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Abstract: The finding of the solution of the wave equation, formulated as the Cauchy problem, does not exhaust all 

possibilities of the theory. The attempt to examine that one by admitting that the time is an imaginary value is made.    So the new 

curvilinear coordinates, named hyperbolic, are introduced in consideration. They allow for hyperbolic equations to extend a field 

of searching of solutions to the complex plan and give the possibility to apply powerful Fourier’s method. Due to that, the wave 

equation takes a form of Laplace’s one in polar coordinates. However, the boundary condition differs from well known Dirichlet 

problem that in this case looses the sence. The new condition is admitted and it is physically formulated as the description of 

wave from various inertial systems of coordinates. So the result is obtaining proceeding either of the momentum picture of a 

wave, made from the moving system of coordinates, or on the oscillogram, developed in time The analytic solution that differs 

from Poisson integral is deduced and gives the formulas of relativistic addition of velocities for points of wave, observing from 

different inertial systems. That integral was also formally yielded by using the conform translation. Additionally, in the 

frequencies field those formulas describe the relativistic Doppler’s effect and the red shift in the wave spectrum. For oscillatory 

boundary condition the solution of the obtained integral gives a description of the shock waves. The fact, that some formulas of 

Relativity may be deduced by new way, gives the possibility to explain the relativistic theory proceeding from supposition of 

waving nature of quantum objects. 
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1. Introduction 

The wave equation has a key matter to understand the laws 

of the nature. Maxwell one with Lorentz calibration can be led 

to it [2]. These equations are Lorentz invariant and give the 

theoretical argument for the creation of the Relativity [2, 13] 

that stresses there importance. 

There are a lot of works dedicated to the solutions of the 

wave equation. They can be represented as a 

non-homogeneous or non-linear ones in different dimensions 

with appropriated results [11, 12]. Non-stationary equation 

with blowup is studied in [15]. The methods of solutions differ 

also, so in [16] the solving is based on the mathematical 

symmetry of the equation, digital methods are applied in [11, 

14]. 

However, nearly all solutions lay in the class of real 

numbers that diminishes the field of a search. On the other 

hand, it is known that in electromagnetic theory or in the 

quantum mechanics the complex solutions are largely applied. 

So it is interesting to examine the wave equation in the class of 

complex values. In order to achieve that it is necessary to look 

at the description of fundamental physical expressions. Such 

Schrödinger equation or Minkowski metric suppose that the 

time is an imagine value. In the further investigation that 

meaning will lead to the definition of the hyperbolic 

coordinates. 

The looking generally for solutions of hyperbolic equations 

is usually formulated into a form of Cauchy problem, and 

obtained by characteristics method. But it is strongly needed 

that all the roots of the system Cauchy – Riemann must be real 

numbers [1, 3, 5]. Indeed in the complex plan the roots of the 

characteristics equations also may be complex, and that 

becomes the property of the elliptic equations, Laplace’s one 

is their example [1, 4]. Its complex solution will be obtained 

with new coordinates. 
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2. New Solution of the Wave Equation 

2.1. Hyperbolic Equations in Hyperbolic Coordinates 

Let there is a simplest hyperbolic equation 

1
0

u u

x c t

∂ ∂+ =
∂ ∂

.                                  (1) 

It is known, that any smooth and differentiable function u 

(ct-x) satisfies it [1, 3, 5]. 

Let's pass to new curvilinear coordinates r and φ, which will 

be named hyperbolic 

2 2 2
, 0 ,

arth , 1 .

r c t x r

x
i i

ct
φ

= − ≥

= = −
          (2) 

The physical sense of new variables will be done later. 

Changing independent variables x and t on r and φ, yields the 

function u (r, φ) [6]. 

Into new coordinates (1) can be rewritten as 

0 .
u u

r i
r φ

∂ ∂+ =
∂ ∂

                            (3) 

Though apparently the equation became complicated, the 

powerful Fourier method of separation of variables can be 

applied. So the solution of (3) is determined as  

)(( , ) ( ) ( ) ,u r u L rφ φ= Φ                       (4) 

where u, L, Φ, - differentiable functions. 

