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Abstract: Experiments are performed on a cylinder with a forward-facing cavity at M∞ = 10 in the FD-14A shock tunnel. The 

shock-standoff distance and oscillation characteristics are recorded by a high-speed movie, and the dynamic pressure transducer 

is used to capture the unsteady signal of cavity base. Based on experimental and numerical results, a prediction method for 

estimating the shock-standoff distance is proposed. Results of shock-standoff distance and oscillation frequency are obtained for 

experiments in the shock tunnel. The predicted oscillation frequency is in accordance with experimental results. Furthermore, the 

relation of shock shape and the entropy increase are combined to obtain the characteristics of entropy distribution. As the 

shock-shape of flat-nosed cylinders is more liable to be influenced than blunt-nosed cylinders with increasing Mach number, the 

location of the extreme value moves to the surface as the Mach number increases for flat-nosed cylinders, while it remains the 

identical location for blunt-nosed cylinders.  
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1. Introduction 

Hypersonic vehicles such as hypervelocity projectiles, 

re-entry vehicles and hypersonic aircraft are designed to 

withstand severe heat loads. A proposed heat transfer 

reduction mechanism is to locate a forward-facing cavity at 

the nose tip [1-5]. It was reported that the heat flux at the 

cavity base could be as little as 2 to 10 times less than the 

stagnation point of a conventional convex hemispherical tip 

[6]. Hartmann et al. [7] found that placing a forward-facing 

cavity at a nose tip would produce intense pressure 

oscillations at a discrete frequency in supersonic flows (the 

Hartmann whistle). Ladoon et al. [8] conducted an 

experimental study on a blunt nose with a forward-facing 

cavity in a Mach 4 quite-flow wind tunnel, and a laser system 

was employed to perturb the freestream. As the cavity length 

increases, the resonant frequency decreases. Sambamurthiet 

et al. [9] investigated the flow field behaviour around a cone 

with a cavity at hypersonic flows. The results indicated that 

the frequency of the bow shock is inversely proportional to 

the cavity depth. Marquart et al. [10] investigated the 

dynamic of a detached bow shock and the acoustic resonance 

in a forward-facing nose cavity of a blunt-faced model. They 

found that the primary mode of oscillation in the cavity is 

consistent with the classic Organ-pipe frequency. Engblom et 

al. [11] performed experiments at flow field of Mach 4 and 

the results showed that the oscillation is spontaneous for deep 

cavities and mainly affected by the perturbation of the free 

stream for shallow cavities. The oscillation of high intensity 

and discrete frequency makes it harder to simulate the flow 

field and, to some extent, control the vehicle.  

However, most of the researches aimed at the issue of heat 

flux reduction and unsteady phenomena in cavities. Only a 

few papers had focused on shock behaviours for 

forward-facing cavities. Huebner et al. [6], Sambamurthi et al. 

[9], Marquart et al. [10] and Engblom et al. [12] measured 
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shock-standoff distance using optical methods. As the 

shock-standoff distance varies for different dimensions of 

cavities, it is fundamental to predict the standoff distance for 

estimating the oscillation frequency. Yuceil et al. [13] applied 

the prediction method for blunt-nosed cone without cavity to 

approximate one with a cavity, while this may cause 

inaccuracy to some extent. The main objectives of the present 

study are to 1) develop a prediction method for various 

dimensions of forward-facing cavities, 2) study the 

characteristics of entropy distribution. The details of this 

study are discussed in the subsequent sections. 

2. Experimental Apparatus 

2.1. Test Facility 

The experiments were conducted in FD-14A shock tunnel 

(Figure 1) in CARDC (China Aerodynamics Research and 

Development Center). The FD-14A shock tunnel produces 

flows from Mach 6 to 16 with its reservoir pressure up to 

69Mpa and the total temperature up to 4000K. The available 

test time is about 15ms. Typical test conditions of the 

experiment are given in Table 1. The experiments were 

conducted at a freestream Mach number of 10 and the unit 

Reynolds number ���� of 7.4×10
6
/m.  

