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Abstract: Singularities in three non-Schwarzschild space-times: Minkowski, Friedman-Lemaitre-Robertson-Walker and 

Reissner-Nordstromare investigated. Gravitational collapse in the Schwarzschild solution is obvious and widely studied. 

However, gravitational collapse should not be limited to Schwarzschild solution only as interesting findings exist in other 

metric fields. The Ricci curvature scalar for each space-time is evaluated and used in the determination of true curvature 

singularities. The Ricci scalar has proved to be very effective in determining the presence of singularities or otherwise in 

space-time geometry. Results indicate that there are inherent singularities in components of space-time in all three cases. 

Gravitational singularities in Minkowski space are found to be consequences of the choice of coordinate. Minkowksi space 

possesses only coordinate singularities and no curvature singularity. This differs with Schwarzschild’s metric which has true 

curvature singularity. Friedman-Lemaitre-Robertson-Walker (FLRW) and Reissner-Nordstrom metrics have true curvature 

singularities. Gravitational collapse in the FLRW metric yields a curvature singularity which shows the universe started a finite 

time ago. Cosmic strings, white holes and blackholes are deduced from the Reissner-Nordstrom singularities. Reissner-

Nordstrom solution show that the addition of small amounts of electric charge or angular momentum could completely alter the 

nature of the singularity, causing the matter to fall through a ‘wormhole’ and emerge into another universe. Analysis of 

gravitational collapse in this article provides one of the most exciting research frontiers in gravitation physics and high energy 

astrophysics; as the debate on their physical existence persists. 
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1. Introduction 

Space time (or gravitational) singularity is defined as a 

point where the quantities used to measure gravity become 

infinite. This is independent of the coordinate system used to 

describe the gravitational field. Alternatively, a gravitational 

singularity is a location at which all the physical laws are 

indistinguishable from each other. That is, space and time 

combine indistinguishably and lose any independent meaning 

[1].  

The physical implications of space-time singularities are 

eminent and there are sufficient reasons to conclude that the 

space time of the universe is singular. Several singularity 

theorems have been established using definitions of 

singularities based on Path-incompleteness [2]. Using these 

theorems, it can be shown that if some conditions are 

satisfied, then singularities cannot be avoided in certain 

circumstances. Prominent among these conditions is the 

“positive energy conditions” which asserts that energy can 

never be negative [3]. Also, it can be deduced from these 

theorems that the universe started some 13.7 billion years ago 

with an initial singularity, in the “Big Bang”. Furthermore, 

collapsing matter forms a black hole with a central 

singularity under certain circumstances [4].  

There are many definitions of space-time singularities but 

the most accepted criterion is based on the fact that 
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incomplete paths exist in some space times [4]. Moreover, 

definitions of gravitational singularities based on curvature 

pathology also use the concept of path incompleteness [2]. A 

path in space-time geometry is defined as a continuous chain 

of events through space and time. In other words, paths are 

possible trajectories of particles and observers in space time 

(“world-lines”). Paths are made up of events occupied by 

objects throughout their lifetimes. A particle or observer 

following a path is said to “run out of the world" after finite 

time if the path is incomplete and in-extendible [2]. Such a 

particle will hurtle into the tear in the fabric of space-time 

and vanish. Alternatively, such an observer could leap out of 

the tear of the universe to follow a different path [5].  

The case of gravitational collapse in Schwarzschild metric 

is widely studied and accepted [6]. However, the study of 

gravitational collapse should not be limited to Schwarzschild 

solution only. This paper explores singularities in three other 

exact Non-Schwarzschild solutions (Minkowski, Friedman-

Lemaitre-Robertson-Walker and Reissner-Nordstrom). 

The Minkowski (flat) space-time is the first and easiest 

exact solution for empty space with zero energy momentum 

tensor. If we take the four coordinates as 1 2 3 4, , ,u u u u , then 

the metric in this space time can be expressed as 

2 4 2 3 2 2 2 1 2( ) ( ) ( ) ( )ds du du du du= + + −        (1) 

The universe is known from astronomical observations to 

be approximately spherically symmetric about every point in 

space [7]. The most suitable metric in this case is the 

Friedman-Lemaitre-Robertson-Walker (FLRW) metric which 

is at the foundation of modern Cosmology. The FLRW metric 

describes the space-time of a homogeneous and isotropic 

Universe [8]. It is usually written in spherical polar 

coordinates as 

( ) ( )
2

2 2 2 2 2 2 2

2
sin

1

dr
ds dt a t r d d

kr
θ θ φ

 
= − + + 

−  
        (2) 

where ( )a t  is the time dependent scale factor. 

