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Abstract: Calculations of the energy levels of atoms and ions with Z ≤ 10 are carried out in this paper using a new wave 

function including a new method to calculate the correlation factor taking into account spherical harmonics through 

hypergeometric functions to calculate (1s22s) 
2
S

e
, (1sns2) 

2
S

e
, (1s2sns) 

2
S

e
 and (1s2snp) 

2
P

O
 states. The calculations concern 

the total energy, kinetic energy, Coulomb interaction between the atomic nucleus and the three electrons and the Coulomb 

interaction between electrons. The results that we have obtained confirm that a relatively theoretical procedure could be used 

for adequate calculations and understanding of electron correlation effects in doubly excited three- electron states. These 

results are in compliance with some experimental and theoretical data. 
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1. Introduction 

In recent years, the importance of electron-electron 

interaction has been widely recognized during multi-

excitation and multi-ionization processes. The study of 

doubly excited He-like systems (ideal for tackling the 

Coulomb problem with three bodies) made it possible to 

clarify the theoretical discussions related to the energy 

position of excited levels and to check the reliability of multi-

configuration type calculations [1-4]. Systems with three 

excited electrons (four-body Coulomb problem) are more 

difficult to deal with. The study of states with three excited 

electrons, first carried out on the He- ion after diffusion of 

electrons on helium atoms [5], made it possible to observe the 

(2s
2
2p)

2
P

0
 and (2s2p

2
) 

2
D

e
 identified at l using the theoretical 

results of Fano and Cooper [6]. Subsequently, it was easier to 

start from the lithium atom (with three electrons) than to 

previously capture an electron on He [7, 8]. In addition, the 

lithium atom constitutes an excellent system for study the 

four-body Coulomb problem. With this atom, the accent was 

put on the creation of hollow ionic states by ionization-

excitation in layer K [6, 9-11]. Likewise, the effect of the 

term 1 / rij, which describes the electrostatic repulsion 

between the electrons, is very important: Consider for 

example the case of the Helium atom. If we neglect it, we 

find for the fundamental level an energy of -108.8 eV (2 

electrons subjected to Z=2) instead of -79eV for the 

experimental value (corresponding to the energy of double 

ionization of this atom). This same calculation leads to an 

energy value of simple ionization of the atom of 54.4 eV to 

compare with the experimental value of 24.6 eV. We must 

therefore take this term into account. It’s for this reason we 

have chosen a wave function of lesser terms which mainly 

takes into account this interaction. According to the 

calculations, we see that: the radial correlation expectation 

values 1/rij of three electron systems increase when Z 

increases, as is the case for two electron systems [12-15]. The 

ratios and the differences with respect to the results of Uptal 

and Talukdar [12] are practically constants. And for the same 

atomic systems, 1/r12 in the lithium-like ions (3.44 Rydbergs 

in the case of Li for example) is greater than that of the 

corresponding helium-like ions (3.2 Rydbergs for Li
+
). This 
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result indicates that the two electrons in the 1s
2
 

2
S

e
 closed 

shell core are closer to each other compared to the two 

electrons in the corresponding helium isoelectronic series. 

This points out that, in the ground state, the electron-electron 

effects due to the third electron, decreases the probability of 

the two electrons in the 1s
2
 

2
S

e
 closed shell core to go far 

away, and far away from each other, when increasing the 

charge number Z. 

2. Wave Functions and Calculations 

Schrödinger equation for the Li-like atom and its 

isoelectronic series attracted a considerable amount of effort. 

Lithium isoelectronic sequence serve as prototypes for alkali 

metal atoms and alkaline earth cations [16]. They are a good 

test for ab-initio calculation methods. Similarly, Hylleraas-type 

wave functions containing rij factors have been widely used in 

atomic physics to study the correlation effects between 

electrons and / or between electrons and the nucleus for bound 

and scattering states [17]. The first calculations on the 

fundamental state of lithium were made by Eckart [18], 

Guillemin and Zener [19], Wilson [20], and James and 

Coolidge [21, 22]. 

Since then, the ground state energy of Lithium has been 

carried out by Weiss [23], Muszynska et al. [24], King et al. 