Substitution (4) in (3) gives 

( ) ( ) ( ) ( ) .r L r i L rφ φ′ ′Φ = − Φ  

That is the equation with separable variables 

( ) ( )
,

( ) ( )

L r
r i

L r

φ λ
φ

′ ′Φ= − =
Φ

 

where λ ≠ 0 - a real number. 

From that two expressions issue 

( ) ( ) 0 ,

( ) ( ) 0 ,

r L r L r

i

λ
φ λ φ

′ − =
′Φ + Φ =

 

with solutions 

( ) ,

( ) e .
i

L r r
λ

λφφ
=

Φ =
 

According (4) the required function is 

( , ) ( )iu r u r eλ λφφ =                                (5) 

with the parameter λ (proper number). 

Admitting in (5) λ = 1, and returning to the ordinary x and t 

variables, the well known function u (x, t) = u (ct – x) is 

obtained. 

2.2. Wave Equation in Hyperbolic Coordinates 

Let there is a homogeneous wave equation [3, 4] 

2 2

2 2 2

1
0 .

u u

c t x

∂ ∂− =
∂ ∂

                         (6) 

After introduction of the new coordinates r and φ according 

(2) in (6) and some rearrangements, the wave equation about 

required function u (r, φ) can be rewritten as 

2 2

2 2 2

1 1
0 .

u u u

r rr r φ
∂ ∂ ∂+ + =

∂∂ ∂
                  (7) 

It coincides with Laplace’s equation in polar coordinates. It 

seems that the well known solutions of Laplace’s equation can 

be borrowed if only the boundary conditions conserve a 

physical interpretation. However, there are difficulties in this 

way, which overcoming bear a supplementary investigation. 

Certainly, it is not casually that the wave equation takes the 

form of Laplace’s one because of the fundamental link 

between trigonometric and hyperbolic functions in the domain 

of complex numbers. 

First of all, to solve (7) it is necessary to formulate a 

boundary condition. In view of analogy with Laplace’s 

equation, it seems to be natural to admit external Dirichlet’s 

problem in which the boundary condition is set on a circle of 

radius r. However as against it, the physical sense is the other: 

0
( ) .u f rφ φ= =                            (8) 

It sets a shape of wave, which is observed from the inertial 

system of coordinates moving with speed 0 0 0v x t=  with 

respect to the laboratory one, so that 0 0arthi v cφ = . 

Conditions of a problem are those. In the laboratory system 

of coordinates the source of oscillations which creates a wave 

is stiff. The moving observer in each j - time turns out in a 

point 0 0 0j jx v t=  and registers amplitude of a wave jf . The 

function ( )0

2 2
0 0( ) 1u f r f ct v cφ = = −  sets a boundary 

condition of a problem. The index 0 at x and t means that is not 

a concrete value, but the multitude of them, on which f (r) is 

defined. 

Physically, the solution of equation must be obtained 

proceeding either of the momentum picture of a wave, made 

from the moving system of coordinates, or on the oscillogram, 

developed in time, of the oscillation of a point, moving with 

the velocity v0. 

It depends on how to write the coordinate r (ct ≥ r): 

22
2 2 2 0

2 2
0

1 1 ,
vc

r c t x x ct
v c

= − = − = −  

where x/t = v0 = const. 
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The tasks with moving boundary are known in the theory of 

differential equations [7, 8], but they were solved on the basis 

of Dirichlet’s problem and differs from (8). 

If 0 0φ = , i.e. 0 0v = , that means that the observation is 

conducted from the Laboratory system of coordinates and the 

oscillations are described by 0( )f ct . 

It is possible to give to coordinate r such a physical sense. 

Admitting c kω= , where ω - frequency of oscillation, and k - 

wave number, r can be written 

( )( )1
.r t kx t kx

k
ω ω= + −                (9) 

i.e. r is equal to average geometrical phases of direct and 

return waves in scale k. 

The shape of the wave with that phase differs from ordinary 

symmetric Sine wave (Figure1) that complicates the problem. 

