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Abstract: The study aimed to develop a two-dimensional numerical model of a perturbed Earth’s satellite orbit under the 

influence of the Moon. The first step was to model, numerically, the Earth-satellite orbit. The interaction was assumed to be 

first order. The basis of the model was that for two-dimensional motion, influence in the radial direction does not affect the 

motion in the tangential direction and vice versa. Based on this, the satellite’s motion was decomposed into radial and 

tangential directions. The trajectory was segmented into time intervals and the curve swept over each interval was 

approximated as a straight line with the assumption that acceleration in each interval was constant. Equations of constant 

accelerated motion were used to describe the motion of the satellite over each interval. When the model results were compared 

with the exact solution, for an elliptical orbit, they matched perfectly well over the entire orbit with a maximum relative error 

of 0.079%. When it was tested for other orbits, circular, hyperbolic, etc., it retained all of them according to theoretical 

predictions. The model was then extended to incorporate the effects of the Moon by launching the satellite at quarter, half and 

three-quarter distance from Earth to Moon. A circular orbit was used to model the effects of the Moon. The acceleration results 

of the model were compared with theoretical predictions. The corresponding errors in the acceleration for the three positions of 

launch were 0.019% and 0.20%. This showed that this model is applicable for predicting perturbated satellite orbit and it can 

be applied with any extra force to describe perturbated orbit of the satellite. It can also be used to model the trajectory of 

projectile motion, of which the exact solution is incapable of generating. Since this model gives the speed of the satellite at any 

instant, it can be applied when the orbit needs to be changed as it can be used to compute the required new speed. 
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1. Introduction 

The forces acting on an artificial satellite are responsible 

for its motion as well as its deviation from the desired orbit. 

This deviation is referred to as perturbation. Perturbation has 

detrimental effects. It alters the altitude, acceleration and 

orientation of the satellite [1]. The disturbance in motion and 

underlying causes are important to look at so that they can be 

contained since the satellite has to maintain its desired orbit 

and orientation so that it can perform its task. Since the total 

forces acting on the satellite are not fully comprehended [2-

6], accurate prediction of satellite position and orbit remains 

a continual endeavour. But also, even if known, to precisely 

express all of them mathematically, and provide an analytical 

solution is a complex task [7, 8]. In the unavailability of 

exact solutions, numerical solutions are developed as an 

alternate way of predicting the location, trajectory and the 

general behaviour of the satellite at a given instant. 

Various approaches have been used to develop numerical 

models of satellite orbit. They include; Euler’s method [9, 

10], Runge-Kutta method [10, 11], power series methods [12] 

and Lagrangian methods [13, 14] among others. The Euler, 

Runge-Kutta and power series methods are based on, or 

derived from, infinite series method. It follows that their 

accuracy depends on the truncation, that is, the larger the 

number of terms the closer the method to the exact solution. 

But there is a trade-off, as the number of terms increase the 

time taken to reach the solution elongates, making them slow. 

At the same time, when the terms are reduced, the method 

becomes faster but less accurate. Lagrangian methods, on the 

other hand, are direct, but difficult to solve [13, 14]. Thus, 

there is a need for a simple, faster and accurate numerical 

solution to model the interaction of the satellite with other 



2 Saneliso Vuyo Makhanya and Wei-Hsi Liao:  Numerical Model of Perturbated Earth’s Satellite Orbit  

 

celestial bodies which is what this study sought to address. 

2. Materials and Methods 

This work was divided into two parts. The first part was 

derivation of a two-dimensional numerical solution for the 

Earth-satellite orbit. This was then compared with the exact 

solution. The second part involved extending the numerical 

model to incorporate the effect of the Moon in the satellite 

orbit. In both cases the bodies were assumed to be coplanar. 

Maple program was used to compute and plot the output 

results. 

2.1. Derivation of the Numerical Solution of the  

Earth-Satellite Orbit 

The Earth and satellite were modelled as a system of two-

point masses, �� and ��, where the only forces were those 

due to interaction potential. In this case, the satellite orbits 

the Earth under central force motion. The numerical model of 

the orbit of satellite was based on the fact that, motion in 

two-dimensions can be modelled as two independent motions 

in each of the two perpendicular directions associated with 

radial (��� ) and tangential (��� ) directions. That is to say, 

influence in the ��� direction does not affect the motion in the ��� direction and vice versa [15]. 