[25-27], McKenzie and Drake [28], Luchow and Kleindienst 

[29], and Yan et al. [30, 31]. All these studies, except that of 

Weiss [23], use Hylleraas-type wave functions, of several 

terms ranging from 100 terms [32] to 3502 terms [31]. The use 

of Hylleraas-type wave functions have led to fairly precise 

results in various branches of atomic physics. The new special 

wave functions containing fewer terms used in this work is 

defined by: 

( ) ( ) ( ) ( )3 3

1 1 2 2 3 3

n - -1N-L-1
-2 2 2 2

0 3 0 3 jkm j'k'm' 12 13 23

=0 =0

, , , ', k',m' = (N r L) (n r ) C + C  e
r r rJ K Mj k m j x r r r

α α αγ ν

γ ν
ψ + +

  
 
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∑ ∑

ℓ
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Where J+K+M ≤ Ω, Ω is a positive integer number which 

determines the expansion length N; α1, α2, α3 are a nonlinear 

parameter r1, r2 and r3 are the coordinates of electrons with 

respect to the nucleus, ℓ1, ℓ2, ℓ3 are respectively the orbital 

angular moments of the three electrons. Cjkm and Cj’k’m’ are 

parameters to be determined, r0 is Bohr radius. L=ℓ1 + ℓ2, 

N=n1+n2. J=j+j’, K=k+k’ and M=m+m’. The resonance 

parameters are determined by finding a rate of change which is 

stable with respect for the non-linear parameters α1, α2, α3. 

According to the calculation of correlation coefficients, 

proposed by Varshalovich D. A et al. [33], we found a new 

formula that is proposed by Gning et al. [34]: 
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The hypergeometric wave function defined by Samarskogo [35]
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Replacing equation (4) with its value in equation (3) 
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So equation (5) becomes 
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2
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And remplacing equation (6) in equation (2) 
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We obtain: 
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Where  
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m
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represent the spherical harmonics of electron i or j. 

Which ( , )i i iθ ϕΩ = , ( , )j j jθ ϕΩ =
 

and i, j=1, 2, 3. For a given angular momentum L, the angular coupling for the three 

electrons is: (ℓ1, ℓ2, ℓ3)=(0, 0, 0)A for S states and  

0,0 0,0

1
( ) ( )

4
i jY Y

π
Ω Ω =                                                                                (12) 

(ℓ1, ℓ2, ℓ3)=(0, 0, 1)A (0, 1, 0)B for P states, 

1, 1 1, 1 1,0 1,0 1,1 1,1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )i j i j i j i jY Y Y Y Y Y Y Y∗ ∗ ∗
− −Ω Ω = Ω Ω + Ω Ω + Ω Ω
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by replacing the values of the spherical harmonics of e- i or j, we obtain: 
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(ℓ1, ℓ2, ℓ3)=(0, 0, 2)A (0, 1, 1)B for D states,

 

( )2 22 2 2

, , 9/2

75 3cos 1 sin15sin sin 15cos sin sin
( ) ( ) ( ) ( )

16 8 2

i ji j i i j

i j m i m j

m

Y Y Y Y
θ θθ θ θ θ θ

π π π
∗

=−

−
Ω Ω = Ω Ω = − −∑

ℓ

ℓ ℓ ℓ ℓ

ℓ

              (16) 



29 Boubacar Sow et al.:  Correlation Factor Taking into Account Spherical Harmonics Through Hypergeometric  

Functions to Calculate Energies of Li-Like Ions 

The non-relativistic Hamiltonian complex of three-electron atomic systems is written in the form (in atomic units): 

3 3 3
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2
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In equation (17), T is the kinetic energy; C is the Coulomb interaction between the atomic nucleus and the two electrons and W 

is the Coulomb interaction between electrons. Where the Laplacian is written in the form: 

i i ii r θ∆ = sin  = ∆ + ∆ + ∆
sin sin

ϕθ
θ θθ θ ϕ

   ∂ ∂ ∂ ∂ ∂+ +   ∂ ∂ ∂ ∂ ∂   

2
2

2 2 2 2 2

1 1 1
i i

i i i ii i i i i i

r
r rr r r

                                    (18) 

