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Abstract: Over the years, the Quadrature Algorithm as a method of solving initial value problems in ordinary differential 

equations is known to be of low accuracy compared to other well known methods. However, It has been shown that the method 

perform well when applied to moderately stiff problems. In this present study, the nonlinear method based on the Heronian 

Mean (HeM), of the function value for the solution of initial value problems is developed. Stability investigation is in 

agreement with the known Trapezoidal method. 
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1. Introduction 

Ordinary differential equations are the major form of 

mathematical model occurring in Science and Engineering, 

and, consequently, the numerical solution of differential 

equations is a very large area of research. The advent of 

computers has tremendously revolutionized the type and 

variety of numerical methods over the past three decades and 

these methods are applied to solve mathematical problems. 

Several methods have been developed using the idea of 

different means such as the geometric mean, centroidal mean, 

harmonic mean, contra-harmonic mean and the heronian 

mean. The three stage method based on the harmonic mean 

and a multi-derivative method using the usual arithmetic 

mean were developed respectively [1] and [2]. Also, a third-

order method based on the geometric mean was presented 

[3]. But a fourth-order method based on the harmonic mean 

was introduce [4] while the fourth-order method which is an 

embedded method based on the arithmetic and harmonic 

mean was constructed [5] The comparison of modified 

Runge-Kutta methods based on varieties of means was 

studied [6]. The New 4TH Order Hybrid Runge –kutta 

methods for solving Ivps in ODEs was investigated [7]. In 

the paper, a new 4th Order Hybrid Runge-Kutta method 

based on linear combination of Arithmetic mean, Geometric 

mean and the Harmonic mean to solve first order initial value 

problems (IVPs) in ordinary differential equations (ODEs). 

The trapezoidal rule for the numerical integration of first-

order ordinary differential equations is shown to possess, for 

a certain type of problem, an undesirable property. The 

removal of this difficulty is shown to be straightforward, 

resulting in a modified trapezoidal rule. Whilst this latent 

difficulty is slight (and probably rare in practice), the fact that 

the proposed modification involves negligible additional 

programming effort would suggest that it is worthwhile. A 

corresponding modification for the trapezoidal rule for the 

Goursat problem is also included.[8]presented a nonlinear 

trapezoidal formula for the solution of the Goursat problem. 

The new scheme implements the harmonic mean (HM) 

averaging of the functional values rather than the arithmetic 

mean (AM) or the geometric mean (GM) averaging. A 

comparison is made with the existing techniques, and the 

results obtained show better approximations related to the 

accuracy level in favor of the HM strategy. [9] considereda 

Third Runge-Kutta Method based on a Linear combination of 

Arithmetic mean, harmonic mean and geometric mean..[10] 

derived theRunge-Kutta methods based on averages other 

than the arithmetic mean is on the rise. In this paper, the 
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authors propose a new version of explicit Runge-Kutta 

method, by introducing the harmonic mean as against the 

usual arithmetic averages in standard Runge-Kutta schemes. 

The a nonlinear mid-point rule formula based on geometric 

means (GM) for the numerical solution of differential 

equations ( , )y f x y′ =  was presented [11] with supporting 

numerical results. However, the New fifth order weighted 

Runge –kutta methods based on the Heronian mean for initial 

value problems in ordinary differential equations was 

developed and implemented [12]. In the paper Comparisons 

in terms of numerical accuracy and size of the stability region 

between new proposed Runge-Kutta(5,5) algorithm, Runge-

Kutta (5,5) based on Harmonic Mean, Runge-Kutta(5,5) 

based on Contra Harmonic Mean and Runge-Kutta(5,5) 

based on Geometric Mean where also investigated. 

We consider the numerical solution of the initial value 

problems. 

0 0( , ) ( )v f u v y x v′ = =                  (1) 

In the region of 0x x X≤ ≤ . 