 

Figure 1. Function 
2 2

sin t x− . 

The required solution of the equation (7) might be obtained 

by means of Fourier’s method of separation of variables [6] 

( ) ( ) .u L rφ=Φ                                 (10) 

Substituting this expression in (7) leads to  

2
2( ) ( ) ( )
, 0.

( ) ( )

r L r rL r

L r

φ λ λ
φ

′′ ′′ ′Φ += − = ≥
Φ

          (11) 

Necessity of a positive sign before λ will be evident further: 

it follows from the requirement of periodicity of the solution 

on r. 

The condition (11) breaks up to two equations: 

2( ) ( ) 0 ,φ λ φ′′Φ − Φ =                 (12) 

2 2( ) ( ) ( ) 0 .r L r r L r L rλ′′ ′+ + =           (13) 

Solving (12) it is obtained 

.P e Q eλφ λφ−Φ = +                  (14) 

The solution of the equation (13) is searched as function 
mL r= . After its substitution in (13), m iλ= ±  and 

ln ,i i rL r eλ λ± ±= =  

cos ( ln ) sin ( ln ) .L A r B rλ λ= +           (15) 

By substituting (14) and (15) in (10) a particular solution 

becomes 

[ ]( )cos ( ln ) sin ( ln ) .u A r B r P e Q eλφ λφ
λ λ λ −= + +  

Arbitrarily it is admitted P=0, being confined with 0φ ≥ , 

where the sign before φ determines a sense of motion with 

respect to the motionless system of coordinates. Then 

cos( ln ) sin ( ln ) .u A r B r e
λφ

λ λ λλ λ −= +    

Here A, B, P, Q, ,A AQ B BQλ λ= =  - constants of 

integration. 

As λ - the continuous value, the general solution will be as 

follows 

0

cos ( ln ) sin ( ln )u e A r B r d
λφ

λ λλ λ λ
∞

−= +  ∫    (16) 

From the boundary condition (8) it leads to 

0

0

( ) cos ( ln ) sin ( ln ) .f r e A r B r d
λφ

λ λλ λ λ
∞

−= +  ∫  
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Let's pass to a new variable ln rα =  and, using the identity 

exp (ln )r r= , rewrite a boundary condition f (r) as function 

(ln ) ( )f r fα α≡ . It is obvious that α−∞ < < ∞ . It is assumed 

that the function f (α) can be expressed by Fourier’s integral. 

Then 

0

( ) cos ( ) ,
e

A f d
λφ

λ α λα α
π

∞

−∞

= ∫  

0

( )sin ( ) .
e

B f d
λφ

λ α λα α
π

∞

−∞

= ∫  

By substituting these andA Bλ λ  in (16) and following the 

usual transformations, the required u can be written as 

[ ]0( )

0

1
( ) cos ( ln ) .u e f r d d

λ φ φ α λ α α λ
π

∞ ∞
− −

−∞

  = − 
  

∫ ∫  

Changing the order of integration gives 

[ ]0( )

0

1
( ) cos ( ln .u f e r d d

λ φ φα λ α λ α
π

∞ ∞
− −

−∞

    = − 
    

∫ ∫   (17) 

Integral in parentheses is tabular, its value is equal 

0( ) 0 0

2 2 2 2
0 00

( ) cos ( ln ) ( ln )sin ( ln )
.

( ) ( ln ) ( ) ( ln )

r r r
e

r r

λ φ φ φ φ λ α α λ α φ φ
φ φ α φ φ α

∞
− − − − + − − −

=
− + − − + −

                             (18)

Substitution (18) in (17) leads finally to 

0

2 2
0

( )
( , ) .

( ) ( ln )

f d
u r

r

φ φ α αφ
π φ φ α

∞

−∞

−
=

− + −∫                                                            (19) 

The found integral gives the required solution of the wave equation in hyperbolic coordinates. 

Let's examine its consequences. First of all it is interesting to investigate a simplest case r=1, i.e. exp (ln1)=1 or f (α)=1. 