In this work, only gravitational interaction between the 

two bodies was considered. This is because the exact 

solution, of a two-body system which the model was 

compared with, only uses the gravitational force. 

2.1.1. Motion in the Tangential Direction 

The trajectory of the satellite was segmented into time 

intervals and the curve swept by the satellite over each 

interval was approximated as a straight line with the 

assumption that acceleration in each interval was constant. 

This was more so because for an orbit of large radius, � → ∞, 

orbital motion taken at an infinitesimal step, defined as ∆�, 

can be approximated as a straight line. Hence, equations of 

constant acceleration motion were used over each interval. 

Also, the velocity at which the satellite was launched was 

assumed to be purely tangential. 

To derive the equations of motion for the tangential 

direction, the component of the final tangential position (��) 
of the satellite at any instant was modelled using the 

following equation 

�� = �� + ∆�	                                   (1) 

Where �� was the initial tangential position. The change in 

the tangential direction, denoted ∆�  was defined using the 

following equation. 

∆� = ∆�
�� 	                                        (2) 

This was adapted from the equation of an arc 

∆� = �∆�	                                       (3) 

Where � is the radial distance and ∆� is the infinitesimal 

length of the satellite trajectory. Here, ∆� approximates the 

arc with a straight line. 

The change between the final position (��) and the initial 

position (��) is given by, 

∆� = �� − �� = ��∆� + �
���,�∆��	                    (4) 

In this case, ��  denote the initial angular speed, ∆� denote 

the change in time and ��,�  denotes the acceleration of the 

satellite due to the Earth. Since there is no force in the 

tangential direction for a two-body system, then 

��� = ���(����,�) ⇒ 0 = ����,� 	                      (5) 

implying that, ��,� = 0. Equation (4) becomes, 

∆� = ��∆�	                                      (6) 

From equations of motion, the tangential velocity, �  is 

given by; 

�� = �� + ��,�∆� ⇒ �� = �� 	                      (7) 

Hence the final tangential position is expressed as, 

�� = �� + !�∆"
�� 	                                    (8) 

2.1.2. Motion in the Radial Direction 

The component of the motion of satellite in the radial 

direction was modelled using equations of motion since 

acceleration is constant. 

From equations of straight-line motion, the final (radial) 

position (��) of the satellite is given by; 

�� = �� + #�∆� + 1 2& ��,�∆��	                       (9) 

Where �� denotes the initial radial position of the satellite 

measured from the centre of the Earth, #� is the initial radial 

velocity and ��,� denotes the radial acceleration due to force 

exerted by the Earth on the satellite. 

The final radial velocity is given by; 

#� = #� + ��,�∆�	                                (10) 

Acceleration of earth (��) towards satellite was ignored in 

this work because 

����� = ��� '(
)( ⇒ �� =	

*+,(,-.�/
)( = 01)-

��/ ≈ 0	(∵ 	 ��� ≫ 5��) (11) 

From Newton’s second law of motion, the radial 

acceleration of satellite towards the Earth is given by; 

�����,� = ��� '(
)- 	⇒ 	��,� = '(

)-	                      (12) 

The magnitude of the force exerted by the Earth on the 

satellite denoted, �� is; 

�� = − 1)()-
��/ 	                                (13) 

The negative sign shows that the force is attractive. 
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Substituting (13) into (12)	��,� becomes; 

��,� = − 1)(
��/ 	                                  (14) 

Substituting (14) into (10) #� becomes; 

#� = #� − 1)(
��/ ∆�	                               (15) 

Since launching velocity is purely tangential, then the 

initial radial velocity #� = 0, which implies that 

#� = − 1)(
��/ ∆�	                                  (16) 

This shows that the satellite’s final radial velocity is 

proportional to radial acceleration for constant ∆� . On the 

other hand, the radial displacement from initial position to 

final position after ∆� is; 

∆� = �� − �� = #�∆� + 1 2& 7− 1)(
��/ 8 ∆��	           (17) 

Since #� = 0, then 

∆� = −1 2& 71)(
��/ 8∆��	                      (18) 

This shows that �� is less than �� by ∆�, that is, 

�� = �� + ∆� = �� − 1 2& 71)(
��/ 8 ∆��             (19) 

The results show that the radial distance decreased as the 

satellite moved from the initial position to the final position 

after ∆�. Since �� 9 ��  the satellite has accumulated a radial 

velocity, which was initially #� = 0  as it moved from 

position �� to ��. This implies that the radial velocity #� is no 

longer radial to the new position but makes an angle ∆� with 

the new radial direction as shown in figure 1 below. 