 

sin
sin

 
sin

θ

ϕ

θ
θ θθ

θ ϕ

  ∂ ∂=  ∂ ∂  


 ∂ ∂ =   ∂ ∂ 
 ∂ =
 ∂

i

i

i

r i
i ii

i
i ii i

i i i

r
r rr

r

r

2

2

2

2

2 2 2

1
∆

1
∆

1
∆

                                                                      (19) 
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The normalization constant: 

( ) ( ), , , ',k',m' , , , ', k', m' , , , ', k',m'j k m j j k m j j k m jψ ψ=N                                         (23) 
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With 
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π π
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and i=1, 2, 3. 

3. Results and Discussions 

In our calculations, we set the dimension Ω to 4 for the 

(1s
2
2s) 

2
S

e
 and (1s

2
2p) 

2
P

0
 states and α1=α2=4.255, α3=5.400 

Ω=3 for the 1s3s
2
, 1s4s

2
 states and α1=6.754, α2=7.350, 

α3=5.403. Similarly α1=0.25 for the (1s2sns) 
2
S

e
 states and Ω=4 

for the (1s2snp) 
2
P

0
 α1=α2=α3=2.600. Ω=3 for the (1s2sns) 

2
S

e
 

and (1s2snp) 
2
P

0
 (n ≤ 3) and α1=4.250, α2=8.550, α3=7.855. 

After having fixed these parameters, we have Based on the 

processing of the calculations and energy conversion of 1 a. 

u.=2Ry=27.211385 eV was used. 

Table 1 lists and compare our results for the (1s
2
2s) 

2
S

e
 and 

(1s
2
 2p) 

2
P

0
 states of the lithium-like ions compared to the 

Hylleraas results (HR), the multiconfiguration Hartree-Fock 

(MCHF) and configuration interaction (CI). 

The lithium ground-state isoelectronic sequence was 

investigated Perkins [36], and by Ho [17] using Hylleraas 

coordinates and calculations on the lithium isoelectronic 

sequences for some low-lying excited S states were carried out 

by King [37-38]. 

Chung, Zhu, and Wang [14] calculated isoelectronic 

sequences for some low-lying excited states using a full core 

plus correlation (FCPC) method. And I. sakho [46] using 

Screening Constant by Unit Nuclear Charge (SCUNC). 

Regarding the total energy, comparison shows that our results 

agree well with all auteurs. 

Table 2, Table 3, Table 4 show the results of targeted energy 

(1sns
2
) 

2
S

e
, (1s2sns) 

2
S

e
, (1s2snp) 

2
P

0
. All result shows the 

relatively good accuracy obtained for the values of the energies 

of atomic systems studied in this work. We can notice that the 

kinetic energy T and the correlation energy between the two 

electrons W increase with the nuclear charge number Z, and 

decrease when the principal quantum number n increases. 

These results point out that the electron correlation effects in 

the doubly excited states induce the decrease of the probability 

of electrons to be near the nucleus, as mentioned by Arias de 

Saavedra et al. [39]. 

Comparisons of our results concerning the total and 

excitation energies of the (1s2sns) 
2
S

e
 and (1s2snp) 

2
P

0
 (n ≤ 3) 

levels of Li-like ions (Z ≤ 6) with other theoretical values [14] 

and experimental data [40, 15] are given in Tables 5. 

Regarding the comparison with the results of Bhatia [14] listed 

in Table 5, the ratios between the present total energy 

calculation (E
a
) and that of Bhatia [14] (E

P
) are practically 

constants and equal to E
a
/E

P
 ≈ 1.00. This may indicate the 

good agreement between the present calculation and the 

quasiprojection operator results of Bhatia. 

In the same way, considering the results quoted in Table 6, it 

is seen that the energy ratios between the present calculation and 

that of Erkoç and Jansen [40] and of David and Chung [15] are 

practically constant and respectively equal to E
c
/E

P
 ≈  1. 

These ratios point out the good agreement between our results 

and that of Erkoç and Jansen [40] using a density functional 

theory and that of David and Chung [15] employing the 

complex rotation method. Therefore, it should be mentioned 

that our results are most close to the density functional results 

of Erkoç and Jansen [40]. 