Physically it means a constant phase of a wave. It is obvious that all points of a wave having the identical phase should have 

identical amplitude (the equation (6) does not describe a dispersion of energy). Really, the substitution the value f (α)=1 in (19) 

yields the tabular integral 

0

0 0

1 ln 1
arctg 1

2 2

r
u

φ φ α π π
π φ φ φ φ π

∞

−∞

 − −  = = − − =  − −   
 

A particular interest represents an oscillatory boundary condition. Let 
ln( ) e , 0in rf r n= > . Then ( ) einf αα = , and 

ln ( ln )
ln0 0

2 2 2 2 2 2
0 0 0

cos ( ln ) sin ( ln )
.

( ) ( ln ) ( ) ( ln ) ( ) ( ln )

in r in r
in re e n r d n r d

u d e i
r r r

αφ φ φ φ α α α αα
π πφ φ α φ φ α φ φ α

∞ ∞ ∞−

−∞ −∞ −∞

 − − − −
 = = +
 − + − − + − − + − 

∫ ∫ ∫  

The second integral by virtue of oddness of sub integral 

function equals zero, and the first one is tabular. The result is 

0( ) ln .
n in ru e e

φ φ−=                              (20) 

For ( ) exp ( )f inα α= −  by analogy the similar function is 

0( ) ln .
n in ru e e

φ φ− −=                            (21) 

Laplace’s equation is linear, therefore the superposition of 

solutions (20) and (21) results to 

( ) cos
2

in ine e
f n

α α
α α

−+= =  

0( )
and  cos ( ln ).

n
u e n r

φ φ−=                 (22) 

If φ=φ0 (22) satisfies to a boundary condition. It satisfies 

also to the wave equation. That can be easily demonstrated by 

direct substitution (22) in (7). 

The expression (22) has a singularity r =0, where lnr→ ∞. 

That takes place when x/t=c. When r→0 the function cos (lnr) 

describes the oscillations with increasing frequencies and in 

the limit the spectrum of the wave becomes like δ – Dirac 

function. That means, that the most part of energy is 

concentrated in the point, moving with constant speed v = c. 

That occurs in the shock waves. 

What physical sense has the obtained solution? For more 

clarity in the further investigation it is admitted n=1. The 

difference φ0-φ in an index of exponent can be interpreted as a 
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relative speed, because the multitude of mutual - independent 

values x and t sets the choice of coordinates to describe the 

wave. But in case x/t=const (only) for all pairs of x, t, this ratio 

could be considered as a speed of the point in a space, in which 

the amplitude of a wave is registered. According to the 

definition of φ, this speed can be found by taking the modulus 

of the right side in (2). Then obviously, 

th .v x t c φ= =                             (23) 

If boundary conditions are defined as in this case, in moving 

with a velocity v0 system of coordinates, and the wave is 

observed from the motionless system in a point which itself 

moves with velocity v with respect to a motionless system, 

then to find the relative speed of this point (from moving 

system), (23) takes the view 

0
0

0

th th arth arth
x x

v c c
ct ct

φ φ
 

′ = − = − = 
 

 

0

0 0

0 0
2

0

.

11

x x

ct ct v v
c

x v vx

cct ct

−
−

= =
−−

                  (24) 

If c – a velocity of light, this is the formula of relativistic 

addition of speeds which they usually write down as 

0

2
0

.
1

v v
v

v v c

′+
=

+
                                 (25) 

Here the ratio x0/t0 gives the same (boundary) value v0 to 

any pair from multitude {x0, t0}. Certainly, the concept of 

speed of a wave points is not universal and at arbitrary choice 

of x and t loses sense. 

Let's return to initial variables. Assuming for simplicity 

c
2
t
2
- x

2
>0 and using relationship 

1 1
arth ln ,

2 1

z
z

z

+=
−

 

the formula (22) can be represented in a kind 

( )2 2 20

0

n
exp ln ln cos ln c .