 

Figure 1. Schematic representation of the resolution of components of satellite after ∆�. 

The real components of the tangential (�)  and radial (#) 
velocities corresponding to the new radial position are computed 

by decomposing the magnitudes of #�  and ��  to adjust them 

into the radial and tangential components of the velocities. 

� = �� :;� ∆� − #� �<= ∆�	                         (20) 

# = �� �<= ∆� + #� :;� ∆�	                          (21) 

The successive positions of the satellite are a repetition of 

this process. The above procedure was used to calculate the 

rest of the successive positions for the satellite by replacing "?" and 

"<"  by "="  and "= − 1"  respectively. Maple program was 

used to compute the results at each iteration. 

2.2. Exact Solution of a Two-Body System 

The exact solution of an orbit for the gravitational 

interaction is expressed as; 

� = @
�0A BC� �                                         (22) 

Physically, D  is the radius of the circular orbit 

corresponding to the given values of E, F and G. That is, 

D = H/
IJ = 7)(K)-

)()- 8 H/
J = �� L�K,-,(

)()-M H/
J = L�K

,-,(
)- M H/

J ≈ H/
)-J 	(∵ 	�� ≫ ��)                                       (23) 

The dimensionless parameter N , called the eccentricity, 

characterises the shape of the orbit and is expressed as; 

N = O1 + �PH/
IJ/ ≈ O1 + �PH/

)-J/	                      (24) 

Where, 

Q = �
���#� − J

�	                                (25) 

Is the total energy of the system. The constant G is defined 

as 



4 Saneliso Vuyo Makhanya and Wei-Hsi Liao:  Numerical Model of Perturbated Earth’s Satellite Orbit  

 

G = 5����	                                 (26) 

Where 5 is the universal gravitation constant. The angular 

momentum, E of the system is given by, 

E = ��#�                                      (27) 

Where #  is the initial tangential velocity of the satellite, 

that is, the launching velocity of the satellite. 

2.3. Error Analysis 

The method used for error analysis was the relative error 

method which takes the difference between the exact value 

and the approximate value at each iteration and then divide it 

with the exact value at the respective iteration. The relative 

error (QR) at each iteration was given by; 

QR = |PTUB"	VUHW�0XW)���BUH	YUHW�|
PTUB"	YUHW� Z 100%	           (28) 

The maximum of these errors was then extracted to see the 

furthest value from the exact in percentage form. 

2.4. Extending the Model to Incorporate Effects of the 

Moon on the Satellite’s Orbit 

The essence of this work was not only comparing the 

numerical solution with the exact solution for a two-body 

system, but also to extend and use it independently in the 

case of three body orbit involving the Earth, Moon and 

satellite. As with the two-body orbit system, there were 

assumptions made; 

1. The Moon’s orbit around the Earth was assumed to be 

circular. 

2. The Earth, Moon and the satellite were assumed to be 

coplanar hence the motion of the orbiting bodies was 

modelled using a two-dimensional approach. 

The approach used in this case is the same as that used in 

the two-body system involving the satellite and Earth with 

the only difference that the radial and tangential components 

of motion of satellite were modified to incorporate the effects 

of the Moon’s gravity in the orbit of the satellite. 

From equations of motion, the final radial position of the 

satellite could be modelled as; 

�� = �� + #�∆� + 1 2& ��∆��                            (29) 

All the components of this equation are the same as those 

for the Earth-satellite system with the exception of \] which, 

in this case, is the sum of the accelerations due to both the 

Earth’s and Moon’s forces. 

The radial acceleration due to the Earth remained the same 

as that for the two-body system. In order to evaluate the 

acceleration of the satellite due to the Moon’s force, the 

coordinates for the Moon and satellite were transformed from 

plane polar to Cartesian as shown in figure 2. This was done 

because it was easier to work with vector products in 

Cartesian coordinates than in plane polar. 