 

Figure 1. FD-14A shock tunnel in CARDC. 

Table 1. Test conditions in the FD-14A shock tunnel. 

�� ��(Mpa) ��(K) 	
��/(m) 

6 2~12 800 8.1×106~6.7×107 

9 3~69 800~3200 1.0×106~5.5×107 

10 3~69 900~4000 7.5×105~4.5×107 

12 3~50 1200~4000 4.0×105~9.0×106 

14 5~40 1600~4000 2.0×105~4.0×106 

16 5~40 1900~4000 1.5×105~1.0×106 

2.2. Test Model and Techniques 

A flat-nosed cylinder, 300mm in diameter, with a cavity at 

the tip is shown in Figure 2 (Schematic is given instead of 

photos of the model for the reason of the project). The cavity 

diameter � is 80mm and its depth 
 is 200mm. A dynamic 

pressure transducer (NS-2) with the frequency response of 

300KHz and the range of 0-50Kpa were used. The transducer 

is nominally 2mm in diameter and is installed with its axes 

parallel to the model axis, and flush mounted with the base of 

the cavity. The signals were amplified by DH3840Q 

Amplifiers and pass through DH5862A Electronic Filters with 

a cutoff frequency set at 300KHz. A high-speed camera is used 

to record the shock wave at the rate up to 5000 frames/s. The 

camera is with largest pixels of 1024×1024 and largest frame 

frequency. A motion analyzer was used to measure the 

time-dependent shock-standoff distance.  

 
Figure 2. Schematic drawing of the forward-facing cavity in the FD-14A 

shock tunnel. 

3. Methodology 

3.1. Shock-Standoff Distance 

Based on experimental results, Billig [14] established the 

correlations for blunt-nosed cones and flat-nosed cylinders 

and assume a hyperbolic shock shape given by 

�̅ � 1 � �̅ � �����cot���� � 1�           (1) 

In Eq. (1), � � �1 �  �!"#$!%
&'����!

(
).+

. The nomenclature in Eq. 

(1) is illustrated in Figure 3. ����� is the radius of the curvature 

of the shock wave at the vertex of the hyperbola; �̅ is the 

shock-standoff distance; �̅  and ,�  are Cartesian coordinate. 

These parameters are all nondimensionalized by the radius of 

the nose �. � is the wave angle of the shock wave in the limit 

of an infinite distance away from the nose. If the downstream 

body is a cylinder, then � is the angle of Mach wave. 
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Figure 3. Nomenclature for the shock wave of blunt-nosed cones (up) and 

flat-nosed cylinders (down). 

In Eq. (1), �̅  and �����  are correlated from experimental 

results as 

Blunt	cones: �̅ � 0.143e8.�9 :;!⁄          (2) 

Flat	cylinders: �̅ � 0.386 E e9.FG :;!⁄         (3) 

Blunt	cones: ����� � 1.143e).+9 H:;IJKL.!⁄         (4) 

Flat	cylinders: ����� � 1.386 E eJ.M H:;IJKN.OP⁄        (5) 

It is obvious that the shock-standoff distance � mainly depend 

on two factors: Mach number and geometry (radius of the nose).  

However, under the condition of varied cavity diameter � 

and nose diameter �$ , the shock-standoff distance may 

change because the distance is influenced by geometry. For 

blunt-nosed cones, 1) under the condition of relatively small 

� �Q⁄ , the geometric characteristics behave similarly with the 

one without cavity, hence the shock-standoff distance is 

almost equal to the one without a cavity. 2) As � �Q⁄  

increases to a medium value, the central part of detached 

shock is nearly parallel to the base of the cavity, while the 

other part of the shock remains the same shape of the 

blunt-nosed cone without a cavity. 3) For relatively large 

� �Q⁄ , Sambamurthi et al. [9] argued the detached shock is 

almost parallel to the base of the cavity, and what is more, the 

shape of the whole shock is somewhat similar to flat-nosed 

cylinder’s shock wave. Based on these phenomena and Eq. 

