equations for N and <R> 

N
divI dV

t
R

div( rI ) dV I dV
t

∂ = − ⋅
∂
∂ < > = − ⋅ + ⋅

∂

∫
∫ ∫

                  (4) 

here ( )2 1 1 2r rI
m

φ φ φ φ= −ℏ
 - is a radial flux of particles. Since, as 

shown below, the time scale for equations (1), determined by 

the value of the natural unit of time, exceeds the age of the 

Universe, for times comparable to the time of galaxy 

formation, one can use the solution of the stationary system 

(2) to calculate the flux. This follows from the fact that the 

natural unit of time for the time-variant of the Newton-

Schrödinger equations (1) is the quantity 2ħ3(G2mn
5)-1, which 

is about 4,5·1047 years for one neutron but greatly decreases 

with increasing mass of the complex. 

Figures 1 and 2 show the behavior of the J = ħ
7
G

-4
mn

-11
I, 

где J = (η1η2ρ – η2η1ρ)/ρ
2
. 

 

Figure 1. Dimensionless flux J(ρ). The calculations were performed with the 

help of (2). The solid line shows the flux contributing to the formation of the 

neutron complex i.e. for ρ < a, dotted line corresponds to the contribution to 

the flux from other regions. The boundary conditions are set at the boundary 

of the stationary neutron complex, ρ = a = 0.14: η1 = -η2 = 0.01, η1
΄=- η2

΄=1, 

U = 0, U΄ = -70. 

The first equation (4) is an integral analog of the continuity 

equation, which is easy to verify by representing ∫= ndVN , 

where n – is a particle number density and applying the 

Gauss theorem [3]. 

For the practical use of equations (4), it is necessary to 

determine the limits within which integration over r is made. 

In the first integral, the upper limit of integration over r can 

be arbitrary, 0 < r < R then N(r) will determine particles’ 

number in the sphere of radius r. In the second integral, the 

condition is imposed on the upper limit of integration 0 < <R> 

< R. In addition, from Figure 1 it can be seen that the main 

contribution to the particle flux is made from the distances r 

< a, therefore, it is natural to impose one more condition: R 

< a. In the case of spherical symmetry considered, equations 

(4) take the form 
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From the presented calculations it can be seen that for the 

case of the corresponding Figure 1 Nt (R) > 0, and <R>t > 0 

i.e. the average size of the neutron complex and the number 

of particles in it increase in time, while for the case of the 

corresponding Figure 2 situation is the exact opposite. This 

behavior does not correspond to the concept of "complex". 

Therefore, research should involve additional factors. 

 

Figure 2. The same as in Figure 1 for the boundary conditions: η1 = η2 = 

0.01, η1
΄= η2

΄=1, U = 0, U΄ = -70. 

3. The Study of the Schrödinger-Newton 

Equation in the Next Order in с
-2

 

For this, we take into account in equations (1) the first 

non-vanishing terms in the decomposition of the exact Dirac-

Maxwell equations in powers of c
-2

 under the assumption of 

spherical symmetry [4]. 
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After substituting ∆Φ from the second equation (6)
1
 into 

the first, we obtain one equation. 

2 2
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In this case, the term of the second equation in (6) 

containing the time derivative and describing the delay can 

be omitted, since its influence will affect in the next order on 

с
-2

. Presenting further φ(r,t)=R(r,t)Υ(θ,ψ), where Υ(θ,ψ) – 

normalized spherical harmonics, and R(r,t)=χ(r,t)/r we write 

the equation (7) in dimensionless variables ρ (2) and τ = 

G
2
m

5
(2ħ

3
)

-1
t. Also, we restrict ourselves to considering small 

                                                             

1  Equations (6) are obtained from similar electrodynamic equations [4] by 

replacing the electric charge e with a “gravitational charge”mG
1/2

 [1], and not mG 

as in [2].This leads to the replacing Φ to G
1/2

Φ
 
and will not affect the calculations. 
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ρ, where the last term in square brackets on the right-hand 

side of the equation (7) behaves as ~ ρ
-2 

and will prevail. 