The space-time exterior toa spherically symmetric 

electrically charged star is described by the solution of 

coupled Einstein-Maxwell equations called the Reissner-

Nordstrom [9]. The metric is given as; 

2 2 1 2 2 2ds dt dr r d−= −∆ + ∆ + Ω                    (3) 

where; 

2

2

2
1

m q

r r
∆ = − +                                 (4) 

withmas the mass of spherical body andq is total electric 

charge. 

Other space-times include Nariai and anti-Nariai, Anti-de 

Sitter, Plebanski-Hacyan, Melvin, Schwarzschild-Melvin, 

Vaidya, Weyl, Zipoy-Voorhes, Bonnor-Swaminarayan, Bicak-

Hoenselaers-Schmidt, Plebanski-Demianski etc [10] 

2. Theoretical Methods 

2.1. Sampling 

In this article, the concept of singularities and gravitational 

collapse is studied in three space-times namely; 

i Minkoswki Space-time 

ii Friedman-Lemaitre-Robertson-Walker Space-time 

iii Reissner-Nordstrom Space-time 

These space-times were randomly selected from many non-

Schwarzschild space-times. 

2.2. Determination of Singularities 

In general relativity theory, it is imperative to distinguish 

between curvature singularities and coordinate singularities. A 

curvature singularity is a genuine space-time singularity which 

causes the components of space-time to diverge. In contrast, a 

coordinate singularity is a mere artifact of the choice of 

coordinate. At a coordinate singularity, the curvature of space-

time is perfectly fine but the metric components diverge owing 

to a bad choice of coordinates. The curvature is measured by the 

Riemann tensor and it is quite difficult to say where a tensor 

becomes infinite since its components are coordinate dependent. 

Scalar invariants can be constructed from the Riemann curvature 

metric tensor. Since these are coordinate-independent, it will be 

meaningful to say that they become infinite. These scalars 

include the Ricci scalar, Weyl Scalar and Kretschmann scalar. 

The Riemann curvature tensor is a function of the affine 

connection which is itself dependent on the metric tensor. 

Therefore one may look to the condition 00 0g = for space-

time singularities. However, the definition that gravitational 

collapse occurs at 00 0g =  is strictly geometric [9, 10]. 

Therefore, only a scalar invariant can be used to determine true 

curvature singularities. In this article, the Ricci scalar is used to 

determine space-time singularities. 

2.3. Visualizing Space-Time Curvature 

Visualization of curved 4-D space-times is a challenging 

task. An extremely useful, widely and commonly used method 

of space-time visualization is that of Penrose diagrams. It was 

initially developed to compare space-times with Minkowski 

space-time. The structure of the Penrose diagram allows us to 

subdivide conformal infinity into a few different regions. In 

order to visualize or capture the global and causal structure of 

a space-time, a coordinate transformation is found such that 

conformal infinity lies at a finite coordinate distance and the 

radial light rays are always at 45
0
 [11]. With this conformal 

infinity can be subdivided into a few finite regions such as 

future time-like infinity, spatial infinity, future null infinity and 

past null infinity [9]. Penrose diagrams of some solutions of 

Einstein’s equations will be drawn. 

3. Results and Discussion 

3.1. Gravitational Collapse in Minkowski Space-Time 

The covariant and contravariant metric tensors of the 

Minkowski space-time (equation 1) are given respectively as 
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11 22 33 001, 1g g g g= = = = −              (5) 

and  

11 22 33 00
1, 1g g g g= = = = −             (6) 

It can be seen from equations (5) and (6) that all non-zero 

parts of the metric tensors are constant and hence the affine 

coefficients and Riemann tensor vanishes. The implication of 

these results is that the curvature scalars also vanish and 

hence confirms the fact that the Minkowski space covers the 

entire manifold. Hence, it has no physical singularity. 