(1)~(3), three equations for predicting shock-standoff distance 

are proposed for three different cases: 

For case 1, as the shock shape is quite similar to blunt-nosed 

cone without a cavity, the shock-standoff distance is given by 

�/HJ��QK � 0.143exp	H3.24/V��K          (6) 

For case 2, as the central part of shock is nearly parallel to 

the base of the cavity, and hence the shock shape is similar to 

the flat-nosed cylinder whose radius equals to 
J
��. Therefore, 

the shock-standoff distance is approximated by 

�/HJ��K � 0.386exp	H4.67/V��K          (7) 

For case 3, it is somewhat different from case 2. The most part 

of the shock for relatively large cavity behaves like a flat-nosed 

cylinder. However, the radius of the flat-nosed cylinders 

approximated by the definition of an equivalent radius of 
√�
9 �Q, 

and accordingly the shock-standoff distance for case 3 is 

�/H√�9 �QK � 0.386exp	H4.67/V��K          (8) 

3.2. Oscillation Frequency 

Experimental and numerical investigations have 

consistently found that cavity configurations exhibit 

oscillatory flow due to resonance inside the cavity. The 

primary resonance frequency can be calculated from simple 

linear theory given the cavity depth and the speed of sound 

inside the cavity. In classic Organ-pipe Theory, the 

wavelength Y of the primary resonance is given as Y � 4
, 

where 
  is the cavity depth. Thus the frequency Z 

corresponding to the wavelength can be obtained knowing the 

speed of sound [. Assuming that the gas temperature inside 

the cavity is approximately the total temperature \)  of the 

flow, which leads to [ � ]^��_$\). Hence 

Z � ]^��_$\)/4
                  (9) 

where ^ is the ratio of specific heats and ��_$ is the specific 

gas constant [10]. 

However, some researchers [11, 13, 15-17] suppose that the 

sound wave is oscillating between the base of the cavity and 

average position of the shock wave, Hence the 
 in Eq. (9) 

should be corrected to 
∗ � 
 � � . This issue would be 

discussed later. 

3.3. Entropy Distribution 

For a certain model, the shock shape is in steady state for a 

given free-stream Mach number. From Eq. (1), the relation of 

the local shock-wave angle a and the location of the shock 

wave is 

b �
bc̅ � �tana � ��d&'���� � e

� � tan���).+	       (10) 

For ,� → ∞, a → �. Considering the upper half plane for 

convenience as the flow is symmetric to the � coordinate, the 

shock wave could be regarded as countless parts of oblique 

shock waves (nearly normal shock wave around stagnation 

region). For the flow through an oblique shock wave, \ is the 

variable of static temperature, h  is the variable of static 

pressure. The upstream condition is denoted by subscript ∞ 

and the downstream condition is denoted purely by parameter 

variable itself 

i
i; � H�j:;! kl$!mInoJK

noJ
�HnIJK:;! kl$!mo��
HnoJK:;! kl$!m         (11) 

p
p; � 1 � �n

noJ HV�� sin�a � 1K           (12) 

In inviscid iso-energetic flow, the entropy increases across 
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the shock wave. Downstream the shock wave, the entropy 

could be considered as constant along the streamlines. The 

entropy increase across the shock wave would be different 

from one streamline to the next. For a given free-stream Mach 

number, the normal part leads to the largest entropy increase, 

while the entropy increase is smaller across the oblique-shock 

part and actually becomes smaller and smaller with decreasing 

shock angle until the shock angle approaches the Mach angle. 

The entropy increase across the shock wave δr is 

δr � bs
i � R�_$ bpp                  (13) 

In Eq. (13), u is the enthalpy of air. 