Recall that the potential of the gravitational field at small 

distances Φ ~ U ~ ρ
-1

 and in our consideration may be 

omitted [1]. Then, the equation (7) takes the form 
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                           (8) 

Dimensionless value α ≈ 5,85·10
-39

 is a gravitational 

analog of the fine structure constant in quantum 

electrodynamics. Its smallness leads to the fact that the 

influence of the last term in (8) will affect at very small 

distances much less the size of the Compton neutron 

wavelength λn =2πħ(mnc)
-1

. 

However, if we apply equation (8) not to a single neutron, 

but a neutron complex containing a large number of particles, 

providing α ~ 1, then the situation will change. The number 

of particles N required for this is estimated as 

m

M

m

Gc
N P== /ℏ

~1019, MP – Plank mass. 

The solution of equation (8) has the form [5] 

[ ]1( , ) u( )exp iC i ( )η ρ τ ρ τ ϑ ρ= ± +                 (9) 

where С1- is a constant, and the functions u(ρ) and ( )ϑ ρ  

obey the system of ordinary differential equations 
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The first equation is integrated, which allows us to express 
2

2 / uС=′ϑ , C2 – is a constant. Substituting this into (10), we 

obtain the equation for u(ρ) 
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Figure 3. The results of a numerical study of equation (11). Thin lines - 

solutions of the equation Кα = 0, thick lines - solutions of the equation (11) 

for u (ρ) with boundary conditions u(0.1)= 1, u΄(0.1) = -0.03; C1 = -0.1, C2 

= 0.1. Solid lines: α = 0.59, dashed: α = 0.52, dash-dotted: α = 0.4 

 (We redefined the constant C2). The qualitative behavior 

of solutions of (11) is easy to understand if we plot the curves 

Kα(u,ρ) = 0 on u, ρ plane (see Figure 3). In areas adjacent to 

the coordinate axes Kα > 0 and 0u′′ > , on the rest of the 

plane where Кα< 0 0u′′ < . This is confirmed by numerical 

calculation (see Figures 3, 4) 

 

Figure 4. The envelope of solutions of equation (11), the format of the curves 

is the same as in Figure 3; k is the oscillation number. 

4. Discussion 

A numerical study of the Schrödinger-Newton equations (1) 

was carried out in many works [2, 6-8]. It was shown that an 

initial state in the form of a Gaussian packet experiences 

dispersion spreading, partially restrained by the gravitational 

attraction of particles [2]. The results of this work are 

difficult to compare with that results due to the difference in 

the goals and methods of research. 

Of interest is the relation of the results obtained to the 

problem of the formation of neutron stars. To do this, we 

make some estimates that shed light on the dynamics of the 

formation of neutron complexes. An increase in the number 

of neutrons N in the complex leads to a decrease in its energy 

due to gravitational attraction by Gmn
2
N

2
/r, mn – is a neutron 

mass, r – is an average size of a complex. This process 

continues until the loss in energy exceeds the increase in the 

neutrons rest energy Nmnc
2
 and stops when a critical number 

of neutrons is reached Ncr = rc
2
(Gmn)

-1
, what corresponds to 

the critical neutron density ncr = Ncr(4πr
3
/3)

-1
~0,2·10

54
/r

2
 M

-3
. 

This value is highly dependent on r: if in the boundary of a 

galaxy (r ~ 10
21

M) it is of the order 0,2·10
12

M
-3

, then on the 

distance of the order of neutron star ~ 10
4
M it is equal 

0,2·10
46

M
-3

, which coincides in order of magnitude with the 

real value obtained by another way [9]. Thus, the neutron 

complex at the final stage of its formation is a neutron star. 

However, it follows from the section 1 that the Schrödinger-

Newton equations do not make it possible to describe this 

process in dynamics. This also follows from the estimates 

given above, using the speed of light c, which is absent in the 

Schrödinger-Newton equations. From this it can be 

concluded that to describe neutron stars in the early stages of 
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formation from neutron complexes, it is necessary to use 

exact equations or, at least, their expansion in powers c
-2 

[4]. 

In this approximation, as shown above, the system of 

Dirac - Maxwell equations reduces to a single equation 

resembling the nonlinear Schrödinger equation. It is natural, 

therefore, to expect that additional nonlinearity will 

counteract the dispersion spreading of the packet noted in [2]. 

This is confirmed by numerical calculations. From the 

Figures 3 and 4 it is seen that with increasing α, the neutron 

concentration increases with approaching ρ = 0. 

