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Abstract: Kinematic fields arise due to a uniform movement (constant velocity) of a permanent magnet or an electric 

charge. Previous experimental and theoretical results for the classical approximation demonstrate that kinematic fields do not 

propagate in a wave-like manner, but move like a rigid body synchronously with their source. In this paper a further analysis of 

kinematic fields, taking into account special relativity theory is presented. Despite the appearance of a new feature, the 

previous conclusions are upheld for the relativistic case. A complete mathematical study irrefutably proves the non-wave 

nature of the field movement along with its carrier.  
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1. Introduction 

It is well known that the field of a point charge, moving in the 

laboratory at a speed � , is not Coulomb-like for a stationary 

observer (see, for example, [1] chapter 8, entitled “Relativity and 

electricity”). This moving electric field (termed kinematic field) 

is weakened in front and behind the charge (i.e. in the direction 

of motion) and is stronger at right angles to the direction of 

motion. As a consequence of the charge motion a kinematically 

induced magnetic field is created. Experimental proof was 

presented firstly by Rowland [2] and later more precisely 

corroborated in series of careful experiments by Eihenwald [3]. 

This electro-kinematic phenomenon, termed the Rowland-

Eihenwald (RE) effect, has a symmetrical counterpart. The 

magneto-kinematic effect – motion of a magnetic field with a 

moving permanent magnet, similarly creates a kinematically 

induced electric field. This was first demonstrated for rotary 

magnetic field motion by Zajev and Dokuchajev [4] (the ZD-

effect). This has been confirmed more recently [5, 6] and also 

established in the case of the rectilinear motion of a permanent 

magnet [7]. 

The present paper deals with kinematic fields and with 

kinematically induced fields. They arise from electrostatic field 

and magneto-static field when their sources (charged body, 

permanent magnet) are moving in laboratory at speed � � �. 

Previous work for the non-relativistic case demonstrated that 

kinematic fields do not satisfy the wave equation [8, 9]. As a 

consequence therefore the uniform motion in space of a charge 

(or permanent magnet) does not result in propagation of 

radiation. Kinematic fields transfer energy in space “… not like 

a ripple on the river, but like the water itself in the stream” [9]. 

Kinematic fields are therefore quite different in nature and 

behaviour to electromagnetic (EM) waves. 

It is well known that Maxwell’s equations are entirely 

compatible with special relativity theory (SRT) [10, pp. 553-560; 

11, pp. 461-469]. For a thorough examination of kinematic 

phenomena the role of the gamma-factor term, �, in Maxwell’s 

equations should be considered. In the following sections an 

appropriate quantitative analysis for kinematic fields is 

presented with due regard to SRT, pertaining specifically to the 

electrical and magnetic cases.  

2. Fields of Kinematical Origin Induced 

by a Moving Magnetized Sphere 

Consider a sphere of diameter � , with a uniform 

magnetization � of magnitude � and parallel to the � axis, 
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in vacuum (figure 1). Let 	
, �, 
� be the system of spherical 

coordinates with polar axis directed along the vector � and 

with origin in the centre of the sphere. This is a unique case 

when the magnetic field in the external space has a purely 

dipole character with dipole moment �� � 	���	�/6  . It 

may be expressed through simple elementary functions [10, 

p.183]. The components of the magnetic flux density (SI - 

units) are: 

�� � �
����

� , �� �

�
2
����

� , � � 0, 

where � � ""#��/2�  is a constant numeric coefficient 

depending on using system of units. The projections of the 

vector $ on axes of Cartesian (rectangular) coordinates are: 

�% � 3�
sin � cos � cos 



� , �, � 3�
sin � cos � ��� 



� , �-
� �	2 . 3���/��. 

The length of a radius-vector to an arbitrary point 1  is 


 � 23/ 4 5/ 4 �/  and the usual trigonometry functions 

may be expressed as:  

��� � � 23
/ 4 5/

 , ��� � � �
 , ��� 
 �

5
23/ 4 5/

, ��� 
 � 3
23/ 4 5/

	. 