From Eq. (11) and Eq. (12), we have d\  and dh , 

respectively 

bi
i � 9HnIJKHn:;v kl$vmoJKwm

"#$mx�n:;! kl$!mInoJy�HnIJK:;! kl$!mo��        (14) 

bp
p � 9n:;! kl$m�_km

�n:;! kl$!mInoJza              (15) 

da could be obtained from Eq. (10) as 

da � � &{!�����_k|m
 �|kl$m 	d,�                 (16) 

Substituting Eq. (14), Eq. (15) and Eq. (16) into Eq. (11), 

we obtain  

b}
b � � ZHV�, �����, ,�, �K              (17) 

The Eq. (17) is the entropy gradient as the streamlines just 

flow across the shock wave. As the expression of dr/d,� is 

somewhat complicated which may occupy the space, but it is 

not difficult to illustrate the expression. In particular, for a 

calorically perfect gas within shock layer, the specific heats at 

constant pressure �� is constant, Eq. (17) could be written as 

b}
b � �

I�H:;! kl$!mIJK!
x�n:;! kl$!mInoJy�HnIJK:;! kl$!mo��       (18) 

In Eq. (18), � � 9n&'����!&'�����vm
kl$!m  

Integrating Eq. (13), we obtain the entropy distribution 

behind the shock wave 

�r � r � r� � � �� bii � ��_$�� p
p;       (19) 

r  represents the entropy at a given temperature \  and 

pressure h, and r� represents the entropy of incoming flow. 

The entropy layer introduces a large amount of rotationality 

into inviscid flows over bodies, as can be quantitatively obtained 

from Crocco’s theorem, which could be written as follows 

�����
�� � \�r � ���� E ��� � �u) � 0            (20) 

In Eq. (20), ���  is the local velocity vector along the 

streamline; u) is the total enthalpy. For steady and adiabatic 

flows considered here, u) is constant, and hence �u) � 0. 

The vorticity ���� is related to the entropy gradient �r normal 

to a streamline 

\�r � ���� E ���                   (21) 

In Eq. (21),	�r � b}
bQ ���, in which ��� is perpendicular to the 

local surface, hence 

b}
bQ �

J
�_k�

b}
b �                    (22) 

In Eq. (22), �  is the turning angle as streamlines flow 

through the shock wave. Relation of � and a is 

tan� � 2ctana :;! kl$!mIJ
:;! Hno�_kH�mKKo�           (23) 

Referring to Figure 3, considering the case of a plane flow 

(the arguments could be easily extended to axisymmetric 

flows), the tangential component ��  and the normal 

component �Q of velocity along the streamlines are  

�� � �����a                (24) 

�Q � �����a HnIJK:;! kl$!mo�K
HnoJK:;! kl$!m           (25) 

Combining the Eq. (17), Eq. (21) and Eq. (22), the vorticity 

distribution as the streamlines just flow across the shock wave is 

���� � i
�
�}
�Q

����EQ��
|����EQ��|                  (26) 

4 Results and Discussion 

4.1. Shock-Standoff Distance 

Now the Eq. (6)~Eq. (8) would be validated for 

forward-facing cavities by experimental results. 

 
Figure 4. Schematic drawing of a forward-facing Cavity [10]. 

Huebner et al. [6], Sambamurthi et al. [9] and Marquart et al. 

[10] conducted experiments at Mach number of 10 on the 

models who have similar geometry but differ in scales (Figure 

4). The parameter of � �$⁄  equals 0.67. According to the 

varied depth of the cavity, the model could be divided into 

“deep cavity”, “medium cavity” and “shallow cavity”. In 

Figure 5, it is shown the shock-standoff distance varies as the 

function of cavity depth. “E1”, “E2”, and “E3” in the figure 

denotes the prediction results for Case 1, 2, and 3, respectively, 

hereinafter the same. Now that the depth varies for 
=62mm 

and 
=125mm, the standoff distances almost remain the same 

for two cases as they are characterized by the same geometry 

of blunt-nosed cone. For 
=187.5mm, the model is larger than 

the other two cases, hence the shock-standoff distance is larger 

than the other two cases. In general, forecasting results 

indicate that “E3” predicts shock-standoff distance accurately 
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for a forward-facing cavity with varied geometry and varied 

cavity depth for � �Q⁄ � 0.67, while results of “E1” and “E2” 

underestimate the shock-standoff distance. 