However, another form of the metric can be obtained by 

using spherical polar coordinates ( , , , )t r θ φ which are related 

to 1 2 3 4
( , , , )u u u u  as in equation (7) 

3 2 1 4
cos , sin cos , sin sin ,u r u r u r u tθ θ φ θ φ= = = = (7) 

with 

0 ,0 ,0 2r tθ π φ π≤ < ∞ ≤ ≤ ≤ < − ∞ < < ∞          (8) 

Then, it can be shown that the metric in equation 1 takes 

the form: 

( )2 2 2 2 2 2 2sinds dr r d d dtθ θ φ= − − + +            (9) 

In this case, the metric has apparent singularities at 0r =  

and at sin 0θ = . These singularities exist because spherical 

polar coordinates are not admissible at this point. It is 

imperative to note that, although this case is easily 

recognizable, it is not always easy to conclude that an 

apparent singularity in the metric is just due to a bad choice 

of coordinates.  

An interesting representation of Minkoswki space time is 

presented as [11] 

( ) ( ) ( )2 2
2 2 2 2 2

sin sin
i i i

ds dt dr r d dθ θ φ= − − +       (10) 

Apparent (or removable) singularities exist in the metric at 
1 0r =  and 2r π=  (the zeros of 2sin ir ). It has also been 

shown that the singularities can be removed by the 

transformation of these points to local coordinates in some 

regions [4]. The Penrose diagram of the singularity-free 

Minkowski space time is presented in Figure 1. 

 

Figure 1. Penrose diagram of the singularity-free Minkowski space-time [12]. 

Thus, gravitational collapse and singularity in Minkowski 

space is just a consequence of the choice of coordinates. 

Hence, Minkowksi space possesses only coordinate 

singularities and no curvature singularity. This is contrary to 

Schwarzschild’s metric where a true curvature singularity is 

obtained at 0r = [13]. The curvature scalars vanish and the 

simplicity of the metric makes it easy for many coordinate 

transformations. A conical singularity is obtained by 

representing the Minkowski space-time in cylindrical 

coordinate [10]. It has been successfully proved that the 

resulting space-time is a simple model for a cosmic string. 

Observational evidences such as gravitational lensing of 

galaxies and observation of quasars recently confirmed the 

existence of cosmic strings [14]. Cosmic strings are 1-

dimensional topological defects believed to have formed 

during the early stages of the evolution of the universe when 

phase transitions and symmetry breaking were taking place 

[15]. Also, cosmic strings can be used in mining energy from 
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a blackhole [16]. 

3.2. Gravitational Collapse in Robertson Walker Metric 

The non-zero covariant components of equation (2) are; 

2
2 2 2 2 2

00 11 22 332
1, , , sin

1

a
g g g a r g a r

kr
θ= = = =

−
      (11) 

This is obviously a diagonally symmetric space-time and 

therefore the contravariant metric tensor is found using the 

orthogonality relation and yields; 

2
00 11 22 33

2 2 2 2 2 2

1 1 1
1, , ,

sin

kr
g g g g

a a r a r θ
−= = = =   (12) 

The affine coefficients or Christoffel symbols of the second 

kind are obtained using [17] as 

( ), , ,

1

2
g g g gσ συ

µλ µυ λ υλ µ µλ υΓ = + −     (13) 

( )

( )

0 0 2 0 2 2
11 22 332

1 1 1 1 2
10 01 11 222

1 2 2 2 2 2 2 2
33 20 02 21 12 33

3 3 3 3 3 3
30 03 31 13 23 32

, , sin ,
1

, , 1
1

1
1 sin , , , sin cos ,

1
, , cot

aa
aar aar

kr

a kr
r kr

a kr

a
r kr

a r

a

a r

θ

θ θ θ

θ

Γ = Γ = Γ =
−

Γ = Γ = Γ = Γ = − −
−

Γ = − − Γ = Γ = Γ = Γ = Γ = −

Γ = Γ = Γ = Γ = Γ = Γ =

ɺ
ɺ ɺ

ɺ

ɺ

ɺ

                        (14) 

The Ricci tensor is obtained using the formula 

, ,
c c d c d c

ab ab c ac b ab cd ac bdR = Γ − Γ + Γ Γ − Γ Γ         (15) 

as 

00 3
a

R
a

= −
ɺɺ

                            (16) 

