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Abstract: The numerical integration of polynomial functions is one of the most interesting processes for numerical calculus 

and analyses, and represents thus, a compulsory step especially in finite elements analyses. Via the Gauss quadrature, the users 

concluded a great inconvenience that is processing at certain points which not required the based in finite element method 

points for deducting the form polynomials constants. In this paper, the same accuracy and efficiency as the Gauss quadrature 

extends for the numerical integration of the polynomial functions, but as such at the same points and nods have chosen for the 

determination of the form polynomials. Not just to profit from the values of the polynomials at those points and nods, but also 

from their first derivatives, the chosen points positions are arbitrary and the resulted deducted formulas are therefore different, 

as will be presented bellow and implemented. 
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1. Introduction 

The Gauss quadrature represents an accurate method for 

the numerical integration of polynomials and by a technique 

of subdividing the limit integral to rectangles and in some 

points called Gauss points, which represent in the 

parametric formulation, the coordinates of the ordinates of 

those rectangles. The classical method represents actually 

an exact numerical one for the integration of polynomials 

and very effective for any functions. In the literature, the 

Gauss quadrature is known as a very precise and effective 

numerical integration method [1, 21], and in finite elements 

some elementary matrices and vectors are defined as the 

numerically or the theoretically of some others; in structural 

mechanics, the elementary stiffness matrices are deducted 

via the Gauss quadrature of the scalar product of the 

elasticity by the deformation-displacement matrices and 

their transpose. The deformation-displacement matrices are 

in general computing only once, and used to compute 

stiffness and strains and therefore stresses matrices and 

vectors, the fact which in general calls to extrapolation 

functions to compute those quantities at the level of nods, 

the main points used to express the form polynomials and 

thereof, the analysts needs to know the values of the 

computed results at the level of. 

In this new proposal, the developed method is addressed 

to the applied mathematics users and to the finite elements 

ones especially. Herein, the polynomial functions we 

proceed to integrate using this new approach, are defined 

such that their constants are related to the ordinates of these 

polynomials and their first derivatives at the chosen points 

to find the integral expression concerns and thus, the liberty 

to choose the number and the integral points positions is 

actually complete and anyway, following this method the 

developed formulas represent exactly the integrated 

polynomials with which, are related to the ordinates of 

these functions and their first derivatives at the points have 

chosen. 

The approach methodology begins by fixing the 

parametric coordinates at the chosen points, deducting the 

polynomial functions constants and their first derivatives 

at those points in this formulation, and such that the 

numerical integrals are conducted in a parametric interval 

also, therefore the integral formulas will be also related to 

just those indicated values. The numerical formulation in 

Cartesian coordinates is deducted actually by a simple 

linear transformation. For the multiple integrals, of two or 

three dimensions, the process is doing by a multiplication 
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of the numerical parts of the formulas which called 

‘weights’ and also by the ordinates or their first 

derivatives of multi-dimensions polynomial functions at 

the integral points. 

Moreover, the method will be experimented by some 

examples and the results will be discussed. 

2. Expressions of the Polynomial 

Functions Constants 

Suppose that ���� is a polynomial function defined and the 

proceeding is to express its integral in the interval [����]. The 

polynomial of the 2n-1 degree ����  can be exactly or 

approximately expressed by a polynomial function of the form ���� � 	
 � 	�� � 	��� �⋯� 	
�
 �⋯� 	���������                                                 (1) 

And its first derivative �′��� � 	� � 2	�� � ⋯� �	
�
�� �⋯� �2� � 1�	������                                              (2) 

In addition, to transform the polynomial function ���� 
defined in the interval [���� ] in Cartesian coordinates to ����  in [�1	 � 1], the parametric ones, it is sufficient to 

relate the two coordinates by the expression 

� � ������ � � ������                                (3) 

Such that, ���� � ���� (Figure 1) and the integral can be 

written as 

 � ���������� � ������ � ����������                        (4) 

 

Expression with which, �� � ������ �� and, 

���� � �
 � ��� � ���� �⋯� �
�
 �⋯� ����������  (5) 

The polynomial constants �
  can be easily deducted in 

relations with 	
, and with which � � �� � ��, as follows 

 