Substitution of these expressions into Cartesian projections 

of the vector $ gives the following: 

�% � �6
/ 	
%-
�7 , �, �

�6
/ 	
,-
�7 , �- �

6
/ 	
/-89%89,8

�7 	.	          (1) 

 

Figure 1. Magnetized sphere moves along X-axis. 

Let the frame of reference, where the magnetised sphere is 

at rest, has the axes 	3, 5, �� in parallel with the axes :, ;, < 

of the laboratory reference frame (figure 1). Assuming the 

sphere to be moving relative to the laboratory reference 

frame along the :  axis at a constant velocity v � 	�, 0, 0�. 
Unlike the case considered in [12], a motion directed 

transversally relative to the magnetization �  is seen here. 

The magnetised sphere provides a magnetic field with space-

variable flux density $. The Lorentz transform [1, p. 237] 

gives the following connections between the values in both 

systems:  

3 � �	: . �>�, 5 � ;, � � <	; 	�@ � �% 	, �A � ��,	, �B �
��-	.	                                  (2) 

Here the relativistic factor � � 	1 . �//�/�	D//, where � is 

speed of light. Substitution of expressions (2) into equation 

(1) leads to components of the magnetic vector $  in any 

point 	:, ;, <� of the laboratory system corresponding to the 

point 	3, 5, �� of the moving one:  

�@ � �6E
/ 	

	@9FG�B
H7 , �A � �6E

/ 	
AB
H7 , �B �

6E
/ 	
/B89E8	@9FG�89A8

H7 	, (3) 

where I � 2�/	: . �>�/ 4 ;/ 4 </	. The corresponding 

electric field E � B L v  of kinematical origin has the 

following components: 

M@ � 0, MA � ��B , MB � .��A .	           (4) 

Observe that constant factor �/2  common for all 

components may be omitted in the following calculations.  

The partial derivatives of the magnetic components (3) in 

the laboratory system are:  

NOP
N@ 	� 3�<

A8Q	B89R	E8	@9FG�8
HS , NOTNA � 3�<

E8	@9FG�8Q	B89R	A8
HS , NOUNB � 3�<

�E8	@9FG�8Q�A89/B8
HS 	 ;	            (5) 

V�@
V; 	� .15�

	: . �>�;<
IX , V�@V< � 3�	: . �>� �

/	: . �>�/ 4	;/ . 4	</
IX ; 

NOT
N@ 	� .15�

� 	@9FG�AB
HS , NOTNB � 3�;

E8	@9FG�8Q	A89R	B8
HS ;	                                (6) 

V�B
V: 	� 3�

�	: . �>� �
/	: . �>�/ 4	;/ . 4	</

IX , V�BV; � 3�; �
/	: . �>�/ 4	;/ . 4	</

IX ; 

NOP
NG 	� 3��<

RE8		@9FG�89A89	B8
HS , NOTNG � 15�

�� 	@9FG�ABHS , NOUNG � 3�
��	: . �>� RB

89E8		@9FG�89A8
HS 	.	             (7) 

From the formulae (5, 6) we have 

���	$ � 	V�@V: 4	V�AV; 4	
V�B
V< � 0; 
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�Z
[	$ � \NOUNA .	
NOT
NB , NOPNB − NOU

N@ , NOTN@ −	NOPNA ] = ^0, 3�	: − �>� E8	@9FG�8Q	A89R	B8HS 	1 − �/�, 15� 	@9FG�ABHS 		1 − �/�_.	  (8) 

The partial derivatives of the induced electric components (4) are: 

VM@V: = VM@V; = VM@V< 	≡ 0, VMAV; 	= � V�BV; , VMBV< = −� V�AV< 	; 
NaT
N@ 	= � NOU

N@ , NaTNB = � NOU
NB , NaUN@ 	= 	−� NOT

N@ , NaUNA =	−� NOT
NA ;	                                                    (9) 

	NaPNG 	= 0, NaTNG = � NOU
NG , NaUNG = −� NOTNG 	.	                                                                  (10) 

From formulae (6, 9) we have: 

���	b = 	VM@V: +	VMAV; +	VMBV< = 0 + � V�BV; − � V�AV< = 0 + 3��;IX [�/	: − �>�/ +	;/ − 4	</ − �/	: − �>�/ −	;/ + 4	</] = 0; 

�Z
[	b = eVMBV; −	VMAV< ,− VMBV: , VMAV: f = −� eV�AV; +	V�BV< ,− V�AV: ,−V�BV: f
= −� ^3�< 4�/	: − �>�/ − ;/ −	</IX , 15�� 	: − �>�;<IX , −3��	: − �>� 	: − �>�/ + ;/ − 4</IX _	. 