2 2

c vn ct x
u i t x

c v ct x

  + += − −  − −   
                                             (26) 

If the boundary condition is given in motionless system of 

coordinates, then φ0=0, i.e. v0=0. For x/t=v=const, the 

formula (26) might be rewritten in more simple form: 

1
2ln

1

2
cos ln 1 , 0.

v c
i

v c c
u e x v

v

−
+

 
 = − ≠
 
 

    (27) 

From (27) it obviously follows that with distance from a 

source (with growth x) the wave is lengthened due to 

logarithmic smoothing. For light waves it should result to the 

red frequency shift in a spectrum. 

In usual coordinates the formula (20) has the most compact 

view: 

( )0

0

1
exp ln , 1.

1

v c
u i ct x n

v c

  + = − =  −    
 

If in a boundary condition instead of r to put a 

dimensionless value kr, then the formula (26) appears in the 

more habitual form 

2 2 2 20

0

1
exp ln cos ln .

1

v c t kx
u i t k x

v c t kx

ω ω
ω

  + − = −   − +   
                                            (28) 

The first radical in an exponent coincides with the 

expression of relativistic Doppler effect, that in general 

corresponds to earlier considered interpretation of a difference 

φ0-φ: for dot objects it yields a relativistic rule of addition of 

speeds; in frequency field - relativistic Doppler effect. 

The solution (28) describes any (not only electromagnetic) 

waves, so relativistic formulas (25) - (28.) can be spread to 

them as well. Whether that is true or a mathematical trick can 

be proved only by an experiment. The term "relativistic" is 

certainly conditional because generally c is the phase’s 

velocity of diffusion of various waves (for example, acoustic). 

By decaying ( ) ( ) ( )2 2 2 2ln ln lnt k x t kx t kxω ω ω− = − + + , 

the solution (28) leads to both direct and return waves. 

The functions (26) - (28) describe the wave process in 

motionless system of coordinates if the boundary condition is 

given in moving one with speed v0. 

The obtained solutions can be applied to three-dimensional 

space. In this case, instead of x it is needed to put 

2 2 2x y z+ + . 

It is necessary to stress that the obtained formulas are true 

only in case of inertial systems. In general case it will be other 

solutions according to the new boundary conditions. 

2.3. The Solution of the Wave Equation with Using the 

Conform Translation 

The formula (19) can be also formally yielded by using the 

conform translation of initial field 
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{ }0(0, ); ( , ) ,r φ φΩ = ∈ ∞ ∈ ∞  

with polar coordinates r, φ. 

Reflection of this field on the Cartesian semi plane y >0 in 

the domain of complex numbers with help of function 

0lnz iω φ= − , where exp ( )r iω φ= , allows to use the general 

solution given by Dirichlet’s formula [9] 

2 2

( )
( , ) .

( )

y f
u x y d

x y

α α
π α

∞

−∞

=
− +∫  

Here the components of z=x+iy are defined as x = ln r and 

y=φ-φ0. 

3. Result 

The curvilinear coordinates named hyperbolic are 

introduced in consideration and the new solution of the wave 

equation in form of integral (19) is obtained. The examination 

of its particular consequences shows the link with the 

formulas of Relativity, namely, with the rule of relativistic 

addition of velocities and the formula of relativistic Doppler’s 

effect. 

The using of the hyperbolic coordinates in hyperbolic 

equations gives the possibility to apply powerful Fourier’s 

method to obtain their new solutions. 

The analysis of the wave equation with new coordinates can 

mathematically explain the nature of the shock waves, earlier 

not described. 

4. Discussion 

The fact, that some formulas of Relativity may be deduced 

by new way, gives the possibility to explain the relativistic 

theory proceeding from supposition of waving nature of 

quantum objects [10]. That concerns the fundamental basis of 

the contemporaneous physics and should be checked by the 

experiment, for example with the acoustic waves at the 

velocities approximately equal to sound. At first sight, the 

crazy idea can occur brainwave. 

5. Conclusion 

The extension of application of complex numbers to the 

solutions of physical equations leads, at first, to the new 

mathematical results, and at second, shows new properties of 

physical objects so that the time in many fundamental cases 

should be described in the form of imaginary value as in our 

solving. 
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