Figure 1. The two points representation of  ���  in the parametric 

formulation. 
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!#
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�
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 � ∑ . ()�*+ 	+����+,
�� 	0 / 	� 0 2�	⋯                                                    (6) 

Otherwise, in order to relate the constants �
  with ���1� and �′��1�, it is needed to express 2� equations and � integral 

points in the parametric formulation. For a polynomial function of the first degree, one point sufficient, and of the third degree, 

of two points and so on 

2 ���1� � ���1� � �1	�3��1� � �3��1� � �′1 	� � 1, 2,⋯�, 	�1 � 0. , �1. , �1. ,⋯                                         (7)

Expressions, such that the fixed points in the Cartesian 

coordinates shall be equal, �1 � )� ��1 � 1� � �� 

And, 

6 ���1� � � ()� ��1 � 1� � ��* � ���1� � �1 	�3,7��1� � �3 ()� ��1 � 1� � ��* � )��3��1� � )��′1   (8) 

1. Polynomial functions of the first degree 

Suppose that the polynomial ����  is formed by a 

polynomial function ����, such that ���� � 	
 � 	�� 

In the parametric coordinates, this polynomial function 

will be transform to the expression 
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8���� � %	
 � �2	�& + �2	�� = �
 + ���
�3,7��� = �2	� = ��	  

Thus, just only one integral point at the middle of the 

interval [−1	 + 1] is necessary and sufficient to integrate 

exactly or approximately the function ����, such that �
 = 0 

and 

2�
 + ��0 = �
�� = �′
	  

Or, 

2�
 = �
	�� = �′
                                     (9) 

Expressions, such that �′  is the derivative of �  with 

respect to �, we can therefore rewrite ���� = �
 +�′
�                               (10) 

2. Polynomial functions of the third degree 

The third degree polynomial functions can be given by the 

expression ���� = 	
 + 	�� + 	��� + 	9�9               (11) 

In Cartesian coordinates, and in parametric ones, by ���� = �
 + ��� + ���� + �9�9              (12) 

Such that, 

!""
#
""$�
 = 	
 + )�	� + ()�*� 	� + ()�*9 	9�� = )�	� + 2()�*� 	� + 3()�*9 	9	�� = ()�*� 	� + 3()�*9 	9	�9 = ()�*9 	9	

           (13) 

Moreover, in order to deduct the expressions relating 

between �
, �1 and �′1, it shall resolve the linear equations 

system 

8�
 + �� + �� + �9 = ��	�
 − �� + �� − �9 = ����� + 2�� + 3�9 = �3�	�� − 2�� + 3�9 = �′��	                      (14) 

Such that ����  and �′���  are evaluated at � = +1.  and � = −1.  respectively (the two limits of the interval), the 

results can be given thus by 

 

!""
#"
"$�
 = ��　��　;����　′��　′;��<�� = 9�　��　;����　′��　′;��<�� = �　′��　′;��<�9 = ��　��　;����　′��　′;��<

               (15) 

Therefore, the polynomial functions (12) in relation with 

the expressions of �
 (15), can be rewritten 

���� = ��=��=;����=3��=3;��< + 9�=��=;����=3��=3;��< � + �=3��=3;��< �� + ��=��=;����=3��=3;��< �9              (16) 

Following the same way, via the resolution of the equations system (7), the constants �
 of the polynomial function ���� (5)  

can be then deducted and related to �1 and �′1 for superior degrees 

3. The Integral Expressions of the Polynomial Functions 

1. The first degree polynomials (one integral point) 

For the first degree polynomial functions (10), their integral expression is the result of 

> = ? ��������
�� = @�
� + �′
2 ��A��

��
 

Or > = 2 × �
                                                                                     (17) 

And in Cartesian coordinates, as such 

)� × 2 × �
 = � × �
 = ��� − ��� × � (� = ������ *                                            (18) 

Such that �
 is the value of ���� at � = ������  (i.e. at � = ������ � + ������ , and � = 0). 