The qualitative behavior of the solutions of equation (11) 

can be explained as follows. For small α, the nonlinear term 

in the equation can be neglected and its solution can be 

obtained by quadrature, which leads to a solution periodic in 

ρ with period ∆ρ = π(-С1)
-½

. With an increase in the number 

of neutrons in the complex, α grows and reaches a value of 

the order of unity for N ~ 3,27·10
19

. Interestingly, this value 

coincides in order of magnitude with the ratio of the size of a 

neutron star (~ 10
4
 M) to the Compton neutron wavelength (~ 

10
-15

 M). 

From the other point of view α=rg/2λK, где λK = ħ/mc and 

rg=2Gm/c
2
 – are Compton wavelength and gravitational 

radius of the neutron complex. Thus, the present 

consideration throws a kind of bridge between the quantum 

and relativistic picture of the phenomenon. At the same time, 

it can be considered as a result of quantization of the 

Newtonian theory of gravity. 

A change of the parameter α from values less than 0.5 to 

values greater than 0.5 describes the transition of the neutron 

complex from the state of a neutron star to the state of a 

collapsing quantum object. Therefore, the solid curve in 

Figure 4 for which α = 0.59 refers to the collapsed neutron 

complex, and equation (8) for α > 0.5 represents the 

Schrödinger equation for a black hole. 

From a quantum mechanical point of view, we are dealing 

with a macroscopic quantum phenomenon - the formation of 

the Bose condensate of paired neutrons, described by a single 

wave function φ(r, t) [10]. 

Consider this issue in more detail. Equation (7) can be 

reduced to the form 

22 2

3

3

0i

Gm

τ ρψ ψ πα ψ ψ

ψ φ

− − ∇ + =
 

=   
 

ℏ                                (12) 

which coincides with the well-known Gross–Pitaevskii 

equation used in the description of the Bose –Einstein 

condensate [10]
2
. As stated in some works, for it there are 

initial conditions such that a solution cannot exist for all τ [11, 

12]. Similar phenomena are known in plasma physics and 

nonlinear optics, leading in the two-dimensional case to the 

collapse or self-focusing of cylindrically symmetric rays. 

These phenomena were observed in numerical calculations of 

nonlinear Schrödinger equations [13-15]. 

The Gross-Pitaevskii equation over the years and until 

                                                             

2 If in the latter we put the chemical potential equal to zero 

recently has been used in the study of astrophysical 

phenomena, including describing the formation of structures 

of various scales - from stellar to galactic [16-20]. 

5. Conclusion 

Using the Newton-Schrödinger equations, the formation of 

neutron complexes, including a large number of neutrons and 

having finite macroscopic dimensions, is studied. It is shown 

that neutron complexes at the final stage of their 

development are neutron stars. For a complete study of the 

dynamics of neutron complexes formation, generalizations of 

the Schrödinger-Newton equations should be used, taking 

into account the next terms in the decomposition of the 

explicit Maxwell-Dirac equations [4]. In this way, the Gross-

Pitaevskii equation was obtained and its numerical analysis 

was performed in the case of spherical symmetry. 

This work is a continuation of [1], therefore, it will be 

appropriate to summarize the general results. Although the 

Schrödinger-Newton equations as applied to cosmological 

problems are sometimes considered a “toy model”, 

nevertheless, we point out some consequences of their use. 

1. On a small cosmological scale, i.e. at Galactic distances, 

it is confirmed the Newtonian law of gravity, i.e. the 

attraction of massive particles of the environment to a 

given particle (neutron). An effective gravitational charge 

due to anti-screening increases. At super-galactic 

distances, the nature of the gravitational interaction of a 

neutron with its environment is repulsive. The physical 

cause of both phenomena is the polarization of the 

vacuum by the gravitational field of the neutron [1]. 

2. These features of the solutions of the Newton-

Schrödinger equations do not contradict (at least) the 

observed phenomena, for the explanation of which 

modern science introduces the concepts of “dark matter” 

and “dark energy”. 

Finally, we note that the idea of neutron complexes arose 

from the desire to give a justification, in the form of some 

physical mechanism, the boundary conditions under which 

the Schrödinger-Newton equations were solved [1]. 
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