 

Figure 2. The configuration of satellite Moon and Earth at any arbitrary instant. 
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Denoting the vector position of the Moon from Earth as _̂_�, 
the position of the Moon in Cartesian coordinates is; 

_̀_�(a, b) = ��T(c :;� d) + ��e(c �<= d)	              (30) 

Where 

d = f�	                                        (31) 

In this case, f is the angular velocity of the Moon. Since 

the Moon is assumed to move in a circular orbit around the 

Earth, with centripetal acceleration #� c&  and c  being 

constant, then the angular velocity (f) of the Moon can be 

derived from Newton’s second law of motion, that is, 

�) = �) V/
g = 1),)(

g/ 	⇒ V/
g = 1)(

g/ 	               (32) 

Multiplying by 1 c&  on both sides, then 

7Vg8
� = 1)(

gh 	                                   (33) 

Since # = cf then 

f� = 1)(
gh 	⇒ f = O1)(

gh 	                         (34) 

The satellites position in Cartesian coordinates is given by 

i�(a, b) = ��T(� :;� �) + ��e(� �<= �)	                (35) 

Where the value of � and � are as evaluated from the two-

body section. 

The vector (j_�) between the satellite and the Moon is 

j_� = c_� − ��	                                  (36) 

The unit vectors in the radial and tangential directions of 

satellite position in Cartesian coordinates are respectively 

given by; 

��� = ��T(:;� �) + ��e(�<= �)                     (37) 

��� = ��T(− �<= �) + ��e(:;� �)	                   (38) 

With this information, the radial and tangential 

acceleration due to the force of the Moon can now be 

derived. 

The force exerted by the Moon on the satellite is 

decomposed into tangential (���,))  and radial (���,)) 
components. The acceleration in the radial direction due to 

the force of the Moon will be derived, and that in the 

tangential direction will be inferred. 

The force 	(��))  exerted by the Moon on the satellite is 

given by; 

��) = ��k 1),)-
k/ 	                            (39) 

Where ��k 	is the unit vector in the direction of the Moon’s 

force and j  is the magnitude of the vector between the 

satellite and the Moon. 

On the other hand, the radial component of force of the 

Moon on the Satellite is; 

���,) = �������,)	                            (40) 

Therefore, the component of the force in the radial direction 

is given by the dot product between ��) and ���, that is; 

��,) = ��) ∙ ��� = ��k 1),)-
k/ ∙ ��� = ����,) ⇒ ��,) = 1),

k/ (��k ∙ ���)	                                                (41) 

Since the vector j_� is given by, 

j_� = ��kj ⇒ ��k = k_�
k	                            (42) 

From 41, the radial acceleration can be re-written as, 

��,) = 1),
k/ 7k_�k ∙ ��8 = 1),

kh mj_� ∙ ���n                (43) 

By inference, the tangential acceleration due to the Moon’s 

force is given by; 

��,) = 1),
kh mj_� ∙ ���n	                            (44) 

These two quantities (��,) and ��,)) give the acceleration 

of the satellite in the radial and tangential direction, 

correspondingly, due to the effect of the Moon. Incorporating 

them into the equations of motion derived in the preceding 

section, the equations of motion for the satellite then become; 

�� = �� + ∆�                                   (45) 

Where, 

∆� = #∆� + 1 2& m��,� + ��,)n∆��	              (46) 

And, 

�� = �� + ∆�	                              (47) 

Since the Moon’s force causes the satellite to accelerate in 

the tangential direction, the new ∆�  has this component 

included, that is, 

∆� = ∆�
�� =

!�∆"K� �& Uo,,∆"/
�� 	                    (48) 

The velocities in the radial (#)  and tangential (�) 
directions, respectively, are; 

� = �� :;� ∆� − #� �<= ∆�	                  (49) 

# = �� �<= ∆� + #� :;� ∆�	                   (50) 

In this case, 

�� = �� + ��,)∆�	                          (51) 

#� = #� + m��,) + ��,�n∆� = #� + ��∆�	         (52) 

Where ��  is the total acceleration of the satellite in the 

radial direction. 
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3. Results and Discussions 

3.1. Numerical and Exact Solution Model Results 

The model results are plotted in figure 3 below for an 

elliptical orbit. The results are discrete because the output 

was generated iteratively. 

 

Figure 3. The results of an elliptic orbit modelled using the numerical model. 

Using the same initial values, a model of the satellite 

motion was developed using the analytic solution. The results 

were plotted for the interval of � = p0,2qr as shown in the 

figure 4 below. In this case, the orbit of the satellite is 

represented as a continuous elliptical trajectory. This is 

because of the domain, that is, � = p0,2qr. 

