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Abstract: Physical distribution (transportation) of goods and services from multiple supply centers to multiple demand centers 

is an important application of linear programming (LP). A transportation problem (TP) can also be solved using the simplex 

method when expressed as an LP model. However, because a TP has a large number of variables and constraints, solving it using 

simplex methods takes a long time. Many scientists have devised and continue to devise novel solutions to the classic TP. The 

prohibited route transportation problem, on the other hand, is a subset of TPs for which most scientists have yet to develop a 

specific TP. Certain routes may be impassable in some cases due to transportation issues. To name a few: construction projects, 

poor road conditions, strikes, unexpected disasters, and local traffic laws. Such limits (or prohibitions) in the TP can be managed 

by assigning a very high cost to the prohibited routes, ensuring that they do not appear in the optimal solution. This paper presents 

a heuristic algorithm and an improved ant colony optimization algorithm for achieving an initial feasible solution (IFS) to a 

prohibitive transportation problem (PTP). Using the PTP in the proposed method, on the other hand, produces the best IFS for a 

prohibited transportation problem and outperforms existing methods with less computation time and complexity. As a result, the 

proposed methods are an appealing alternative to traditional problem-solving approaches. In some numerical examples, the 

feasible solution of the proposed method is the same as the optimal solution. 

Keywords: Ant Colony Optimization Algorithm, Initial Feasible Solution, Optimal Solution,  

Prohibited Transportation Problems, Transportation Problem 

 

1. Introduction 

The transportation problem (TP) is a problem of 

optimization. The usual dates are from the 1940s and later. 

Tolstoy [18] was a pioneer in operations research and thus 

wrote a book on transportation planning that was published 

by the Soviet Union's National Commissariat of 

Transportation. It was an article called "Methods of Ending 

the Minimal Total Kilometer in Cargo-Transportation 

Planning in Space," in which he studied the TP and described 

a number of solution approaches, including the now 

well-known idea that an optimum solution does not exist. 

The TP is concerned with determining the best distribution 

strategy for a single commodity. There is a specified demand 

for the commodity at each of a number of destinations, and 

the transportation cost between each source and destination 

pair is known. In the most basic case, the unit transportation 

cost is constant. 

Here, sources denoted where transportation will begin, 

destinations denoted where the product must arrive, and 

denoted the transportation unit cost of transporting from 

source to destination, and demand denoted the destination. 

Hitchcock [6] introduced the most basic mode of 

transportation. Koopmans [7] and Dantzig [2] expanded on it. 

Ford and Fulkerson [5] generalized the method to 

transportation problems in general. Several extensions to the 

transportation model and methods have since been developed 

by many scientists. TP is based on the supply and demand for 

commodities transported from various sources to various 

destinations. Many studies have developed various 

approaches. For example, Saumis et al. (1991), for example, 

considered the problem of preparing a low-cost 

transportation plan by simultaneously solving two 

sub-problems: first, the assignment of units available at a 
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series of origins to satisfy demand at a series of destinations; 

and second, the design of vehicle tours to transport these 

units when the vehicles must be returned to their departure 

point. Vishwas [20], Identifying more-for-less paradox in the 

linear fractional transportation problem using objective 

matrix. Their method makes use of the topological properties 

of basis trees within a framework of generalized upper 

bounds. Pandian and Natarajan [11] created a technique for 

transportation problems that is similar to an optimal solution. 

Rashid [12] created a heuristic called the improvement of the 

initial basic feasible solution of a balanced transportation 

problem. Ekanayake and colleagues [8-19] detailed the 

practical issues for solving transportation problems and 

provided comments on various aspects of transportation 

problem methodologies, as well as discussions on the 

computational results of the respective researchers Sharma 

and Sharma [14] proposed a new heuristic approach for 

obtaining good starting solutions for dual-based approaches 

to transportation problems. A modified ant colony 

optimization algorithm for solving a TP was recently 

developed by Ekanayake et al. [9]. According to a recent 

paper, because the transportation criteria appear to be 

unknown to the majority of those working on the TP, one 

may be tempted to believe that this phenomenon is merely an 

academic curiosity that will most likely not occur in any 

practical situation. It has been observed that, on numerous 

occasions, the decision problem can also be formatted as TP. 

In today's highly competitive market, the pressure on 

organizations to find better ways to create and deliver 

products and services to customers grows stronger. 