11 2

2 2

1

a aa k
R

kr

+ +=
−
ɺ ɺɺ

                       (17) 

( )2 2
22 2 2R r a aa k= + +ɺ ɺɺ                      (18) 

( )2 2 2
33 sin 2 2R r aa k aθ= + +ɺɺ ɺ             (19) 

The Ricci scalar, R is obtained from the contraction of the 

Ricci tensor as 

00 11 22 33
00 11 22 33

2

2 2
6

R g R g R g R g R

a a k

a a a

= − − −

 
= − + +  

 

ɺɺ ɺ

      (20) 

It can be depicted from the Ricci curvature scalar that a 

curvature singularity exist at the point ( ) 0a t =  where the 

scalar diverges. Hence, gravitational collapse occurs at the 

curvature singularity, 0a =  for the FLRW space-time. This 

clearly indicates that the universe started a finite time ago 

from the FLRW singularity.  

Observation of distant galaxies indicates that galaxies are 

receding and hence the Universe is expanding [18, 19]. If we 

trace backwards in time the expansion of the universe, then 

the singularity of the FLRW space-time at 0a =  represents 

the Big Bang. This shows that the universe was created from 

a singular point and was not an explosive outburst of matter. 

This confirms the fact stated by Hawkings that “singularities 

are inevitable in solutions which satisfy certain reasonable 

global conditions and in which the energy-momentum tensor 

satisfies a reasonable inequality” [7].  

The Friedman equation for the energy density was derived 

for the FLRW spacetime as [20] 

2

2

3

8

a k

G a
ρ

π
 −=  
  

ɺ

                             (21) 

At the singularity, ( ) 0a t = , the density becomes infinite. 

It is highly believed that the perfect symmetric nature of 

FLRW universes accounted for this singularity. Singularity 

theorems show that any universe satisfying the conditions:

0ρ ≥  and 0p ≥  must have originated at a singularity [9]. 

The energy density will become extremely high as ( ) 0a t → , 

and in such a regime, a description of nature cannot be 

obtained from classical general relativity. It is hoped that a 

well developed theory of quantum gravity can be able to 

describe nature in such cases. Many questions about the 

beginning of time are serious concerns for the contemporary 

scientific world. Lots of arguments and counter-arguments 

have been put forth for and against the notion of time having 

a beginning [5, 7, 21-23]. Until a quantum gravity theory is 

put forth to explain what happened at the Big Bang, it is only 

reasonable, in the meantime, to view this singularity as a 

perfect description of the beginning of the Universe at the 
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Big Bang. The singularity of the Schwarzschild space-time is 

space-like unlike that in FLRW which is time-like. Hence, 

while the Schwarzschild metric singularity describes a 

blackhole, the FLRW singularity describes the evolution of 

the Universe 

3.3. Gravitational Collapse in Reissner-Nordstrom  

Space-Time 

Event horizons and singularities in this metric are more 

complex compared to that in Schwarzschild metric. This is 

due to the presence of a charge term, q, in the space-time. 

The components of the covariant metric tensor in equation 

(3) are: 

2

00 2

2
1

m q
g

r r
= − +                              (22) 

1
2

11 2

2
1

m q
g

r r

−
 

= − +  
 

                         (23) 

2
22g r=                  (24) 

2 2
33 sing r θ=                  (25) 

The contravariant metric tensor components obtained 

using the orthogonality condition are given as  

1
2

00

2

2
1

m q
g

r r

−
 

= − +  
 

                   (26) 

2
11

2

2
1

m q
g

r r
= − +                        (27) 

22

2

1
g

r
=                                (28) 

33

2 2

1

sin
g

r θ
=                         (29) 

The non-zero coefficients of affine connections are 

calculated as equations (30)-(38) 

( )
1

2 2
0 00
01 00,1 2 3

1 2
1

2

m q mr q
g g

r r r

−
   −Γ = = − +      
   

      (30) 

( )
1

2 2
1 11
11 11,1 2 3

1 2
1

2

m q mr q
g g

r r r

−
   −Γ = = − − +      
   

      (31) 

( )
2 2

1 11
00 00,1 2 3

1 2
1

2

m q mr q
g g

r r r

  −Γ = = − +    
  

      (32) 

