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Abstract: Multicollinearity is an unavoidable problem being faced by researchers in financial and Economic data. It refers to 

a situation where the degrees of correlations between two or more independent variables are high. This is to say, one 

explanatory variable can be used in forecasting the other variable. This creates redundant information in a series under study, 

skewing the results in regression models. There is need to search for the source of the problem and proffering solution to this 

problem in Economics and Financial data. The data used was extracted from the record of Federal trade commission (FTC), 

2019. The commission usually ranks annually arrays of locally made cigarettes in relation to Tar, nicotine and carbon 

monoxide components that was made available. Farrah-Glauber test and variance inflation factor were used as methods of 

detection multicollinearity in this paper. SPSS and J-muliti packages were used to analyse the data collected for empirical 

illustration. The results of analysis indicated that variance inflation factor of X1 and X2 (Tar and Nicotine) are far above 10 

(21.63 and 21.90) must be removed or collapsed from the model in order to correct multicollinearity. So, the preciseness of 

VIF made it to be preferred to Farrah-Glauber test. In line with the analysis, the use of Variance Inflation Factor is more 

preferred to Farrah-Glauber method. As VIF not only detected but also pointed to the direction of the problem. 

Keywords: Multicollinearity, Farrah-Glauber, Predictor, Variance Inflation Factor, Financial and Economic Data,  

Regression Model 

 

1. Introduction 

Multicollinearity refers to the circumstances where two or 

more independent variables in a statistical model are linearly 

related they are sometimes called collinearity: [1]. It is an 

important economic problem that has received several 

attentions globally but unfortunately the problem of resolving 

it has not yielded desire result. Of recent authors like [18, 15, 8, 

2, 10, 11] researched into this econometric problem and 

established the danger the problem posed to the forecast ability 

of regression models. It is also regarded as economic problem 

that can lead to poor judgmental error and lead to poor 

economic policy formulation in financial time series the error 

is assumed to be independent and identically distributed 

whereas in the real-life situation most of the time is not so. 

Multicollinearity among predictor variables has been attended 

to severally in econometric theory and in econometric texts 

(for examples., [6, 7, 19]. [9] Determines how collinearity 

upshots parameter coefficient instability in a measurement 

error situation. Many statistical models, notably those that are 

commonly use in ecology, finance, marine and Economics are 

liable to collinearity [3, 4, 17]. This occurs when too many 

variables have been pulled together in the model and a number 

of them measure similar phenomena. The existence of 

multicollinearity in a variable under study affects both the 

estimation of the parameters of the model and also gives rise to 

wrong interpretation of the results. Regression parameters 

estimates so obtained are compromised and may lead to 

instability, the estimated errors are extremely stretched and as a 

result inferences made based on these statistics are biased and 

lead to wrong policy formulation. However, for the models 
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that are not robust enough two problems are bound to happen 

under multicollinearity: any effects arising in the variable 

cannot be put apart variable effects cannot be separated and 

extrapolation or out of sample forecast is likely to be seriously 

erroneous and give a very wrong judgmental decision (s) [12]. 
Most introductory textbooks on statistics recognized 

multicollinearity as a problem principally associated with 

finance and Economics data. It is regarded as a situation 

where the model is not identified. As terrible as it is, several 

approaches for investigating it and working with it have been 

mapped out. Regardless of the peculiarities of the problem 

and the several available methods of solving them, most 

ecological, finance and Economics research have not made 

efforts to address this ubiquitous problem of multicollinearity 

[5, 16]: Non- addressing of these problem are directly linked 

to a very erroneous belief that statistical methods are not 

affected by multicollinear problems, ambiguity that 

surrounded the method to use couple with incompatible of a 

method in relation to the available data to be analysed, 

inability to interpret the results as a result of usage of 

approaches that incorporate variables or software that cannot 

be accessed. This problem is not only limited to ecology, 

finance and Economics [10, 13, 14]. 

The central objective of this paper is to provide a better 

perception of multicollinearity and to compare two methods 

(Farah-Glauber test and variance inflation method) of 

detecting its presence and determine the better one. 

2. Mathematical Preliminaries 

2.1. The Farrar and Glauber Test 

This is a test to determine the presence as well as the 

degree of Multicollinearity in an equation. To achieve this 

objective a matrix of pair wise correlation coefficients is 

formed from the explanatory variables. 
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This test is performed in three stages 

i. Chi-square test to determine or ascertain the existence 

and degree of multicollinearity. 

ii. F -test to locate the variable (s) that are intercorrelated, 

provided the test appeared positive. 

iii. t -test is use to determine the variable (s) that is (are) 

causing the multicollinearity problem provided the F -test is 

positive. 

2.1.1. Chi-Square Test 

0 : 'H X s  are orthogonal, is a statistic predicated on the 

determinant X X′  and could give a valuable measure of of 

the existence of multicollinearity in the expanatory variables. 