From comparison with the formulae (7) we find that �Z
[	b = −∂$/ ∂> in accordance with Faraday’s law.  

In order to compare �Z
[	$  with ∂b/ ∂> , it is necessary 

first to recalculate the expression 	�/ − 1�:  
�/ − 1 = D

D9F8/i8 − 1 = D9DQF8/i8
D9F8/i8 = F8/i8

D9F8/i8 = �/ F8i8	.	 (11) 

Taking into account the equation (11) we have from (8): 

	�Z
[	B�A = −3�	: − �>� �/	: − �>�/ +	;/ − 4	</IX �/ �/�/
= �
�2
V�BV> = 1

�/
VMAV> ; 

	�Z
[	B�B = −15� 	: − �>�;<IX �/ �/�/ = − ��2
V�AV> = 1

�/
VMBV> ; 

For 	�Z
[	B�@ = VM@/V>	 = 0, we have the vector form	�Z
[	$ = D
i8 ∂b/ ∂> (Ampere-Maxwell law [13, p.101]). 

Let us calculate now all second partial derivatives, viewing from the laboratory, in order to verify compatibility with wave 

equation. The second partial derivatives of the magnetic :-component are: 

V/�@V:/ = V
V: e

V�@V: f = 15��	: − �>�< 4�/	: − �>�/−3;/ − 3	</Ij 	 ; 
V/�@V;/ = V

V; e
V�@V; f 	= 	15�	: − �>�< 6;/ − �/	: − �>�/ −	</Ij 	 ; 

V/�@V</ = V
V< ^

V�:V< _ 	= 	15�	: − �>�< 	4</ − 3�/	: − �>�/ − 3;/Ij 	. 
Application of the Laplacian operator to the magnetic component yields the following expression: 

∇/�@ = N8OP
N@8 + N8OP

NA8 + N8OP
NB8 = 15	�/ − 1��	: − �>�< RE8	@9FG�89�A89�	B8

Hl .	                             (12) 

In a similar manner of doing we have 

V/�AV:/ = 15��;< 6�/	: − �>�/−;/ − </Ij 	 ; 	V/�AV;/ = 15�;< 4;/ − 3�/	: − �>�/ − 3</Ij ; 
V/�AV</ = 15�;< 	4</ − 3�/	: − �>�/ − 3;/Ij 	 ; 

∇/�A = N8OT
N@8 + N8OT

NA8 + N8OT
NB8 = 15	�/ − 1��;< mE8	@9FG�89A89B8

Hl .	                                     (13) 
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V/�BV:/ = 3�� ;R . 4�R	: . �>�R . 4<R . 3�/	: . �>�/;/ 4 27�/	: . �>�/</ . 3;/</Ij 	 ;	 

V/�B
V;/ � 3�

�R	: . �>�R . 4;R . 4<R . 3�/	: . �>�/;/ . 3�/	: . �>�/</ 4 27;/</
Ij 	 ; 

V/�B
V</ � 3�

3�R	: . �>�R 4 3;R 4 8<R 4 6�/	: . �>�/;/ . 24�/	: . �>�/</ . 24;/</	
Ij 	 ; 

k/�B � N8OU
N@8 4

N8OU
NA8 4

N8OU
NB8 		� 3	�

/ . 1��	 A
p9REp	@9FG�p9�E8	@9FG�8A8Q/XE8	@9FG�8B89�A8B89RBp

Hl .	              (14) 

From (7) the second partial derivatives of the magnetic vector over time are: 