There are different types of TPs, including 

cost-minimizing transportation problems, cost-minimizing 

transportation problems with mixed constraints, bottleneck 

transportation problems, multi-objective transportation 

problems, etc. Furthermore, in many practical solutions, 

some transportation routes are prohibited due to operational 

problems such as flood situations, road conditions, or 

government restrictions. These operational problems can be 

handled to solve transportation problems by converting them 

into a mathematical problem by assigning a very high 

transportation cost to these prohibitive routes to ensure that 

these routes will not be included in the final optimal solution. 

Also, a few studies have introduced specific routes into the 

category of prohibited transportation problems (PTP). Many 

studies have been conducted to develop various types of TPs, 

but PTPs must have a few studies. 

The choice of the construction graph is widely assumed 

and observed in experiments to have a significant impact on 

the runtime behavior of an ACO algorithm. The construction 

graph used in [1, 3, 4, 8, 10] is a generic optimization graph. 

ACO algorithms have the advantage of incorporating more 

knowledge about the structure of a given problem into the 

construction of solutions. This is accomplished by selecting 

an appropriate construction graph and a procedure that allows 

for the generation of feasible solutions. Propose an algorithm 

and investigate ACO algorithms that work on construction 

graphs and appear to be more suitable for the PTP problem. 

Consider starting with a random walk on the input graph to 

come up with solutions to the problem. It is well understood 

how to use random walk algorithms to choose the best path 

of a given PTP at random [16, 17]. 

2. Transportation Model 

It has been seen that on many occasion, the decision 

problem can also be formatting as TP. In general, proposed to 

minimize total prohibited transportation cost for the 

commodities transporting from source to destination. 

Let there be m sources of supply, �� having �� , ��	 �

	1, 2, . . . , �
 units of supply (or capacity), respectively to be 

transported to n destinations, �� 	with �� , ��	 � 	1, 2, . . . , �
 

units of demand (or requirement), respectively. Let ���  be the 

cost of shipping one unit of the commodity from source i to 

destination j. If ���  represents number of units shipped from 

source i to destination j, the problem is to determine the 

transportation schedule so as to minimize the total 

transportation cost while satisfying the supply and demand 

conditions. the LP formulation of this problem is Minimize. 

Minimize ∑ ∑ ������
�
���

�
���  

Subject constrains; 

∑ ��� �
�
��� ��,� � 1,2, … ,� 

∑ ��� �
�
��� ��,	� � 1,2, … , � and 

��� � 0 for all � � 1,2, … ,�, � � 1,2, … , � 

One of the main requirements here is that the problem be a 

balanced transportation problem. i.e, 

∑ a�
�
��� �	∑ b!

"
!��   

When problem unbalance, total demand and total supply 

are not equal. 

The issue is determining the best distribution strategy for 

transporting products from their origin to their destination while 

minimizing total transportation costs. Figure 1, shows this. 

 

Figure 1. Network representation of the prohibited transportation problem. 

A transportation table, as shown in Table 1, can also be used 

to represent the transportation model in tabular form. 
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Table 1. Transportation cost table. 

Destination→Source↓ D1 D2 … Dn Supply %& 

S1 ���  -  … ��� �� 

S2 ���  �'' … �'�  �' 

⁞ ⁞ ⁞ ⁞ ⁞ ⁞ 

Sm -  ��'	 … ���  ��  

Demand ��  ��  �'  … ��  ∑ a����� =	∑ b!"!��   

 

3. Construction Algorithm of PTP 

M. Dorigo and colleagues introduced Ant Colony 

Optimization (ACO) in the early 1990s as a novel nature-inspired 

metaheuristic for the solution of hard combinatorial optimization 

(CO) problems. ACO is a type of metaheuristic (4), which are 

approximate algorithms for solving difficult CO problems in a 

reasonable time. Furthermore, Wang et al. [21] developed a 

hybrid optimization algorithm based on ant colony and 

immune data. ACO is a new metaheuristic approach to solving 

difficult CO problems. The pheromone trail laying and following 

behavior of real ants, which use pheromones as a communication 

medium, is an inspiration for ACO. 

The indirect communication of a colony of simple agents 

known as ants, mediated by (artificial) pheromone trails, is the 

foundation of ACO. In ACO, the pheromone trails serve as 

distributed, numerical information, which the ants use to 

probabilistically construct solutions to the problem at hand, 

and which the ants adapt during the algorithm's execution to 

reflect their search experience. 