Table 1. Comparison of our results in the calculation of total energy of the (1s22s) 2Se and (1s22p) 2PO doubly excited states in the lithium-like ions. The energies 

are expressed in Rydbergs. 

Author Method Ref -E (1s22s) 2Se -E (1s22p) 2PO 

  Li   

Present work   14.955490 14.8204196 

Chung and Zhu FCPC [42] 14.956119 14.8203156 

Pipin and Bishop CI-HR [43] 14.956120 14.8203108 

Tong et al. MCHF [44] 14.956121 14.8203062 

Yan and Drake HR [41] 14.956120 14.8203130 

Pestka and Woznicki CI-HR [45] 14.9561202 14.8203118 

  Be+   

Present work   28.650490 28.357542 

Chung and Zhu FCPC [42] 28.649522 28.358664 

I. sakho SCUNC [46] 28.650495 29.273420 

Perkins HR [36] 28.649140  

Ho HR [17] 28.649392  

King HR [37] 28.649520  

  B2+   

Present work   46.85536 46.56737 

Chung and Zhu FCPC [42] 46.84920 46.40888 

I. sakho SCUNC [46] 46.85548 64.29986 

Perkins HR [36] 46.84872  

Ho HR [17] 46.84904  

  C3+   

Present work   69.56203 68.9620343 

Chung and Zhu FCPC [42] 69.55101 68.9641964 

Perkins HR [36] 69.55044  
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Author Method Ref -E (1s22s) 2Se -E (1s22p) 2PO 

I. sakho SCUNC [46] 69.56245  

Ho HR [17] 69.550836  

  N4+   

Present work   96.76975 96.026472 

Chung and Zhu FCPC [42] 96.75378 96.022096 

Perkins HR [36] 96.75314  

I. sakho SCUNC [46] 96.76951  

Ho HR [17] 96.75359  

  O5+   

Present work   128.476310 127.586316 

Chung and Zhu FCPC [42] 128.457077 127.581463 

Perkins HR [36] 128.45638  

I. sakho SCUNC [46] 128.476180  

Ho HR [17] 128.456870  

  F6+   

Present work   164.68247 162.9982479 

Chung and Zhu FCPC [42] 164.66066 163.6417488 

King HR [38] 164.660672  

  Ne
7+   

Present work   205.3882100 203.7658217 

Chung and Zhu FCPC [42] 205.3644556 204.2026316 

I. sakho SCUNC [46] 205.3881396  

King HR [38] 205.364458  

Table 2. Total energy and excitation energy of the (1sns2) 2Se doubly excited states of three electron systems up to Z=10 (in Ryd). The excitation energies are 

calculated with respect to the ground state of the corresponding system. 

    -E     

Z 3 4 5 6 7 8 9 10 

(1sns2) 2Se
         

1s2s2 10.8104 20.0884 32.4401 48.0874 66.5243 87.9402 112.5540 139.7926 

1s3s2 9.8031 17.8987 28.2989 41.3667 55.7858 74.5286 93.87265 118.4367 

1s4s2 8.9504 17.0544 26.9076 38.0735 53.3674 68.9687 88.8221 109.9467 

Table 3. Total energies of (1s2sns) 2Se doubly excited states in the Li-like ions. The energies are expressed in rydbergs. 

    -E     

Z 3 4 5 6 7 8 9 10 

ns         

2s 10.7973 19.8935 32.4376 48.0376 67.02571 87.3235 112.9873 139.0435 

3s 10.3188 18.5437 32.4517 44.7643 61.6572 81.2256 102.9876 128.0236 

4s 10.0092 18.3457 29.7732 43.5297 59.9273 78.9217 100.6759 124.9876 

5s 10.0588 18.0281 27.4857 40.3275 57.2329 76.8892 99.3456 122.9843 

6s 10.2201 18.2854 30.2046 42.4675 57.4578 75.7683 97.5678 122.6753 

7s 10.8546 17.9876 29.0276 41.4597 59.7654 76.9745 97.4567 120.8796 

8s 9.98745 16.5498 28.9764 42.3287 58.2345 77.0897 97.3476 119.7654 

9s 9.9586 18.3457 29.0146 42.3234 58.9876 76.0345 97.0237 119.4357 

10s 9.9545 18.2904 26.9875 42.0987 58.0675 76.4216 96.4568 119.0345 

Table 4. Total energies of (1s2snp) 2PO doubly excited states in the Li-like ions. The energies are expressed in rydbergs. 