( )
2

1 11
22 22,1 2

1 2
1

2

m q
g g r

r r

 
Γ = − = − − +  

 
      (33) 

( )
2

1 11 2
33 22,1 2

1 2
1 sin

2

m q
g g r

r r
θ

 
Γ = − = − − +  

 
      (34) 

( )2 22
12 22,1

1 1

2
g g

r
Γ = =                  (35) 

( )2 22
33 33,2

1
sin cos

2
g g θ θΓ = − = −       (36) 

( )3 33
13 33,1

1 1

2
g g

r
Γ = − =             (37) 

( )3 33
23 33,2

1
cot

2
g g θΓ = − =        (38) 

The Ricci tensor is given as equations (39)-(42) 

2 2

00 2 4

2 2 3
1

m q mr q
R

r r r

  − += − +    
  

      (39) 

2 2 1 1
2 2 2 2 2 2

11 3 2 2 4 2 3

2 2 2 3 2 2
2 1 1 1

mr q m q m q mr q m q mr q
R

r r r rr r r r r r

− − −
           − − + −= − + − − + − − +                      
           

 (40) 

2 2

22 2 3

2
1 2 1

m q mr q
R r

r r r

   −= − − + − +      
   

      (41) 

2
33 sin

m
R

r
θ=       (42) 

The Ricci scalar is calculated as 

2
00 11 22 33

00 11 22 33 2

2 2mr q
R g R g R g R g R

r

− += − − − =   (43) 

Equation (43) shows that at 0r = the Ricci scalar diverges 

and gravitational collapse occurs. Hence for this metric a 

singularity exist at 0r = and to have a clear understanding of 

this singularity, it is imperative to study the presence or 

otherwise of event horizons around the singularity. Suppose

00 0g =  then using equation (22) we can write 

2 22 0r mr q− + =                                  (44) 

or 

2 2r m m q± = ± −                             (45) 
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The solutions in (45) indicate coordinate singularities of 

the metric 

Case one: Imaginary Solution ( 2 2
m q< ) 

In this case, the coefficient

2

2

2
1

m q

r r

 
− +  

 
in the metric is 

never zero and always positive. Also, this metric is 

completely regular in the ( ), , ,t r θ φ  coordinates from the 

singularity at 0r = and all over the space-time. There is no 

hindrance or obstruction on the path of an observer moving 

to the singularity and returning to report what was observed 

as there is no event horizon. This type of singularity is said to 

be naked as it is not shielded by an event horizon. Figure 2 

shows that both the time-like and space-like geodesics 

directly touch the singularity at 0r =  because there is no 

event horizon. 

 

Figure 2. Penrose diagram for the naked singularity solution of the 

Reissner-Nordstrom Metric [7]. 

Case two ( 2 2
m q> ) 

This is the situation which is expected when the 

gravitational collapse is real. In this case, the total energy is 

greater than the electromagnetic field energy.

2

2

2
1

m q

r r

 
− +  

 

is greater than zero at extremely large or small values of r 

and inside the two vanishing points defined by equation (45). 

It is less than zero. There are coordinate singularities of the 

metric at r+ and r−  which canbe removed by a change or 

transformation of coordinates. The singularity at 0r =  is 

covered by event horizons and hence this solution is a black 

hole solution of the Reissner-Nordstrom metric. Figure 3 

shows the Penrose diagram. 

The salient features of Figure 3 include: 

White holes: these are hypothetical features of the 

universe. White holes are regarded as the opposite of black 

holes. Whereas black holes do not allow anything to escape 

from their surfaces, white holes allow matter and energy to 

erupt from it, though nothing can get inside [25]. 

 

Figure 3. Penrose diagram representing real solution of Reissner-

Nordstrommetric [24]. 

Worm holes: These arespace-time theoretical passages that 

can create short cuts for long journeys across the universe. It 

is also called Einstein-Rosen bridges as they were proposed 

by Albert Einstein and Nathan Rosen in 1935 [25]. Worm 

holes basically create short cuts between two points in space-

time, thus theoretically reducing distance and travel time. 

Here, unlike in a naked singularity, the inner event 

horizons prevent the geodesics from directly travelling to the 

singularity atr=0.  