Numerical integration as the process of finding the value 

of a definiteintegral, 

( )

b

a

I f u du= ∫                             (2) 

With a u b≤ ≤ An approximate value of the integral is 

obtained by replacingthe function by an interpolating 

polynomial. Thus, different formulas for numericalintegration 

would result for different interpolating formulas. In this case, 

the Newton’s forward difference formula shall be applied. 

The interval [a, b] is dividedinto nequal subintervals:

0 1 2 ... na u u u u b= < < < = . 

With 1n nu u h+ − =  then (2) becomes: 

0

( )

nu

u

I f u du= ∫                                    (3) 

Suppose 0u u rh= +  and du hdr= 0nu u nh= +  

Makinga change of variable from uto 0:r u u rh= +  

The integral(3) becomes, 

0

0

0 0

0

( ) ( )

u nh n

u

I f u rh hdr h f u rh dr

+

= + = +∫ ∫            (4) 

Approximating 0( ) ( )f u f u rh= +  by the Newton’s 

forward difference formula. 

Then, from equation (4), and setting ( )v f u= : 

2 3
0 0 0 0

0

( 1) ( 1)( 2)
[ ...]

2 6

n
r r r r q

I h u r u u u dr
− − −= + ∆ + ∆ ∆ +∫  (5) 

Integrating (5) and substituting the limit of integration 

gives: 

2 3
0 0 0 0

0

42 4 3 2
2 3 0

0 0 0 0

( 1) ( 1)( 2)
[ ...]

2 6

(2 3) ( 2) 3 11
3 ...

2 12 24 5 2 3 4!

n
r r r r q

I h u r u u u dr

un n n n n n n n
nh u u u u n

− − −= + ∆ + ∆ ∆ +

   ∆− −= + ∆ + ∆ + ∆ + − + − +      

∫
                  (6) 

One of the methods in literature for solving (1) is the 

trapezoidal rule. This is obtained by settingn equal to 1, and 

takes the curve between two consecutive points as linear. 

Thus, we terminate the sequence on the right in equation (6) 

at the linear term as the higher difference terms
2 3

0 0( , , )u u∆ ∆ etcwould be zero. Then, 

The Trapezoidal rule for the solution of (1) is given as: 

1 1 1[ ( , ) ( , )]
2

n n n n n n

h
y y f u v f u v+ + += + +       (7) 

where h is the mesh length in the u direction. 

2. Materials and Methods 

The numerical algorithm (7) is a one-step implicit method 

that has the desirable features of performing well when 

applied to stiff problems and also being A-stable method 

[13]. In another approach [14], the nonlinear equivalent of 

the trapezoidal formula (7), referred to as the geometric 

mean(GM) Euler formula was derived [13]. The result 

reveals that for certain function ( )xλ , the stability 

requirement imposes certain  

1[ ( )] ( )] 4n nh x xλ λ +− ≤  

restrict the step length to lie in the interval: 

1
10 4[ ( ) ( )]n nh x xλ λ −

+< ≤ −  

This is a big challenge.[8]developed an alternative strategy 

to circumvent this challenge by replacing (1) by: 

1 1 1 1

2 2

[ ( , ) ( , )]
2

n n n n
n n

h
y y f u v f u v+ ++ +

= + +  

Similarly the approach [8], the effect of the nonlinear 

formula based on the geometric mean instead of the 
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arithmetic means (AM) in the trapezoidal formula (1). was 

demonstrated [14] Instead of (7) they considered the 

geometric mean (GM) formula was  

1 1( ) ( )n n n ny y h f u f u+ += +               (8) 

Due to the modification to [8], it gives a better accuracy 

when applied to certain problems.  

In this present paper, the Arithmetic mean (AM) (7) and 

the Geometric Mean (GM) in (8)arereplaced by the Heronian 

Mean (Mean) as: 

1 1 1 1 1( , ) ( , ) ( , ) ( , )
3

n n n n n n n n n n

h
v v f u v f u v f u v f u v+ + + + + = + + +

                                          (9) 

The method (9) above is implicit with high order. 