    -E     

Z 3 4 5 6 7 8 9 10 

np         

2p 10.5687 19.7765 33.0987 45.7895 65.8976 86.9243 111.1765 138.3476 

3p 10.3245 19.2098 31.8765 44.0987 62.7658 82.0985 107.4877 134.5568 

4p 10.2457 18.9987 30.0756 43.4908 60.3452 79.0983 102.4758 127.8764 

5p 10.1945 18.5432 29.7457 43.2357 59.8796 78.7895 101.8763 123.7543 

6p 10.0087 18.3476 29.4356 43.1765 59.5678 78.2187 100.0245 122.9876 

7p 9.9876 18.1298 29.3457 43.0547 59.3298 77.7865 99.3457 122.5678 

8p 9.7843 18.0325 29.1045 42.9754 59.1204 77.3495 98.7568 122.3457 

9p 9.6543 17.9876 29.10134 42.5467 58.9873 77.2175 98.2963 122.0453 

10p 9.5432 17.7463 28.9457 42.3457 58.7595 77.05473 98.1134 121.8769 
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Table 5. Comparison of our results in the calculation of total energy of the (1s2sns) 2Se and (1s2snp) 2Po (n ≤  3) doubly excited states in the lithium-like ions (Z ≤  

6). The energies are expressed in Rydbergs. 

  Present work Bathia Rapport* Ea/Ep 

Systeme (1s2snl) 2L̟ -E (1s2snl) 2L̟ -E (1s2snl) 2L̟  

 (1s2s2s) 2Se 10.7973 10.8090 1.001083 

Li (1s2s3s) 2Se 10.3188 10.2945 0.997645 

 (1s2s2p) 2PO 10.5687 10.6214 1.004986 

 (1s2s3p) 2PO 10.3245 10.3636 1.003787 

 (1s2s2s) 2Se 19.8935 20.2459 1.017714 

Be+ (1s2s3s) 2Se 18.5437 19.1593 1.033197 

 (1s2s2p) 2PO 19.7765 19.9138 1.006942 

 (1s2s3p) 2PO 19.2098 19.1200 0.995325 

 (1s2s2s) 2Se 32.4376 32.6829 1.007562 

B2+ (1s2s3s) 2Se 32.4517 30.6716 0.945146 

 (1s2s2p) 2PO 33.0987 32.2058 0.973023 

 (1s2s3p) 2PO 31.8765 30.6127 0.960353 

 (1s2s2s) 2Se 48.0376 48.1209 1.001734 

C3+ (1s2s3s) 2Se 44.7643 44.7249 0.999119 

 (1s2s2p) 2PO 45.7895 47.4970 1.037290 

 (1s2s3p) 2PO 44.0987 44.8103 1.016136 

p Present work. 
a A. K. Bhatia [14]. 

Table 6. Comparison of our results in the calculation of total energy of the (1s2s2p) 2Po level in the lithium-like ions with other literature values. The results are 

expressed in Rydbergs. 

Z Present work Erkoç and Jansen  David and Chung  Rapport Rapport 

 -EP -Ec -Ee Ec/Ep Ee/Ep 

3 10.5687 10.59664 10.73696 1.002643655 1.015920595 

4 19.7765 19.90236 20.13696 1.006364119 1.018226683 

5 33.0987 32.21030 32.54492 0.973159066 0.983268829 

6 45.7895 47.52198 47.96012 1.037835748 1.047404317 

7 65.8976 65.83988 66.38402 0.999124095 1.007381452 

8 86.9243 87.16696 87.81906 1.002791624 1.010293554 

9 111.1765 111.50664 112.2684 1.002969512 1.009821320 

10 138.3476 138.86268 139.7358 1.003723085 1.010034145 

P Present work. 
c S. Erkoç and H. J. F. Jansen. [40]. 
e B. F. David and K. T. Chung. [15]. 