 

Figure 3. An elliptic orbit modelled using the analytic model. 

3.2. Comparison of the Two Solutions 

When the exact and numerical solutions were 

superimposed, they exactly matched each other for the entire 

orbit as shown in figure 5 below. This is supported by the 

error analysis results which showed that the maximum 

difference between the exact and numerical solution for the 

entire orbit was 0.079%. This is the maximum relative error 

for all the iterations for the entire orbit. This shows that the 

numerical model developed closely matched the exact 

solution. The accuracy can further be improved by reducing 

the time step from ∆� = 1� to a lesser value. 

 

Figure 4. Comparison of the orbits from results of exact solution and that of 

the numerical solution. 

3.3. Modelling Various Satellite Orbits Using the Model 

This model can be used in many applications. These 

include modelling various orbits using given initial 

velocities, that is hyperbolic, parabolic, circular, elliptic, and 

projectile motion. This model can also be used to model 

perturbated orbits of satellite motion due to effects of the 

Sun, planets and Moon. In this work, only the effects of the 

Moon are treated and the effects of other planets or bodies 

can be treated in a similar manner. The perturbated orbit due 

to the effect of the Moon will be analysed, numerically, later 

in a separate section. Another application of the model, 

which is treated under this section is modelling projectile 

motion, of which, the exact solution is incapable of 

generating. 

The figure below shows the output which is a 

representation of the various satellite orbits. The initial 

velocities were assigned based on the range of theoretical 

calculations so that it can be observed if the model was able 

to retain the expected solutions from theory. These values are 

found in table 2 of the appendices. 
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Figure 5. Results of the numerical model for different initial velocities. 

These results are consistent with theoretical predictions, that 

is, based on the expected trajectory given the initial velocities 

presented in table 2 of the appendices, the model presented 

exactly what was expected from theoretical predictions, that is, 

all the predicted orbits were retained by the numerical model. 

The additional strength of the model is that it is able to produce 

projectile motion of which exact methods predict it as an 

imaginary (not real) solution or trajectory. 

This model can also be applied when there is a need to change 

the satellite orbit. For instance, when the satellite needs to be 

removed from orbit back to Earth, that is changing the orbit 

from elliptical to projectile motion. In this case, the model can 

be used to figure out the new speed that the satellite should 

possess in order to follow the desired trajectory. In this case, 

assuming that the perigee is at �v , then when the satellite is 

decelerated to a certain velocity, #v,w�, then the point at which it 

will land on Earth can be precisely located. Conversely, by 

identifying a suitable point for landing the satellite on Earth, 

usually the sea, then the required velocity for the satellite at the 

perigee can be calculated precisely using this model. This is a 

safe way of removing a satellite from orbit and only numerical 

models can retain this solution. 

3.4. Perturbated Satellite Orbit due to the Moon’s Force 

In the study of the effects of the Moon on the orbit of the 

satellite, a circular orbit was used. This is because, the 

circular orbit is highly unstable and any slight disturbance to 

the motion lead to a change in orbit, that is, an increase or 

decrease in velocity leads to an elliptical or parabolic orbit, 

respectively. This is an advantage in this situation since the 

corresponding results are easily appreciable due to the effects 

of the Moon on the satellite. 

To study the effects of the Moon, the satellite was 

launched at three different distances between the Earth and 

the Moon, that is, quarter, half and three-quarter distance. 

This was done to pronounce the effects of the moon as 

depicted by the model. 

3.4.1. Launching Radius at a Quarter Distance Between 

Earth and Moon 

The maximum force exerted by the Moon on the satellite 

in the radial direction occurs when the Earth, satellite and the 

Moon are collinear. There are two possibilities for this to 

happen. It can be when the Earth is sandwiched by the 

satellite and the Moon or when the satellite is sandwiched by 

the Earth and the Moon. The relevant scenario is when the 

satellite is sandwiched by the Earth and the Moon. In this 

case, the radial acceleration of the satellite would be at its 

maximum since the tangential component is zero. Unless the 

satellite is geosynchronous, there are infinitely many 

occurrences of this type of configuration. For comparison 

purposes the initial configuration at the radius of launch was 

used. 