Bartlett (1937) obtained a transformation of X X′  

( )2 11 2 5 ln
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This is distributed approximately as chi-square with 

( )1 1
2

v K K= − degrees of freedom; where K is the number 

of explanatory variables present in the series. S 

2.1.2. −F Test  

If the Chi-square test confirmed the presence of 

Multicollinearity, we therefore, have no choice than to 

proceed to F − test using the following steps: 

i. List out the ix considered to be inter-correlated with 

other xs  as a function of xs . Therefore, 

ix ( )1 2 1 1, , , , ,i i kf x x x x x− += ⋯ . Using data, we can 

write 1 2 2 3 3x X X Uβ β= + +  
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2.1.3. −t Test 

Having discovered that F test is positive. The t  test is 

thereafter conducted to detect/examine which pair of 

variables are responsible for the multicollinearity. Suppose 1x

is intercorrelated with 2 3 and x x , under this condition, the t  

test is conducted as follows:  

1. Define the hypothesis 

0 2 3:  and   is not responsible for multicollinearityH x x are

against the 

1 2 3:  and   responsible for multicollinearityH x x are . 

2. Compute the partial coefficient of determination 
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5. Repeat the test for 1 3 and x x . 
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2.2. Variance Inflation Factor (VIF) 

The aftermath of the multicollinearity is the rise in 

variance inflation factor. For the jth  independent variable, 

the Variance Inflation Factor is given as 

2

1

1
j

j

VIF
R

=
−

. 

where
2
jR is the coefficient of determination when variable 

jX is regressed on the j-1 remaining explanatory variables, 

these factors are useful indicator in adjudging which of the 

variables may caused multicollinearity. Rule of thumb seems 

to be that we should be suspicious if any 5jVIF >  and 

positively horrified if 10jVIF > . If this kind of result is 

obtained, a variable should be dropped or the model should 

be changed. if multicollinearity is discovered, theory and 

practical judgement should be used to pick the best variables 

to be kept in the model. 

The sampling variance of the jth coefficient ˆ
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is the variance of jX  and 

2σ  variance (Fox, 1997). The term 
2

1

1 jR−
 indicates the 

impact of multicollinearity on ˆ
jβ . It can be explained as the 

ratio of variance of ˆ
jβ to a supposed variance if jX were 

uncorrelated with the remaining iX . 

3. Specification and Analysis of Data 

Used 

The data used for this study was obtained from The 

Federal Trade commission (FTC), 2018, annually ranks 

varieties of domestic cigarettes according to their tar, nicotine 

and carbon monoxide contents. 

3.1. Descriptive Statistics 

Table 1. Descriptive Statistics. 

STATISTIC TAR NICOTINE WEIGHT 

Mean 12.216 0.8764 0.9703 

Standard Error 1.1332 0.0708 0.0175 

Median 12.8 0.9 0.9573 

Standard Deviation 5.6658 0.3541 0.0877 

Sample Variance 32.1014 0.1254 0.0077 

Kurtosis 2.9515 4.1604 0.4234 

Skewness 0.7567 0.9690 0.4623 

Sum 305.4 21.91 24.2571 

Count 25 25 25 

 

Table 1 describes reveal hidden statistics about the data 

used for the study, such statistics include, the mean, variance 

standard error kurtosis. Skewness and so on just to mention 

the few. The importance of all this information is to enrich 

would be policy makers, investors and academia on the 

associated properties of the data used. For example, Tar and 

carbon could be both regarded as being approximately 

normal as their Kurtosis is less than 3, Nicotine is non-

normal (Kurtosis greater than 3) as it possesses heavier tails 

compared to normal distribution. The skewness analysis 

show that the data are moderately skewed. 

Table 2. Autocorrelation function (ACF). 

Autocorrelations 

Series: y 

Lag Autocorrelation Std. Errora 
Box-Ljung Statistic 

Value df Sig.b 

1 -.567 .192 8.724 1 .003 

2 .145 .188 9.319 2 .009 

3 -.180 .183 10.283 3 .016 

4 .230 .179 11.929 4 .018 

5 -.216 .174 13.455 5 .019 

6 .099 .170 13.797 6 .032 

7 -.005 .165 13.798 7 .055 

8 -.042 .160 13.865 8 .085 

9 .137 .155 14.648 9 .101 

10 -.216 .150 16.724 10 .081 

11 .222 .144 19.082 11 .060 
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Autocorrelations 

Series: y 

Lag Autocorrelation Std. Errora 
Box-Ljung Statistic 

Value df Sig.b 

12 -.043 .139 19.177 12 .084 

13 -.084 .133 19.580 13 .106 

14 -.088 .127 20.064 14 .128 

15 .156 .120 21.746 15 .115 

16 -.018 .113 21.771 16 .151 

a. The underlying process assumed is independence (white noise). 

b. Based on the asymptotic chi-square approximation. 

Table 3. Partial Autocorrelation function (PACF). 

Partial Autocorrelations 

Series: y 

Lag Partial Autocorrelation Std. Error 

1 -.567 .204 

2 -.260 .204 

3 -.355 .204 

4 -.077 .204 

5 -.194 .204 

6 -.205 .204 

7 -.094 .204 

8 -.218 .204 

9 .060 .204 

10 -.188 .204 

11 .003 .204 

12 .242 .204 

13 -.008 .204 

14 -.095 .204 

15 -.096 .204 

16 -.006 .204 

 

Critical evaluation of the features exhibited by both ACF 

and PACF reveal that they contain 16 lags each, they slowly 

reduced exponentially. these features could be linked to the 

presence of multicollinearity or long memory in the series 

under study.  