Case three ( 2 2
m q= ) 

This case describes an extremal blackhole and is therefore 

called the extremal Reissner-Nordstrom solution. The mass is 

exactly balanced by the charge. It is a very unstable case 

because adding small matter will reduce it to case two. Black 

holes in Reissner-Nordstrom metric are charged unlike those 

in Schwarzschild's metric. Also, while a singularity exist for 

both solutions at 0r = , Reissner-Nordstrom singularity is 

covered by two event horizons whereas Schwarzschild 

singularity has one event horizon. 

Gravitational collapse of an object leads to occurrences of 

singularities which can be classified into blackholes and 

naked singularity. A blackhole singularity is hidden from 
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external observers by the event horizon while a naked 

singularity is visible to external observers as they are not 

shielded by event horizons. Thus, a region of space-time 

which is invisible to an asymptotic observer is called a black 

hole. It has a boundary that seals off part of space-time from 

the outside. 

The occurrence of naked singularities is reflected in the 

Reissner-Nordstrom solution (case one). This solution 

violates the cosmic censorship conjecture of Roger Penrose 

which states that “the gravitational collapse of an 

astrophysical body should not lead to the formation of naked 

singularities” [26]. This indicates that a black hole hiding 

within an event horizon is created when a massive star 

collapses. However, this remains a conjecture and event 

horizons of collapsing stars are yet to be demonstrated [27]. 

The formation and existence of space-time singularities 

and collapse are thus predicted from the General Theory of 

Relativity. However, the singularity is not restricted to the 

black hole region only. General Relativity is unable to predict 

the sequence of events as the star collapses. The question 

remains whether it is the singularity or the horizon that 

comes first. This is a very crucial puzzle of black hole 

physics today and attracts extensive research. 

A special case of the solution 2 2m q< exist for which

0m =  and describes the gravitational field in the vicinity of 

a massless charged object. This is obviously unrealistic and 

corroborates the claims that this solution is unphysical [10]. 

Suppose, particles or objects (such as electrons) are 

considered classically as point particles (having masses and 

charges), then they would satisfy 2 2q m>  by a significant 

margin. This is because gravitational interactions are 

completely negligible compared with electromagnetic or 

Coulomb interactions. It has been rightly pointed out that 

there is a possibility that a large number of gravitationally 

collapsed objects of mass greater than or equal to 10-5g are 

formed when there are fluctuations in the early universe [28]. 

These objects can possess electric charge of up to 30±  

electron units and trace distinctpaths or tracks in bubble 

chambers forming atoms with protons or orbiting electrons. 

Although, electrons are basically quantum mechanical 

objects and cannot be studied using classical general 

relativity theory, the suggestion that particles can be modeled 

after the naked singularity solution of the Reissner-

Nordstrom space-time is, however, not out of place. 

Researches into low mass stars are currently being pursued 

vigorously.  

4. Conclusion 

Gravitational collapse and singularities are unquestionably 

an integral part of our current theory of gravity (general 

relativity). Curvature scalars are the only true indicators of 

true curvature singularities. It is evident that gravitational 

collapse of the solutions to Einstein equations can result to 

the creation of black holes and naked singularities, whereas 

the gravitational collapse of the FLRW leads to the Big Bang 

singularity describing the evolution of the Universe. The 

conditions for collapse in Minkowski, Friedman-Lemaitre-

Robertson-Walker and Reisnner-Nordstrom (R-D) space-

times were studied. The Ricci scalar proved very effective in 

determining the presence of singularity or otherwise of a 

space-time. In its natural form, the Minkowski space is 

singularity-free while the FLRW and R-N space-times have 

singularities at 0a =  and 0r =  respectively (points where 

the Ricci scalar of each solution diverges). In the case of a 

collapsing star that is spherically symmetric and uncharged, 

all matter strikes the singularity. On the contrary, Reissner-

Nordstrom solution shows that if a small amount of angular 

momentum or electric charge is added or removed, it will 

completely alter the nature of the singularity, causing matter 

to go through a ‘wormhole’ and comes out in another 

universe. The existence of naked singularities defies the 

cosmic censorship conjecture that forbids the existence of 

naked singularities and raises questions on the credibility of 

the General Theory of Relativity. Gravitational collapse in 

three out of many solutions to Einstein’s equation has been 

studied in this article. More solutions can be studied for 

possible interpretations of singularities and gravitational 

collapse. 
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