N8OP
NG8 �

N
NG \

NOP
NG ] � 15�

��/	: . �>�< RE
8	@9FG�89�A89�B8

Hl 	 ;	                                                      (15) 

N8OT
NG8 �

N
NG \

NOT
NG ] � 15�

��/;< mE
8	@9FG�89A89B8

Hl 	 ;                                                        (16) 

N8OU
NG8 � 3�

��/ 	A
p9REp	@9FG�p9�E8	@9FG�8A8Q/XE8	@9FG�8B89�A8B89RBp

Hl .	                                          (17) 

From comparison (12 – 14) with (15 – 17) 

correspondently, and taking into account (11) we get the 

wave equation for magnetic vector $  of a moving 

magnetized sphere: 

q/$ . D
i8 	

N8$
NG8 � r	.	                     (18) 

The second partial derivatives of the kinematically induced 

electric Y-component (4) are:  

V/MA
V:/ � �

V/�B
V:/ ,

V/MA
V;/ � �

V/�B
V;/ 	 ,

V/MA
V</ � �

V/�B
V</ 	, 

Application of the Laplacian operator to the electric 

component MA, is taken from the equation (14): 

 k/MA � �k/�B	.	                          (19) 

By analogy  

V/MB
V:/ � .�

V/�A
V:/ ,

V2M<
V;/ � .�	 V

/�A
V;/ �,

V/MB
V</ � .�	

V/�A
V</ 	, 

and  

k/MB � .�k/�;.	                            (20) 

The second partial derivatives over time are: 

N8aT
NG8 � �

N8OU
NG8 ,

N8aU
NG8 � .�

N8OT
NG8 	.	                 (21) 

For M@ ≡ 0, we have from (19), (20) and (21): 

k/M@ �
V/MA
V>/ ≡ 0;	k

/MA � �k/�B �
�
�/
V/�B
V>/ �

1
�/
V/MA
V>/ ;	 

	k/MB � .�k/�A �
.�
�/
V/�B
V>/ �

1
�/
V/MA
V>/ . 

The above equalities may be written in short vector form: 

q/b	 . D
i8 	

N8b
NG8 � r	.	                            (22) 

3. Fields of Kinematic Origin Induced by 

a Moving Charged Sphere 

A sphere made of a conductive material is charged with a 

constant surface density so that the full charge	s is uniformly 

spread over all the surface of the sphere. In this case the 

electrostatic field in air outside the sphere coincides with the 

field of a point charge s focused in the centre of the sphere. A 

point charge s  being immobile in the laboratory has 

electrostatic field described by the Coulomb formula for 

electric intensity:   

b	 � st
4�u#
�

	.	 

At any point 1  electric vector b  is co-linear with the 

radius- vector at this point (figure 2) 

 

Figure 2. Charged sphere moves along X-axis. 

If the charge moves with a constant velocity v, a magnetic 

field appears due to the RE-effect, but the associated 

electrostatic field is distorted [1]. It may be described in 

Cartesian coordinates [1, p 242]. If the charged sphere is 

moving relative to the laboratory reference frame with co-

ordinates :, ;, <	 along the :  axis at a constant velocity 
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v = 	�, 0, 0� , there is a dependency in time between 

coordinates of both systems:  

3 = �	: − �>�, 5 = ;, � = <	. 
So, the electric vector in the laboratory reference frame is 

described by the equation:  

b	:, ;, <� = s
4�u# 	

�v
[�/ 	: − �>�/+;/ + </]�/ =

s
4�u# 	

�v
I�	. 