Fararr-Glauber Test 

3.1.1. Chi-square Test 

1 0.98 0.49

0.98 1 0.50

0.49 0.50 1
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( ) 0.05ijDet r =  

log 0.05 3.00e = −  

2 66.51calculatedχ = 2
0.053 7.82χ =  

Since 
2 2

0.053 i.e 66.51>7.83calculatedχ χ> . Therefore, 

multicollinearity exists. 

3.1.2. F − Test 

Next is to carry out F −  test to determine variable (s) 

causing multicollinearity 

( )1 2 3,X f X X= 1 2 2 3 3X X X Uβ β= + +  

Thus, ( ) 12
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The values obtained from the analysis for 2 3 and  are β β  
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The F − computed is 206.52 and the tabulated value of 

0.05 2,22 4.30F =  

Since F − computed is greater than F − tabulated we 

reject 0H and conclude that 1X  is inter-correlated with

2 3 and X X . 

3.1.3. t Test−  

The following hypothesis were set up 

0H : 2 3 and X X  are not responsible for multicollinearity 

1H : 2 3 and X X are responsible for multicollinearity 

The value of T obtained from the analysis is 17.31, while 

the table value was 2.07. 

Since computed value of T is greater than table value of T , 

we can conclude that 2 3 and X X  are responsible for 

multicollinearity. 

3.2. Variance Inflation Factor 

The following values were obtained for VIF based on the 
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computer analysis.  

Table 4. Parameters estimation and variance inflation factor. 

Model 
Unstandardized Coefficients Standardized Coefficients 

t Sig. 
Correlations Collinearity Statistics 

B Std. Error Beta Zero-order Partial Part Tolerance VIF 

1 

(Constant) 3.202 3.462  .925 .365      

Tar .963 .242 1.151 3.974 .001 .957 .655 .247 .046 21.631 

Nicotine -2.632 3.901 -.197 -.675 .507 .926 -.146 -.042 .046 21.900 

Weight -.130 3.885 -.002 -.034 .974 .464 -.007 -.002 .750 1.334 

a. Dependent Variable: Carbon Monoxide         

 

Table 4 above shows the value for 0 ,β 1,β 2β  and 3β  

with its VIF value. From VIF value for Tar and Nicotine i.e 

X1 and X2 the value on the table is more than 10 which 

means multicollinearity exist. 

Variable Selection Method 

Existence of multicollinearity was established as shown in 

the above table 1, the next thing is how to correct it. To 

correct the existence of multicollinearity in the study, 

variable 3, 2X (Nicotine) was removed and the new VIF 

checked. 

Table 5. New results obtained after excluding 2X
.
 

Model 
Unstandardized Coefficients Standardized Coefficients 

T Sig. 
Correlations Collinearity Statistics 

B Std. Error Beta Zero-order Partial Part Tolerance VIF 

1 

(Constant) 3.114 3.416  .912 .372      

Tar .804 .059 .961 13.622 .000 .957 .946 .838 .759 1.317 

Weight -.423 3.813 -.008 -.111 .913 .464 -.024 -.007 .759 1.317 

a. Dependent Variable: Carbon Monoxide 

Table 5 showing the values for 0 ,β  1β and 3β  with its VIF value. From VIF value for 1 3 and X X  the values obtained 

indicated that multicollinearity has vanished as none of VIF is up to 10. 

Table 6. Compared the results obtained before and after dropping variable 2X
. 

 β0 β1 β2 β3 Remark 

Multicollinearity with all variables 

Standard error 

Variance Inflation factor 

3.202 
(3.416) 

0.963 

(0.242) 

*21.631 

-2.632 

(3.901) 

*21.900 

-0.130 

(3.885) 

*1.334 

Presence of multi-collinearity 

( 1X and 2X ) 

Multicollinearity When 2X was excluded 

Standard error 

Variance Inflation factor 

3.114 

(3.416) 

0.804 
(0.059) 

*1.317 

 
-0.130 
(3.813) 

*1.317 

Multicollinearity disappeared. 

 
Table 6 above pooled together and compared the results 

obtained before and after variable 
2X was excluded coupled 

with parameters estimate and standard errors. It is glaring 

that after the exclusion of the variable 
2X  the model 

becomes multi-collinearity free which fulfills the mission of 

the study. 

4. Summary and Conclusion  

So far, so good the study examines the descriptive nature 

of the series. Both the ACF and PACF decay exponentially 

establishing the fact that the series contain element of 

multicollinearity or long memory. Farrar-Glauber and 

variance information confirm the existence of 

multicolllinearity. Having established this variable 
2X was 

excluded and test re-conducted which after the analysis 

indicated that the multicollinearity earlier noticed had 

disappeared the preciseness of VIF made it to be preferred to 

Farrah-Glauber test. In line with the above assertion the use 

of Variance Inflation Factor is more preferred to Farrah-

Glauber method. As VIF not only detected but also pointed to 

the direction of the problem. 
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