2. The third degree polynomials (two integral points) 

Based for the determination of �
  on the values of ���� and �′��� at −1. and +1. (i.e. at ��  and �� ), the third degree 

polynomials are defined by the expression (16), and their integral in the parametric formulation 
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> � ?  �����
�� �� � 2�
 + 23�� = 22��� + ���� − ��′� − �′���4 + 23 ��′� − �′���4  

Thus, 

> = 1.× ��� + ���� − �9 × ��′� − �′���                                                             (19) 

And in the Cartesian coordinates, 

> = �  ������� �� = �������� × DE����� + �����F − �9 × �������� × E�3���� − �′����FG                           (20) 

Such that �′ is the first derivative of the function � with 

respect to � and, 

H=���H7 = H�H7 H=���H� = )� H=���H�                    (21) 

And the multiplication factor ��� − ��� 2⁄  appears before, 

represents the Jacobean of the transformation, and appears 

also before the derivatives with respect to �  according to 

(21). 

3. The fifth degree polynomial functions (three integral 

points) 

In this proposed approach, the liberty is considered 

complete for choosing the integral points positions, and with 

the Gaussian fixed points positions, the derivatives parts 

disappeared. Also, if equal distances between points is 

chosen, for instance the two interval limits and its middle, the 

constants �
, �� and �< are thus given by �
 = �
 

�� = 4��� + ���� − 8�
 − ��′� − �′���4  

�< = −2��� + ���� + 4�
 + ��′� − �′���4  

Thus, the integral of the fifth degree polynomials, and 

which related to �
, �� and �< by, 

> = ?  �����
�� �� = 2�
 + 23�� + 25�< 

Can be easily simplified by the expression, 

> = L�M × ��� + ���� + �N�M × �
 − ��M × ��′� − �′���  (22) 

In parametric coordinates, and in the Cartesian ones by, 

> = �  ������� �� = �������� × D L�M × E����� + �����F + �N�M ×������ − ��M × �������� × E�3���� − �′����FG        (23) 

4. The seventh degree polynomial functions (four integral 

points) 

Suppose that  ���  is a seventh degree polynomial 

function, its exact integral in the parametric coordinates is 

related to �
, ��, �< and �N by, 

> = �  ������� �� = 2�
 + �9 �� + �M�< + �L �N        (24) 

Otherwise, easily could be expressed as such, 

> = O� × ��� + ���� +O� × E��/N + ���/NF +O�QQQQ × ��′� − �′��� +O�QQQQ × E�′�/N − �′��/NF         (25) 

Replacing �
 and �′
 by their expressions 

> = O��2�
 + 2�� + 2�< + 2�N� +O� (2�
 + �N� �� + �NR �< + �NS �N*+O�QQQQ�4�� + 28 + 16�N� +O�QQQQ (�<N� �� + �NU �< + �NV �N* 

The two expressions (25) and (24) shall be equal, and such that the following equations system is resulted 

!"#
"$ O� +O� = 1	O� + �N�O� + 2O�QQQQ + �NO�QQQQ = �9O� + �NRO� + 4O�QQQQ + <NUO�QQQQ = �MO� + �NSO� + 6O�QQQQ + NNVO�QQQQ = �L

                                                                       (26) 

Therefore, with the same process and for the ninth degree polynomial functions (5 integral points), the described system is 

deducted 
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!""
#
""$

O� � 2O� + 2O9 = 2	O� + �<O9 + 2O�QQQQ +O�QQQQ = �9O� + �<�O9 + 4O�QQQQ + ��O�QQQQ = �MO� + �<UO9 + 6O�QQQQ + 9�NO�QQQQ = �LO� + �<RO9 + 8O�QQQQ + 9�NO�QQQQ = �W

                                                                       (27) 

From one to five integral points, the weights O
 and OXQQQ of ���
� and �′��
� according to the number of points and their 

chosen positions �
 are cited in Table 1 (Appendix). Moreover, the lecturer can exercise polynomials of superior degrees or any 

favorable chosen points’ positions. 