At any point in the laboratory space at a given moment > in 

the Cartesian system with an accuracy to the constant factor 

s/4�u#, electric vector b@,A,B has the components:  

	M@	 = E	@9FG�
Hw 	 , MA	 = EA

Hw 	 , MB	 = EB
Hw	.	             (23) 

The corresponding magnetic field $ = D
i8 		x × b�  of the 

electro-kinematical origin (R-E effect) has the following 

components with accuracy to the factor q/4�u# : 

�@ = 0, 	�A = − F
i8 M- = − EF

i8
B
Hw , 	�B = F

i8 	MA = EF
i8

A
Hw.	 (24) 

The partial derivatives of the electric components (23) are 

VM@V: = � 	;/ + </ − 2�/	: − �>�/Iz , VMAV; 	= � �/	: − �>�/ +	</−2;/Iz ,	 

	VMBV< = � �/	: − �>�/ + ;/ − 2</Iz 	 ; 
VM@V; = −3� 	: − �>�;Iz , VM@V< = −3� 	: − �>�<Iz , VMAV: = 	−3�� 	: − �>�;Iz 	 ;	 

VMAV< = −3� ;<Iz ,
VMBV: = −3�� 	: − �>�<Iz , VMBV; = −3� ;<Iz 	 ; 

NaP
NG = �� 	/E8	@9FG�89A89B8H7 , NaTNG = 3��� 	@9FG�AH7 , NaUNG = 3��� 	@9FG�BH7 .	                                                 (25) 

Using the above expressions (25) we have 

���	b = 	VM@V: +	VMAV; +	VMBV< = 0; 
�Z
[	b = \NaUNA −	NaTNB , NaPNB − NaU

N@ , NaTN@ − NaP
NA ] = \0, 3�	�/ − 1� 	@9FG�BH7 , −3�	�/ − 1� 	@9FG�AH7 ] =

\0, �EwF8i8
	@9FG�B

H7 , − �EwF8
i8

	@9FG�A
H7 ]	                                                                (26) 

The partial derivatives of the induced magnetic components (24) are 

V�@V: = 	V�@V; = 	V�@V< = V�@V> = 0;	V�AV: 	= 3���
�/

	: − �>�<
Iz 	, 

V�AV; 	= 3��
�/ 	

;<
Iz ,

V�AV< = ��
�/ 	

2</ − �/	: − �>�/ −	;/
Iz ; 

V�BV: 	= −3����/ 		: − �>�;Iz , V�BV; = ��
�/ 	

�/	: − �>�/ +	</ − 	2;/
Iz , V�BV< = −	3���/ 	

;<
Iz ; 

NOT
NG = − �EwF8

i8
	@9FG�B

H7 , NOUNG = �EwF8
i8

	@9FG�A
H7 	.                                                                        (27) 

So we are able to calculate: 

���	$ = 	0 +	3���/ 	
;<
Iz −

3��
�/ 	

;<
Iz = 0 

and 

�Z
[	$ = \EFi8 	/E
8	@9FG�89	A89B8

H7 , �EwFi8 	 	@9FG�A�7 , �EwFi8 	 	@9FG�B�7 ].                                                     (28) 

The comparison values of the respective components (25) 

with (28) and (26) with (27) yields the following vector 

equations: 
�Z
[	$ = 1

�/
∂b
∂t , �Z
[	b = −∂$∂> 	. 
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In this case both Ampere-Maxwell law and Faraday’s law 

are in result.  

Let us calculate the second derivatives and check the 

induced electric vector b@,A,B to meet wave equation. 

 

V/M@V:/ = 3��	: − �>� 2�/	: − �>�/−3;/ − 3	</IX , V/M@V;/ 	= −3�	: − �>� �/	: − �>�/−4;/ +	</IX , 

	V/M@V</ = −3�	: − �>� �/	: − �>�/ + ;/ − 4	</IX , V/M@V>/ = 3���/	: − �>� 2�/	: − �>�/−3;/ − 3</IX 	. 
Applying the Laplacian operator to the component M@ and taking into account the equation (11) we have: 

∇/M@ = 3�� �/�/ 	: − �>�
2�/	: − �>�/−3;/ − 3	</

IX = 1
�/
V/M@V>/ 	. 

The second derivatives of the component MA are: 

V/MAV:/ = 3��; 4�/	: − �>�/−;/ − </IX , V/MAV;/ 	= −3�; 3�/	: − �>�/−2;/ + 3</IX , 

	V/MAV</ = −3�; �/	: − �>�/ + ;/ − 4	</IX , V/MAV>/ = 3���/; 4�/	: − �>�/−;/ − </IX  

and applying the Laplacian operator to the component MA gives: 

∇/MA = 3�� �/�/ ;
4�/	: − �>�/−;/ − </

IX = 1
�/
V/MAV>/ 	. 