When foraging, some ant species are known to deposit a 

type of chemical substance called pheromone, which they use 

to communicate with one another in order to choose the 

shortest path from their nest to the food source. The ACO, a 

stochastic, meta-heuristic, and population-based optimization 

algorithm, is based on this biological phenomenon. Dorigo et 

al. proposed the ACO for combinatorial optimization problem 

solving (6), and numerous variations have since been studied. 

It is a fast way to handle various optimization tasks like 

routing and scheduling. The ACO can be defined as (3): 

1) The probabilistic transition rule is used to determine 

each ant's moving direction. 

2) The pheromone update mechanism indicates the quality 

of the problem solution. 

Clearly, continuous ACO is based on both a global and a 

local search for the elitist. According to the transition 

probability (��)
	of region i, the local ants are capable of 

moving to the latent region with the best solution: 

(��)
 = ∅+�,

∑ ∅-�,
.
-/0

                (1) 

where ∅��t
 is the total pheromone at region i at time t, and g 

is the number of global ants. As a result, the better the region is, 

the more attracted the successive ants are. If their fitness is 

improved, the ants can deposit the pheromone increment as in 

(2). Otherwise, no pheromone is left. Therefore, the better the 

region is, the more attraction to the successive ants it has. If 

their fitness is improved, the ants can deposit the pheromone 

increment ∆∅�	as in (2). Otherwise, no pheromone is left. 

∅��t + 1
 = 4	∅��t
 + ∆∅�; 	if	fitness	is	improved
	∅��t
; 	Otherwise    (2) 

After each generation, the pheromone is updated as: 

∅��t + 1
 = �1 − σ
∅��t
           (3) 

where σ  is the pheromone evaporation rate. Using the 

suggested methodology, it was found that local ants are more 

likely to choose a location based on its pheromone trail. The 

rate of pheromone evaporation, ant age, and fitness growth, on 

the other hand, all have an effect. Thus, this pheromone-based 

selection mechanism is capable of promoting the solution 

candidate update, which is certainly suitable for handling the 

changing environments in optimization. 

3.1. ACO Algorithms for Prohibited Transportation Problem 

This novel method for addressing PTP is simple, easy to 

understand, and useful for decision making, and it provides 

the minimum solution of PTP. 

Using the new modified probability function (4) from (1). 

(���)
 = F+-GH
∑ ∑ F+-GHI-/0J+/0

            (4) 

where, K = maximum	���  

The novel method transforms transportation cost, demand, 

and supply (Table 1) into a probability table (Table 2) using 

formula (4). 

Table 2. Probability table for PTP. 

Supply / Demand NO NP NQ … NR Supply 

�� S�� S�' S�T … S�� �� 

�' S'� S'' S'T … S'� �' 
⁞ ⁞ ⁞ ⁞  ⁞ ⁞ 

�� S�� S�' S�T … S�� �� 
Demand �� �' �T … ��  

 

3.2. Proposed Method 

Step 1: If the transportation problem is unbalanced, start by 

balancing it by inserting a dummy column or row as needed. 

Step 2; Determine the maximum unit cost and adding the 

particular value each of unit costs without maximum unit cost. 
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Step 3; Using the above equation, compute the probability table. 

Step 4: Ants move to the starting nodes with the second lowest 

probability cell in the probability table to make the first allocation. 

Step 5: Determine the min	��� , ��
 and assign the preceding 

step. 

Step 6: If the demand in the column (or supply in the row) is 

satisfied, remove that column (or row) and proceed to the next 

maximum. 

Step 7: If the termination condition is satisfied 	��. U. �� =�� = 0
 then go to Step 8. Otherwise go to Step 5. 

Step 7: Total cost is calculated as the sum of the cost product 

and the corresponding allocated supply/demand value. That is, 

Total cost =	∑ ∑ ��������������  

4. Result 

4.1. Numerical Illustrations [Example 1 [15]] 

Table 3. Ex. 1. Step 1. 

 D1 D2 D3 D4 D5 D6 Supply 

S1 5 4 4 6 7 7 100 

S2 8 6 6 5 7 7 200 

S3 7 6 6 8 9 9 150 

S4 - - 0 0 - 0 110 

Demand 80 40 50 60 80 250  

Table 4. Ex. 1. Step 2: Determine the maximum unit cost and adding the particular value each of unit costs without maximum unit cost. 

 D1 D2 D3 D4 D5 D6 Supply 

S1 14 13 13 15 16 16 100 

S2 17 15 15 14 16 16 200 

S3 16 15 15 17 9 9 150 

S4 9 9 0 0 9 0 110 

Demand 80 40 50 60 80 250  

Table 5. Ex. 1. Step 3; Using the above equation, compute the probability table. 