From theory, when the satellite is launched at a quarter 

distance from the Earth, that is, 

��� = �
x c                                       (53) 

Where c is the distance between the Moon and Earth and ��� is the initial distance of satellite from Earth. Also, given 

that, the mass of Moon and that of Earth are related by; 

�) = 0.0123�� 	                           (54) 

Then, the magnitude of the acceleration of the satellite due 

to Earth’s attraction denoted �� is given by 

�� = 1)(
�(/ = 1)(

(yzg)/
= 1)(y

{(hzg)/
= |1)(

(hzg)/
= |1( y

}.}y/h),)
(hzg)/

= 732 L1),
(hzg)/

M = 732�)                                   (55) 

Since 

�)� = ~
x c	���=	��� = �

x c,	where �)�  is the initial distance 

of satellite from Moon, that is �)� + ��� = c . The results 

show that, 

�) = 0.001366666�� 	                         (56) 

This means, at this distance, the satellite’s acceleration due 

to Moon’s force is ≈ 0.133% that of the Earth. As a result, 

the satellite remains in circular orbit as if the Moon was not 

there. 

Since the orbit being modelled was circular, and the radius 

of launch was ��� = �
x c , where c = 3.884 Z 10�� , the 

angular velocity of the satellite was given by 

f = O1)(
�(-h                                       (57) 

And the initial tangential velocity of the satellite was; 
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�v = ���f = O1)(
�(- = 2036	�/�                  (58) 

Applying the same initial conditions as those of theoretical 

predictions, the acceleration of the satellite, using numerical 

methods, was found to be 0.001366924322. Comparing this 

with the theoretical predictions, the corresponding error was 

found to be 0.019%. 

The implication was that the effect of the Moon at this 

radius of launch and orbit was very small and did not cause a 

significant variation in the orbit of the satellite for a single 

orbit. However, for a large number of orbits, the effects of the 

Moon could be noticeable since the perturbation would be 

incremental. The plot of the model results is in complete 

agreement with this as shown in figure 7. 

 

Figure 6. A single orbit plot of the satellite motion under the influence of 

both the Moon and the Earth when launched at a quarter distance from the 

Earth to the Moon. 

3.4.2. Launching Radius at Half the Distance Between 

Earth and Moon 

At this distance, the effects of the Moon are notable. The 

satellite deviates from its circular orbit and the deviation is 

such that the radius of orbit increases with each orbit, that is, 

the perturbation effects of the Moon alters the altitude of the 

satellites as well as its acceleration. This increase in altitude 

continues until such a time when the satellite is in front of 

both the Moon and the Earth. In this case, the radial 

acceleration will be inwards (towards the Earth) since the 

satellite, Moon and the Earth will be collinear. Hence the net 

force will be radially inwards towards the Earth. This is the 

point where the satellites auto-corrects its radius of orbit by 

reducing it and becoming closer to the Earth. 

Theoretically, when the satellite is launched at ��� = �
� c, it 

is expected that; 

�� = 1)(
�(/ = 1)(

(y/g)/
= 1( y

}.}y/h),)
(y/g)/

= 81L1),
(y/g)/

M = 81�)    (59) 

Or, 

�) = 0.0123�� 	                               (60) 

In this case, the ratio of the accelerations is the same as 

that of the masses. The acceleration of the satellite due to the 

force of the Moon is ≈ 1% of that of the Earth which is 

higher than that of the first case. That explains the small 

deviation of the satellite from its circular orbit as shown by 

the model results in Figure 8. According to the model results, 

the ratio of the accelerations was found to be 0.01232417950. The corresponding relative error for this 

computation was 0.20% . This continues to show that this 

model is consistent with theoretical results. 

 

Figure 7. A plot of the orbit of the satellite under the influence of bot the 

Moon and the Earth when launched at half the distance from the Earth to the 

Moon. 

3.4.3. Launching Radius at Three-Quarter Distance from 

Earth to Moon 

It is expected that the effects of the Moon’s force will be 

highest of all the three cases. 

Theoretically, 

�� = 1)(
�(/ = 1)(

(hzg)/
= 1( y

}.}y/h),)
|(yzg)/

≈ 9L1),
(yzg)/

M = 9�)     (61) 

Or, 

�) = 0.1107�� 	                              (62) 

The acceleration due to the Moon’s force at this launching 

distance was ≈ 11% , which is highest of the three as 

expected. From the model, the ratio of the accelerations was 

found to be 0.1109176156  and the corresponding relative 
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error for this evaluation was 0.20% . The relatively large 

contribution of the Moon in the acceleration of the satellite 

explains the visible large perturbation in the motion of the 

satellite as shown in Figure 9. 