It is truly preferable to write (9) as: 

( 1) ( ) ( )
1 1 1 1 1( , ) ( , ) ( , ) ( , )

3

i i i
n n n n n n n n n n

h
v v f u v f u v f u v f u v+

+ + + + +
 = + + +
  

                                (10) 

The starting value (1)
0v is obtained by an implicit formula, e.g., the Euler formula. Thus, Solving for 1nv +  in: 

1 1 1 1 1( , ) ( , ) ( , ) ( , )
3

n n n n n n n n n n

h
v v f u v f u v f u v f u v+ + + + + = + + +

   

Define: 

( 1) ( ) ( )
1 1 1 1 1( , ) ( , ) ( , ) ( , )

3

i i i
n n n n n n n n n n

h
v v f u v f u v f u v f u v+

+ + + + +
 = + + +
  

 

the scheme would look like (for i= 0), 

1 0 0
1 0 0 0 1 1 0 0 0 1( 0), ( , ) ( , ) ( , } ( , )

3

h
i v v f u v f u v f u v f u v = = + + +

  
                                   (11) 

2 1 1
1 0 0 0 1 1 0 0 0 1( 1), ( , ) ( , ) ( , } ( , )

3

h
i v v f u v f u v f u v f u v = = + + +

  
                                      (12) 

This is continuing recursively until convergence is 

obtained. 

3. Results 

Stability and Convergence analysis of the New Scheme. 

In this session, the stability of (10) shall be investigated. 

The stability region largely depends on the initial value 

problem (IVP). According to [15] and[16], it should be noted 

that The condition
1 1n

n

u

u

+ < must be satisfied in order to 

determine the stability region [15] and [16]. To determine the 

stability region. To study the stability properties of method 

(11), we apply the new algorithm to the test equation 

v vλ′ = . This will yield: 

1 1 11 1
3

n n n

n n n

v v vh

v v v

λ+ + + 
= + + + 

  
              (13) 

Defining 
21n

n n
n

v
P Z

v

+ = =  We obtain: 

2 21 1
3

n n n

h
Z Z Z

λ  = + + +   

Simplifying (13) yields: 

2 23 3 0n n nZ hZ hZ hλ λ λ− − − − =  

2 3
0

3 3
n n

h h
Z Z

λ λ
λ λ

+   − − =   − −   
                   (14) 

For absolute stability, it is required that the roots: 

1nZ <  

(14) can be solved to obtain: 

2
3

4
3 3 3

2
n

h h h

Z

λ λ λ
λ λ λ

+   ± −   − − −   =
                       (15) 

2
3

1
6 2 12 4 12 4

h h hλ λ λ
λ λ λ

 +    ± − ≤    − − −   
 

                (16) 

(16) is satisfied if: 
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2
3

0
12 4 12 4

h hλ λ
λ λ

+   − <   − −   
 

This condition is satisfied if ( )uλ a negative function, 

which agrees with the present circumstance. There is no 

restriction on the meshsize as far as the solution of ( )v u vλ′ =  

is the object of consideration by using the present algorithm 

unlike in the conventional trapezoidal rule. 

4. Discussion 

In this section, we Illustrate the efficiency and suitability 

of the new computational methods discussed in this paper. 

The problems can be evaluated with different step sizes.  

Problem 1.
1

(0) 1v v
v

′ = = and the exact solution is

1

2(2 1) [0,1]u u on= +  

The results of problem 1 with different values of step sizes 

are presented in the figures below. 

 

Figure 1. The graph of 1np + against 1nz + for 0 1h .= . 

 

Figure 2. The graph of the number of iterations against 
( 1) (

1 1
i i

n ny y
+
+ +− for 

0.1h = . 

 

Figure 3. The graph of 1np + against 1nz + for 0.2h = . 

 

Figure 4. The graph of the number of iterationsagainst 
( 1) (

1 1
i i

n ny y
+
+ +− for 

0.2h = . 

 

Figure 5. The graph of 1np +  against 1nz +  for 0.3h = . 
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Figure 6. The graph of the number of iterations against 
( 1) (

1 1
i i

n ny y
+
+ +− for 

0.3h = . 