 D1 D2 D3 D4 D5 D6 Supply 

S1 .048 .045 .045 .052 .055 .055 100 

S2 .059 .052 .052 .048 .055 .055 200 

S3 .055 .052 .052 .059 .031 .031 150 

S4 .031 .031 0 0 .031 .031 110 

Demand 80 40 50 60 80 250  

Table 6. Ex. 1. Step 4: Ants move to the starting nodes with the second lowest probability cell in the probability table to make the first allocation, and step 5. 

 D1 D2 D3 D4 D5 D6 Supply 

S1 .048 .045*40 .045*50 .052 .055 .055 100*10 

S2 .059 .052 .052 .048 .055 .055 200 

S3 .055 .052 .052 .059 .031 .031 150 

S4 .031 .031 0 0 .031 .031 110 

Demand 80 40*0 50*0 60 80 250  

Table 7. Ex. 1. Step 4 and Step 5. 

 D1 D2 D3 D4 D5 D6 Supply 

S1 .048 .045*40 .045*50 .052 .055 .055 100*10 

S2 .059 .052 .052 .048 .055 .055 200 

S3 .055 .052 .052 .059 .031 .031 150 

S4 .031 .031 0 0 .031 .031 110 

Demand 80 40*0 50*0 60 80 250  

Table 8. Ex. 1. Step 4 and Step 5. 

 D1 D2 D3 D4 D5 D6 Supply 

S1 .048*10 .045*40 .045*50 .052 .055 .055 100*10*0 

S2 .059 .052 .052 .048*60 .055 .055 200*140 

S3 .055 .052 .052 .059 .031 .031 150 

S4 .031 .031 0 0 .031 .031 110 

Demand 80*70 40*0 50*0 60*0 80 250  
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Table 9. Ex. 1. Step 4 and Step 5. 

 D1 D2 D3 D4 D5 D6 Supply 

S1 .048*10 .045*40 .045*50 .052 .055 .055 100*10*0 

S2 .059 .052 .052 .048*60 .055*80 .055*60 200*140*0 

S3 .055*70 .052 .052 .059 .031 .031 150*80 

S4 .031 .031 0 0 .031 .031 110 

Demand 80*70*0 40*0 50*0 60*0 80*0 250*190  

Table 10. Ex. 1. Step 7: If the termination condition is satisfied 	��. U. �� = �� = 0
 then go to Step 8. Otherwise go to Step 5. 

 D1 D2 D3 D4 D5 D6 Supply 

S1 .048*10 .045*40 .045*50 .052 .055 .055 100*10*0 

S2 .059 .052 .052 .048*60 .055*80 .055*60 200*140*0 

S3 .055*70 .052 .052 .059 .031 .031*80 150*80*0 

S4 .031 .031 0 0 .031 .031*110 110*0 

Demand 80*70*0 40*0 50*0 60*0 80*0 250*190*0  

Table 11. Ex. 1. Step 8. 

 D1 D2 D3 D4 D5 D6 Supply 

S1 5*10 4*40 4*50 6 7 7 100 

S2 8 6 6 5*60 7*80 7*60 200 

S3 7*70 6 6 8 9 9*80 150 

S4 - - 0 0 - 0*110 110 

Demand 80 40 50 60 80 250  

Total cost =(5×10)+(4×40)+(4×50)+(5×60)+(7×80)+(7×60)+(9×80)+(0×110)=2900 

4.2. Numerical Illustrations [Example 2 [15]] 

A manufacturer must produce a certain product in 

sufficient quantity in order to meet contracted sales for the 

next four months. The production facilities available for this 

product are limited and vary in different months. The unit 

cost of production also changes according to the facilities and 

personnel available. The product may be produced in one 

month and then held for sale in a later month, at an estimated 

storage cost of Rs 1 per unit per month. No storage charge is 

incurred for goods that are sold in the same month in which 

they are produced. Presently, there is no inventory of this 

product and none is desired at the end of four months. Given 

the following table, show how much to produce in each of 

the four months in order to minimize total cost. 

Table 12. Ex. 2. 

Month Contracted Sales (in units) Maximum Production (in units) Unit Cost of Production (Rs.) Unit Storage Cost per Month (Rs.) 

1 20 40 14 1 

2 30 50 16 1 

3 50 30 15 1 

4 40 50 17 1 

Formulate the problem as a transportation problem and solve it. 

Table 13. Ex. 2. Step 1. Transportation table. 