 
Figure 5. Comparison of the predicted shock-standoff distance and 

experimental results (� �Q⁄ � 0.67). 

Engblom et al. [12] and Saravanan et al. [18] performed 

experiments at Mach number of 5 and 8 on three models of 

� �$⁄ � 0.17, � �$ � 0.28⁄  and � �$⁄ � 0.5. As shown in 

Figure 6, for � �Q⁄ � 0.17 , “E1” predicts the experimental 

result accurately, while “E2” and “E3” fail to predict the standoff 

distance. For � �Q � 0.28⁄ , “E1” and “E2” are able to predict 

shock-standoff distance, while the result of “E3” is somewhat 

larger than experimental results. For � �Q � 0.5⁄ , although the 

result of “E3” is a little larger than the experimental result, it is 

more accurate than the other two methods. 

 
Figure 6. Comparison of the predicted shock-standoff distance and 

experimental results (� �Q⁄ � 0.17~0.5K. 

In general, for the case of relatively small � �Q⁄ , Eq. (6) 

obtain better results as the existence of cavity weakly affects 

the shock shape and the shock-standoff distance. For the 

medium value of � �Q⁄ , the prediction methods of “E1” and 

“E2” may be both suitable for predicting the standoff distance. 

For relatively large � �Q⁄ , the method “E3” behaves better 

than the other two methods. 

For the flat-nosed cylinder, the shadow photos in FD-14A 

shock tunnel is shown in Figure 7. The average value of the 

shock-standoff distance is approximate 88mm. Applied with 

equation (3) for the flat-nosed cylinder, the results show that 

the shock-standoff distance is 63mm, which deviates from 

experimental results for about 28%. 

 
Figure 7. Shock position in FD-14A shock tunnel (one period). 

4.2. Oscillation Frequency 

Controversy exists on the issue of how to define 
 in the 

equation Z � [/4
 for estimating the oscillation frequency. 

The 
 may be defined as the depth of the cavity or the sum of 

the cavity depth and shock-standoff distance. Based on 

experimental and numerical results, the oscillation frequency 

is predicted using 
  and 
∗ . For the condition of 
∗ , the 

standoff distance is calculated by “E1”,“E2” and “E3”, 

respectively. 

Engblom et al. [12] performed numerical simulations at a 

Mach number from 3 to 9. “
” in Figure 8 denotes the 

prediction results by defining 
 as the depth of the cavity. For 

the case of 
 ∈ H2, 10K  mm, 
/� � 0.75 , and � �Q⁄ ∈
H0.06, 0.25K, the simulation results are just between the result 

of “E1” and “E2”. For the case of 
 � 12.7mm, 
/� � 1.4 

and � �Q⁄ � 0.5, the influence of shock-standoff distance on 

oscillation frequency decreases as the cavity depth increases, 

while “E3” provides more accurate results of shock-standoff 
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distance than two other methods, and hence more accurate 

results of the oscillation frequency. 

 

Figure 8. Comparison of the predicted oscillation frequency and simulation 

results (� �Q⁄ � 0.06~0.5). 

Juliano et al. [19] conducted experiments on a 

forward-facing cavity of � �$⁄ � 0.5 . The experimental 

results perfectly agree with the predicted results of “E3”, 

while results for “L”, “E1” and “E2” are larger than 

experimental results (Figure 9). 

 

Figure 9. Comparison of the predicted oscillation frequency and 

experimental results (� �Q⁄ � 0.5). 

Engblom et al. [16] and Yuceil et al. [17] conducted 

experiments and numerical simulation. In the case of 


/� ∈ H0.2, 1.2K and � �Q⁄ � 0.5, as the cavity depth varies, 

“E3” predicts the oscillation frequency accurately (Figure 10). 