Figures 1-3 show the plots of the energy E=f (αi; D) as a 

function of the parameter αi and the dimension D. 

 

Figure 1. Plots E=f (αi) of the energy E in terms of the variation parameter α 

for the dimensions 2, 3, 4, 5 of the Li-like ions (1s4s2) 2Se state. The close 

similarity of the plots for D=4 and D=5 shows the convergence of the minima 

when D=5. 

 

Figure 2. Plots E=f (αi) of the energy E in terms of the variation parameter α 

for the dimensions 3, 4, 5, 6 of the Li-like ions (1s2s2p) 2PO state. The close 

similarity of the plots for D=4 and D=5 shows the convergence of the minima 

when D=5. 
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Figure 3. Plots E=f (α) of the energy E in terms of the variation parameter α 

for the dimensions 2, 3, 4, 6 of the Li-like ions (1s2s2s) 2Se state. The close 

similarity of the plots for D=4 shows the convergence of the minima when D=4. 

These plots concern the lithium atom and are performed for 

the (1s4s
2
) 

2
S

e
, (1s2s2p) 

2
P

O
 and (1s2s2s) 

2
S

e
 states. 

A good approximation for the eigenvalues is obtained 

when the minima of the functions (dE/dαi=0) converge with 

increasing values of D and when the functions exhibit a 

plateau. As long as the functions exhibit no plateau and as 

long as the minima of the functions do not converge with 

increasing values of D, one has not yet found a good 

approximation. 

In our calculations the exhibition of a plateau and the 

convergence of the minima arise when D=4. This could be 

seen from the figures where there is a close similarity of the 

plots for D=4 and D=5. This similarity could be explained by 

the relatively weak contribution of the configurations (0, 0, 0); 

(0, 0, 1); (1, 0, 0) to the calculations of the eigenvalues. 

It is important to notice that we have obtained a good 

approximation for the eigenvalues with a relatively small 

dimension of the basis (D=4). Using atomic systems with three 

electrons and using bases as weak as possible for systems, we 

can observe convergence with very small dimensions. So these 

results is in good agreement with one aspect of electron 

correlation and the resemblance of the atomic levels to the 

rotational spectrum of Li-like ions. 

4. Conclusion 

With a relatively small dimension of the basis functions and 

using Hylleraas-type wave functions, we have obtained a 

quantitative and qualitative estimation of electron correlation 

effects for the ground-state and for doubly excited states of the 

Lithium-Like ions. It has been demonstrated the possibilities to 

use a new correlated wave function in the study of (1s
2
2s) 

2
S

e
, 

(1sns
2
) 

2
S

e
, (1s2sns) 

2
S

e
 and (1s2snp) 

2
P

O
 doubly excited states 

in the Lithium-like ions. 

Thus, a new correlated wave function is performed and results 

obtained are shown by the comparison with various available 

theoretical literature values. One can notice that, the merit of the 

basis functions is to give the possibilities to calculate accurate 

energies for doubly excited states in three electron systems using 

separately the kinetic energy, the Coulomb potential and the 

Coulomb interaction between electrons. We will also note the 

fact that the theoretical calculation of the different terms of the 

disturbance Hamiltonian poses a real complex problem due to 

the heaviness of the mathematical formalism implemented. One 

of the merits of this method is to be able to get around these 

mathematical difficulties by a separate calculation of the 

different terms of the Hamiltonian which leads to very precise 

results. Thus our results can be used in a wide field, which goes 

from the physics of plasmas in intense laser field to atomic and 

molecular dynamics in femto second regime (1fs=10
-15

s) in 

infrared (IR). The latter field has experienced considerable 

development in the last decade, it is in fact linked to the 

technique of frequency drift amplification (Chirp Pulse 

Amplification) which generates very short intense pulses in the 

IR domain; a crucial technological advance which in 2018 won 

the Nobel Prize in Physics for Gérard Mourou and Donna 

Strickland. 
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