From/To  1 2 3 4 Dummy Supply 

1 14 15 16 17 0 40 

2 - 16 17 18 0 50 

3 - - 15 16 0 30 

4 - - - 17 0 50 

Demand 20 30 50 40 30  

Table 14. Ex. 2. Step 2; Determine the maximum unit cost and adding the particular value each of unit costs without maximum unit cost. 

From/To  1 2 3 4 Dummy Supply 

1 14 15 16 17 0 40 

2 18 16 17 18 0 50 

3 18 18 15 16 0 30 

4 18 18 18 17 0 50 

Demand 20 30 50 40 30  
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Table 15. Ex. 2. Step 3; Using the above equation, compute the probability table. 

From/To  1 2 3 4 Dummy Supply 

1 32 33 34 35 0 40 

2 18 34 35 18 0 50 

3 18 18 33 34 0 30 

4 18 18 18 35 0 50 

Demand 20 30 50 40 30  

Table 16. Ex. 2. Step 4: Ants move to the starting nodes with the second lowest probability cell in the probability table to make the first allocation, and step 5. 

From/To 1 2 3 4 Dummy Supply 

1 .074 .076 .078 .081 0 40 

2 .041 .078 .081 .041 0 50 

3 .041 .041 .076 .078 0 30 

4 .041 .041 .041 .081 0 50 

Demand 20 30 50 40 30  

Table 17. Ex. 2. Step 5 and Step 6. 

From/To  1 2 3 4 Dummy Supply 

1 .074^20 .076^20 .078 .081 0 40 

2 .041 .078^10 .081^20 .041 0^20 50 

3 .041 .041 .076^30 .078 0 30 

4 .041 .041 .041 .081^40 0^10 50 

Demand 20 30 50 40 30  

Table 18. Ex. 2. Total cost =	∑ ∑ �������������� . 

From/To 1 2 3 4 Dummy Supply 

1 14^20 15^20 16 17 0 40 

2 - 16^10 17^20 18 0^20 50 

3 - - 15^30 16 0 30 

4 - - - 17^40 0^20 50 

Demand 20 30 50 40 30  

Total cost = 14×20+15×20+16×10+17×20+15×30+17×40=2210 

4.3. Numerical Illustrations [Example 3 [15]] 

Consider the problem of scheduling the weekly production 

of certain items for the next four weeks. The production cost 

of the item is Rs. 10 for the first two weeks and Rs. 15 for the 

last two weeks. The weekly demands are 300, 700, 900, and 

800, which must be met. The plant can produce a maximum 

of 700 units per week. In addition, the company can use 

overtime during the second and third weeks. This increases 

the weekly production by an additional 200 units, but the 

production cost also increases by Rs. 5. Excess production 

can be stored at a unit cost of Rs. 3 per week. How should the 

production be scheduled so as to minimize the total cost? 

Solution 

The given information is presented as a transportation 

problem in Table 19. The cost elements in each cell are 

determined by adding the production cost, the overtime cost of 

Rs 5, and the storage cost of Rs 3. Thus, in the first row, the 

cost of Rs 3 is added during the second week onward. Since 

the output of any period cannot be used in a period preceding it, 

the cost element is written in the appropriate cells. A dummy 

column has been added because the supply exceeds demand. 

Table 19. Ex. 3. 

Week (Origin) 
Production Cost per Week (Destination) 

Supply 
I II III IV Dummy 

R� 10 13 16 19 0 700 

R' - 10 13 16 0 700 

O' - 15 18 21 0 200 

RT - - 15 18 0 700 

OT - - 20 23 0 200 

RW - - - 15 0 700 

Demand 300 700 900 800 500 3,200 
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Table 20. Ex. 3. Probability table to make the first allocation, and step 5. 

Week (Origin) 
Production Cost per Week (Destination) 

Supply 
I II III IV Dummy 

X� .042*300 .046 .050 .054 0 700*400 

X' .029 .042*700 .046 .050 0 700*0 

Y' .029 .049 .053 .057 0 200 

XT .029 .029 .049 .053 0 700 

YT .029 .029 .055 .029 0 200 

XW .029 .029 .029 .049 0 700 

Demand  300 *0 700 *0 900  800  500  3,200 

Table 21. Ex. 3. Step 5 and Step 6. 