 

Figure 9. A plot of the orbit of the satellite under the influence of bot the Moon and the Earth when launched at a three-quarter distance from the Earth to the 

Moon. 

4. Conclusions 

Based on the results of the model, it can be concluded that 

the model developed was accurate for prediction of 

perturbated orbit when the Moon was used as a perturbating 

body. This model can be used with any additional force to 

describe the resultant motion. 

It can also be concluded that the model is capable of 

predicting projectile motion of which exact methods are not 

able to predict. 

The model can also be applied when there is a need to change 

an orbit of satellite. By using this program, the new speed 

required for the satellite to change its orbit can be determined. 
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Appendices 

 

Figure 8. A diagram showing an approximation of the arc length with a 

straight as used in this work. 
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Figure 9. An assignment of the values for modelling the exact orbit. 

 

Figure 10. A flow diagram for the calculation of the position of the satellite in Maple Program. 
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Figure 11. A for-loop used for numerical modelling of the elliptic orbit of the satellite. 

 

Figure 12. A for-LOOP for calculating the relative error and the corresponding maximum error. 
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Figure 13. A schematic representation of the flow diagram for the three-body model. 
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Figure 14. The for Loop for calculating the perturbated effects of the Moon when the satellite is launched from various distances. 

Table 1. Initial values and constants used in modelling the orbit of the satellite. 

Constant Value Comments/remarks 

�v 	 7.2 Z 10�p�r 	 Launching the satellite at 800G� above the Earth Surface (�v = �� + �) 
�v 	 0	p���r 	 For comparison purposes (with exact solution), the satellite is launched from this tangential position. 

#v 	 0	p� �⁄ r 	 Denote the initial velocity of satellite in the radial direction. 

�v 	 8500	p� �⁄ r 	 Initial velocity of satellite in the tangential direction (launching velocity is purely tangential). This is the 
suitable velocity for an elliptical orbit for the corresponding launching radius. 

5 	 6.673 Z 100�� 	���� G��& � 	 Universal gravitation constant 

�� 	 5.972 Z 10�xpG�r 	 Mass of the Earth 

�� 	 500	pG�r 	 Mass of the satellite 

G� 	 1.9925578 Z 10��p���r 	 Constant. Product of 5,��  and ��. 
� 	 3000 	 Large enough integer for iterations to complete an orbit. 

∆� 	 1	p�r 	 Time step for successive iterations 

� 	 6.2832	p���r 	 Value of 2q to 4 decimal places 
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Table 2. Launching velocities for the desired corresponding orbits. 

Type of Orbit/ trajectory Range for Initial Velocities (Theoretical) Assigned value (Numerical) 

Hyperbolic #v,� > O�1�
�}  	 12,000	� �⁄  	

Parabolic #v,w = O�1�
�}  	 10,521.30	� �⁄  	

Circular #v,B = O1�
�}  	 7,439.68	� �⁄  	

Elliptic 
#v,B < #v,� < #v,w  

	 8,500	� �⁄  	
Projectile #v,w� < #v,B  6,300	� �⁄   

Table 3. Initial values and constants used in modelling the orbit of the satellite under influence of Earth and Moon gravitational pull. 

Constant Value Comments/remarks 

�v 	 0	p���r 	 Initial tangential position for launching satellite 

#v 	 0	p� �⁄ r 	 Denote the initial velocity of satellite in the radial direction. 

5 	 6.673 Z 100�� 	���� G��& � 	 Universal gravitation constant 

�� 	 5.972 Z 10�xpG�r 	 Mass of the Earth 

�� 	 500	pG�r 	 Mass of the satellite 

G� 	 1.9925578 Z 10��p���r 	 Constant. Product of 5,��  and ��. 
� 	 300,000 	 Large enough integer for iterations to complete an orbit. 

∆� 	 60	p�r 	 Time step for successive iterations 

c 	 3.844 Z 10�� 	 Distance between the Earth and the Moon 

f 	 2.65 Z 100� 	 Angular velocity of the Moon 

�) 	 2.37 Z 10�	p�r 	 Period of the Moon 

�) 	 7.36 Z 10��	pG�r 	 Mass of the Moon 

� 	 6.2832	p���r 	 Value of 2q to 4 decimal places 
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