For 
/� ∈ H0.3, 1.3K and � �$⁄ � 0.25 � 0.5, the result is 

shown in Figure 11. The range of 
 � 7mm corresponds to 

the models of � �$⁄ � 0.25, and in this case the predicted 

results by “E3” close to but underestimate the experimental 

results. For 
 � 7mm and � �Q⁄ � 0.5, the “E3” method 

predicts the experimental results accurately. 

 

Figure 10. Comparison of the predicted oscillation frequency and 

experimental results (� �Q⁄ � 0.5). 

 

Figure 11. Comparison of the predicted oscillation frequency and 

experimental results (� �Q⁄ � 0.25~0.5). 

Ladoon et al. [8] and Segura [20] performed experiments 

on a forward-facing cavity of � �Q⁄ � 0.5  and 
/� ∈
H0.5, 3.0K . The experimental results equal to the results 

predicted by “E3” method for most of the conditions (Figure 

12). 

Figure 13 shows pressure signals measured at the base of 

the cavity in FD-14A. The pressure signals have been 

normalized by the total pressure downstream of the shock 

wave. The oscillation frequency is approximate 622Hz. 

According to Organ-pipe Theory, the oscillation frequency 

can be calculated to be 560Hz. Furthermore, the result based 

on Eq. (8) for the flat-nosed cylinder is about 614Hz. It is 

obvious that predicted result of is close to the results of 
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pressure measurement. 

 
Figure 12. Comparison of the predicted oscillation frequency and 

experimental results (� �Q⁄ � 0.5). 

 
Figure 13. Dynamic pressure signals at cavity base in the FD-14A shock 

tunnel. 

To conclude the results above, for � �$⁄   0.17 , “E1” 

predicts the shock-standoff distance accurately. For � �$⁄ ∈
H0.17, 0.3K , either “E1” or “E2” is able to predict the 

shock-standoff distance though the error may exist under 

some conditions. For the case of � �$⁄ � 0.5 and � �$⁄ �
0.67 , “E3” provides satisfying results of shock-standoff 

distance. Limited by the amount of experimental and 

numerical results, the prediction method for shock-standoff 

distance should be validated further. However, the data which 

are collected and analyzed in the present paper cover the most 

of published results of shock-standoff distance for the 

forward-facing cavity. 

The controversy exists on the issue of 
  in forecasting 

equation for oscillation frequency. Based on the results above, 

it is reasonable to believe that the sum of shock-standoff 

distance and cavity depth should be taken into account to 

predict oscillation frequency.  

4.3. Oscillation Amplitude and Velocity 

Huebner et al. [6], Sambamurthi et al. [9] and Marquart et al. 

[10] conducted experimental research on oscillation amplitude 

at V� � 10. The model is characterized by � �$⁄ � 0.67. 

The normalized amplitude by �$ is plotted in Figure14. The 

average values of amplitudes are from 6% to 12%. It is also 

noted that the average values of shock velocities are from 2% 

to 4% of ¡� in the upstream and downstream, respectively 

(Figure 15). 

 
Figure 14. Average of normalized shock amplitude. 

 

Figure 15. Average of normalized shock velocity. 

4.4. Entropy Distribution 

4.4.1. Blunt-Nosed Cylinder 

The blunt-nosed cylinders are special conditions of 

blunt-nosed cones when the cone angle a� 	equals to zero. In 

this section, the models with small � �$⁄  are considered 

which means the Eq. (6) is applied. Constant specific heats 

(^ � 1.4) and constant �� are assumed ahead of and behind 
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the shock. The static temperature of flow \� � 288K. 