Week (Origin) 
Production Cost per Week (Destination) 

Supply 
I II III IV Dummy 

X� .042*300 .046 .050 .054 0 700*400 

X' .029 .042*700 .046 .050 0 700*0 

Y' .029 .049 .053 .057 0 200 

XT .029 .029 .049*700 .053 0 700*0 

YT .029 .029 .055 .029 0 200 

XW .029 .029 .029 .049*700 0 700*0 

Demand  300 *0 700 *0 900 *200 800 *100 500  3,200 

Table 22. Ex. 3. Step 5 and Step 6. 

Week (Origin) 
Production Cost per Week (Destination) 

Supply 
I II III IV Dummy 

X� .042*300 .046 .050*200 .054 0 700*400*200 

X' .029 .042*700 .046 .050 0 700*0 

Y' .029 .049 .053 .057 0 200 

XT .029 .029 .049*700 .053 0 700*0 

YT .029 .029 .055 .029 0 200 

XW .029 .029 .029 .049*700 0 700*0 

Demand  300 *0 700 *0 900 *200*0 800 *100 500  3,200 

Table 23. Ex. 3. Step 5 and Step 6. 

Week (Origin) 
Production Cost per Week (Destination) 

Supply 
I II III IV Dummy 

X� .042*300 .046 .050*200 .054*100 0*100 700*400*200*100*0 

X' .029 .042*700 .046 .050 0 700*0 

Y' .029 .049 .053 .057 0*200 200*0 

XT .029 .029 .049*700 .053 0 700*0 

YT .029 .029 .055 .029 0*200 200*0 

XW .029 .029 .029 .049*700 0 700*0 

Demand 300 *0 700 *0 900 *200*0 800 *100*0 500 *0 3,200 

Table 24. Ex. 3. Step 5 and 6. 

Week (Origin) 
Production Cost per Week (Destination) 

Supply 
I II III IV Dummy 

X� 10*300 13 16*200 19*100 0*100 700 

X' - 10*700 13 16 0 700 

Y' - 15 18 21 0*200 200 

XT - - 15*700 18 0 700 

YT - - 20 23 0*200 200 

XW - - - 15*700 0 700 

Demand  300 700 900 800 500 3,200 

The total minimum cost for the optimal production= 10×300+16×200+19×100+10×700+15×700+15×700=36100. 
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4.4. Numerical Illustrations [Example 4 [15]] 

Minimization transportation problem with data shown 

below table. 

Table 25. Ex. 4. 

4 Z 9 

30  20 

[ 7 8 

 30 30 

Find the values of Z and [ that the given solution optimal. 

If Z = [ then find the optimal solution. 

Transportation table 

Table 26. Ex. 4. North west cost method. 

4 Z 9 50 

[ 7 8 60 

30 30 50  

Using North west cost method 

Transportation cost =120+20Z+70+400=590+20Z 

Table 27. Ex. 4. Calculate another method. 

4*30 Z 9*20 50 

[ 7*30 8*30 60 

30 30 50  

Minimum cost=750 then	Z ≤ 8. 

Using Least Cost method (assume β is minimum) 

Table 28. Ex. 4. Calculate another method. 

4 8 9*50 50 

[ ∗ 30 7*30 8 60 

30 30 50  

Minimum cost=750=30	[+210+450 

Implies [ = 3 b. 

Table 29. Ex. 4. Optimal solution. 

.178*30 .123 .123*20 50*20*0 

.123 .219*30 .232*30 60*30*0 

30*0 30*0 50*20*0  

Optimal solution=750 

5. Conclusions 

Discuss a novel alternative technique in this research work, 

a modified ant colony optimization algorithm that frequently 

provides an optimal PTP solution. This research paper 

presents an overview of the concept of an ant colony algorithm 

and provides a review of its applications to solve PTPs. 

Several modifications to the ant colony algorithm are made 

and ensure a solution that is very close to the optimal solution. 

An extensive numerical study was carried out to see the 

potential significance of this modified ant colony algorithm. 

However, in practice, when researchers and practitioners deal 

with large-sized transportation problems, they urge them to 

use the proposed MACOA due to the time-consuming 

computation of other methods. The proposed method is very 

simple, easy to understand, and easy to implement. This 

method requires a minimum number of steps to reach 

optimality as compared to the existing methods. The existing 

well-known exact optimal cost solution technique deals fully 

with the path tracing technique, but it becomes very difficult 

to solve large-scale transportation problems. As a result, 

concentrate all efforts in the near future on formulating a new, 

better plan of action that solves this issue. The proposed 

method can be used successfully to solve different business 

problems in the distribution of products, which is commonly 

referred to as PTPs. 
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