The second derivatives of the component MB are: 

V/MBV:/ = 3��< 4�/	: − �>�/−;/ − </IX , V/MBV;/ 	= −3�< �/	: − �>�/−4;/ + </IX ,	 
V/MBV</ = −3�< 3�/	: − �>�/ + 3;/ − 2</IX , V/MBV>/ = 3���/< 4�/	: − �>�/−;/ − </IX 	, 

where from  

∇/MB = 3�� �/�/ <
4�/	: − �>�/−;/ − </

IX = 1
�/
V/MBV>/ 	. 

All these by the component equalities provide the short 

vector form: 

q/b	 − D
i8 	N

8b
NG8 = r	.	                           (29) 

Starting from a magnetic field $ = D
i8 		x × b�  of an 

electro-kinematical origin (24) we have the second derivative 

of the second component  

V/�AV:/ = − �
�/
V/M-V:/ 	 ,

V/�AV;/ = − �
�/
V/M-V;/ 	 ,

V/�AV</ = − �
�/
V/M-V</ 	, 

V/�AV>/ = − �
�/
V/M-V>/ = −3�� ���/ <

4�/	: − �>�/−;/ − </
IX 	, 

and the corresponding Laplacian operator is: 

∇/�A = − �
�/ ∇/MB = −3���/ 	

��
�/ <

4�/	: − �>�/−;/ − </
IX

= − 1
�/ 	

�
�/ 	

V/M-V>/ = 1
�/
V/�AV>/ 	. 

By analogy: 

V/�BV:/ = �
�/
V/MAV:/ ,

V/�BV;/ = �
�/
V/MAV;/ 	 ,

V/�BV</ = �
�/
V/MAV</  

V/�BV>/ = �
�/
V/MAV>/ = 3�� ���/ ;

4�/	: − �>�/−;/ − </
IX 	, 

and the Laplacian operator is: 

∇/�B = �
�/ ∇/MA =

3��
�/ 	

��
�/ ;

4�/	: − �>�/−;/ − </
IX

= 1
�/ 	

�
�/ 	

V/MAV>/ = 1
�/
V/�AV>/ 	 

As soon as the first component of induced magnetic field 

is nought, the two above equalities bring to the vector one:  

q/$ − D
i8 	N

8$
NG8 = r	.	                         (30) 

4. Conclusions 

From the above analysis, the following conclusions may 

be drawn. In the classical case for kinematic fields (resulting 

from uniform motion of charge or permanent magnet with 

velocity � < �) the wave equation is not a valid description 
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of the field motion. If this movement were of wave-like 

nature, it would satisfy the vector equation: 

q/| − D
F8 	N

8|
NG8 = r	,	                           (31) 

but as it has been shown above, this is not the case, 

therefore kinematic field motion cannot be described using a 

wave equation of type (31) and specifically (18), (22), (29), 

(30). In reality, a kinematically induced field F moves in the 

laboratory together and synchronously with its carrier at 

finite speed � < �. 

In the relativistic case, the kinematic field formally 

satisfies the wave equation with speed of light as parameter, 

but the wave equations (18), (22), (29), (30) do not describe 

the motion of the kinematic fields either because they are 

moving with a finite velocity � ≠ �. The previous conclusion 

that there exist two fundamentally different types of 

induction, dynamic and kinematic, is further established (see 

cited pioneering works, where the kinematic aspect of 

electromagnetism was introduced into scientific usage). 

Dynamic induction is governed by the wave equation, 

whereas kinematic induction not at all. The main implication 

of the above analysis is that relativistic correction does not 

play a key role in the character of moving electric and 

magnetic fields provided by the motion of their sources. If a 

source of a static field moves, the transfer of energy in space 

is not wave-like. In the case of accelerated motion, the both 

kinematic and dynamic fields are present, but the 

fundamental physical difference between them persists. 
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