 

Figure 7. The graph of 1np + against 1nz + for 0.5h = . 

 

Figure 8. The graph of the number of iterations against 
( 1) (

1 1
i i

n ny y
+
+ +− for 

0.5h = . 

 

Figure 9. The graph of the number of iterations against 
( 1) (

1 1
i i

n ny y
+
+ +− for 

0.1 ,0.2, 0.3, 0.5h = . 

Table 1. Table of the value of
( 1) ( )

1 1
i i

n ny y
+
+ +− for 0.1h = for ten iterations. 

n 
1

( )i
ny ++++  

( 1)
1

i
ny

++++
++++  

1
1 1

( ) (i i
n ny y

++++
+ ++ ++ ++ +−−−−  

1 1 1 0.0000 

2 1.1000 1.1016 0.0016 

3 1.1909 1.1999 0.0090 

4 1.2749 1.2953 0.0204 

5 1.3533 1.3885 0.0352 

6 1.4272 1.4796 0.0524 

7 1.4973 1.5690 0.0717 

8 1.5641 1.6569 0.0928 

9 1.6280 1.7434 0.1154 

10 1.6894 1.8286 0.1392 
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Table 2. Table of the value of
( 1) ( )

1 1
i i

n ny y
+
+ +− for 0.2h = for ten iterations. 

n 
1

( )i
ny ++++  

( 1)
1

i
ny

++++
++++  

1
1 1

( ) (i i
n ny y

++++
+ ++ ++ ++ +−−−−  

1 1 1 0.0000 

2 1.2000 1.2064 0.0064 

3 1.3667 1.3993 0.0326 

4 1.5130 1.5829 0.0699 

5 1.6452 1.7596 0.1144 

6 1.7668 1.9310 0.1642 

7 1.8800 2.0980 0.2180 

8 1.9863 2.2613 0.2750 

9 2.0870 2.4215 0.3345 

10 2.1829 2.5790 0.3961 

Table 3. Table of the value of
( 1) ( )

1 1
i i

n ny y
+
+ +− for 0.3h = for ten iterations. 

n 
1

( )i
ny ++++  

( 1)
1

i
ny

++++
++++  

1
1 1

( ) (i i
n ny y

++++
+ ++ ++ ++ +−−−−  

1 1 1 0.0000 

2 1.3000 1.3140 0.014 

3 1.5308 1.5981 0.0673 

4 1.7267 1.8646 0.1379 

5 1.9005 2.1192 0.2187 

6 2.0583 2.3649 0.3066 

7 2.2041 2.6037 0.3996 

8 2.3402 2.8369 0.4967 

9 2.4684 3.0655 0.5971 

10 2.5899 3.2900 0.704 

Table4. Table of the value of 
( 1) ( )

1 1
i i

n ny y
+
+ +− f or 0.5h = for ten iterations. 

n 
1

( )i
ny ++++  

( 1)
1

i
ny

++++
++++  

1
1 1

( ) (i i
n ny y

++++
+ ++ ++ ++ +−−−−  

1 1 1 0.0000 

2 1.5000 1.5375 0.0375 

3 1.8333 1.9945 0.1612 

4 2.1061 2.4160 0.3099 

5 2.3435 2.8158 0.4723 

6 2.5568 3.2005 0.6437 

7 2.7524 3.5738 0.8214 

8 2.9340 3.9381 1.0041 

9 3.1045 4.2951 1.1906 

n10 3.2655 4.6459 1.3804 

 

5. Conclusion 

In this paper, the relevance studies in literature were 

reviewed and the gaps identified. We have also successfully 

derived the Quadrature Algorithm based on the Harmonic 

(HM). This method is an improvement over the ones in 

literature. Also, the stability investigated with the aid of a 

MATLAB. Practical applicable problems have been 

considered to test the convergence of the scheme. The results 

indicate that the New method is stable. The convergence 

analysis indicate that only a slight increase in computing time 

is needed in the analysis to give a favorable result. 
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