Firstly, from Eq. (19) and Eq. (22), it could tell that the 

distribution of entropy increase, as well as the entropy 

gradient, is independent of the nose radius. Secondly, in 

Figure 16, the entropy increase as the freestream flows across 

the shock wave is given in detail. Because of the bow shock 

upstream of the body, the entropy increase is different from 

one streamline to the next. As the Mach number increases, the 

profile of non-dimensional δr/δr£¤c  behaves similar, while 

the maximum value of the entropy increment rises nearly 

linearly, as is shown in Figure 17. In Figure 16, the inflexion 

point of δr/δr£¤c  represents the extreme position of zr z�⁄ . 

Figure 18 shows that the entropy gradient within the shock 

layer is negative, and the extreme value varies slightly in the 

range of ,� ∈ H0.8, 0.9K  as the Mach number increases. It 

should be noted that this intense region of the largest entropy 

gradients is the main source of the entropy layer, more 

significant than the nose region. Because the shock waves are 

stronger and usually highly curved at the higher Mach 

numbers, the entropy gradients become more severe. 

 

Figure 16. Entropy increase	of blunt-nosed cylinders. 

 

Figure 17. Relation of �r£¤c	and V� of blunt-nosed cylinders. 

 

Figure 18. Distribution of zr z�⁄  for blunt-nosed cylinders. 

 

Figure 19. Relation of V� and ����� of blunt-nosed cylinders and flat-nosed 
cylinders. 

4.4.2. Flat-Nosed Cylinder  

����� represents the curvature of the shock waves to a certain 

degree. Figure 19 compares the trend of ����� with increasing 

Mach number for blunt-nosed cylinders and flat-nosed 

cylinders. The ����� decreases exponentially as Mach number 

increases, which suggests the shock wave become even more 

curved. It can be seen that the shock shape of flat-nose 

cylinders is much influenced than blunt-nosed cylinders with 

increasing Mach number. For flat-nosed cylinders, the radius 

of curvature is about three times larger than blunt-nosed 

cylinder at the Mach number of 2, then decreases to about 

two times of the blunt-nosed cylinder at Mach number of 10. 

The distribution of entropy increment for flat-nosed 

cylinders is given in Figure 20 in non-dimensional form; that 

is, the δr/δr£¤c  decreases significantly at the Mach 

numbers from 2 to 3, and then almost remain the identical 

profile as the Mach number increases from 3 to 10. It is 
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suggested that the radius of shock-wave curvature becomes 

smaller at first, and then follows the Hypersonic Similarity 

Rule because of the flat nose, even though the Mach number 

of freestream is just 3.  

The entropy gradient downstream of the shock wave is 

also investigated. Profiles are illustrated for varied Mach 

numbers and the slope of entropy gradient is even milder for 

each Mach number compared with blunt-nosed cylinders, as 

is shown in Figure 21. What is more, the position of the 

extreme value moves closer to the coordinate axis of �, 

which leads the position of entropy layer behind the shock 

wave moves closer to the surface as Mach number increases. 

 

Figure 20. Entropy increase of flat-nose cylinders. 

 

Figure 21. Distribution of zr z�⁄  for flat-nose cylinders. 

5. Conclusion 

Experiments are performed on a flat-nosed cylinder with a 

forward facing cavity in FD-14A shock tunnel. The predicted 

results of the shock-standoff distance are approximately equal 

to the experimental results. A prediction method has been 

developed for estimating the shock-standoff distance of 

forward-facing cavity. Giving consideration on varied 

dimensions of cavities, the prediction method is divided into 

three cases to predict shock-standoff distance. Then the 

method is validated based on experimental and numerical 

results as well as Organ-pipe Theory. What is more, the 

controversy on the prediction equation of oscillation 

frequency is discussed.  

An analytical method for estimating the distribution of 

entropy for blunt-nosed cones and flat-nosed cylinders has 

been developed. The distribution of entropy increase and 

entropy gradient are both connected with the shape of shock 

waves directly. As the shock-shape of flat-nosed cylinders is 

more liable to be influenced than blunt-nosed cylinders with 

increasing Mach number, the position of the extreme value 

moves to the surface as the Mach number increases for 

flat-nosed cylinders, while it remains the identical value for 

blunt-nosed cylinders.  
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