Otherwise, in two dimensions it shall find the quadrature formulas for  =  ��, Y� by integrating with respect to � and then 

with respect to Y. For a quadrilateral interval area, the limit integral of the polynomial in the parametric formulation square 

area, would be formulated by 

> = ? ?  ��, Y���
�� ���Y��

�� = ? Z[O
 ��
 , Y� + OXQQQ ′,7��
 , Y�
 \��
�� �Y

=[]O+ Z[O
 E�
 , Y+F +OXQQQ ′E�
 , Y+F
 \ + ÔQQQ Z[O
 ′,_E�
 , Y+F +OXQQQ ′,7_E�
 , Y+F
 \`+  

Or > = ∑ ∑ aO
O+ 
+ +OXQQQO+ ′
+,7 +O
ÔQQQ ′
+,_ +OXQQQÔQQQ ′
+,7_b+
                                 (28) 

Moreover, in three dimensions (or in a cubic area of a limit integral), the lecturer would be concluded then 

> = ? ? ?  ��, Y, c���
�� ���Y�c��

��
��
��  

Is spreading by 

> = ∑ ∑ ∑ DO
O+O1 
+1 +OXQQQO+O1 ′
+1,7 +O
ÔQQQO1 ′
+1,_ +O
O+O1QQQQ ′
+1,d +OXQQQÔQQQO1 ′
+,7_ +O
ÔQQQO1QQQQ ′
+1,_d +1+
 OXQQQO+O1QQQQ ′
+1,7d +OXQQQÔQQQO1QQQQ ′
+,7_dG                                                           (29) 

Expressions with which, �
+  and �′
+,7  are respectively, 

the ordinates of � at the point E�
 , Y+F and its first derivative 

with respect to �, and so on for the remaining ordinates and 

their first derivatives. For more details, it is easier to 

determine the multidimensional integral formulas for 

polynomials defined in triangles and tetrahedrons. 

4. Results and Discussion 

For the element beam, with the elasticity modulus e , 

inertia moment > and length �, the deformation-displacement 

vector fgh is given by 

fgh = i− 6�� + 12�9 �	 − 4� + 6�� �	 6�� − 12�9 �	 − 2� + 6�� �j 
And the stiffness matrix klm  shall be computed via 

integration 

klm = ? fghne>fgh��)

 = e>? fghnfgh��)


  

Using two integral points, for computing the stiffness 

element l��, thus 

l�� = e> �2 o1.× ��� + ���� − 13 × �2 ��′� − �′���p 
Expression such that, 

���� = (− N)� + ��)U �*�, and �′��� = �<)U (− N)� + ��)U �* 

Thus, �� = 9N)R, ��� = 9N)R, �′� = �<<)V  and 　′�� = − �<<)V  

Via the expressed relation above, therefore 

l�� = 12e>�9 = q��rs	tuvws�u� 

Moreover, with the same way, the lecturer can easily verify 

the remaining elements of the matrix, and conclude that are 

just the constitution elements of the stiffness matrix for the 

two nods beam element deducted by direct integration 

klm = x12 6� 	−12									6�	4�� 	−6�								2��			12				 − 6�	yz{																												4�� | 
Exact results would be obtained for all the stiffness 
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elements, and using also the Gauss quadrature, putting � � )� �� � 1� and � = ±√3, and the between difference that 

the vector fgh  is actually computed at � = ±1  instead of � = ±√3, the fact which conducting to compute the stresses 

and strains at the same points which represents an 

inconvenience with Gauss quadrature and in this contributed 

quadrature is actually modified. 

For the cubic polynomial function ���� = 	
 + 	�� + 	��� + 	9�9 

Its direct exact integral from 0 to � 

? ����)

 �� = 	
� + 12	��� + 13	��9 + 14	9�< 

Using the numerical formula (20), 

> = �2 oE���� + ��0�F − 13 �2 E�3��� − �′�0�Fp 
Thus, ���� + ��0� = 2	
 + 	�� + 	��� + 	9�9 �3�)� −�′�0� = 2	�� + 3	9�� 

Replacing by in the formula above, we deduct 

> = 	
� + 12	��� + 13	��9 + 14	9�< 

Which is exactly the exact limit integral from 0 to �  of ����. 
Using this approach, exact results would be obtained thus 

for polynomial functions with degrees less than the odd 

degree of ����  and approximately for every else 

mathematical functions, noting that the notion of the 

quadrature would be also applied to this proposition with 

respect to the ordinates of the polynomial functions 

themselves, with which the derivatives parts, only represent 

contributions to meet the integration exact results.  

5. Conclusion 

For the finite elements analyses, the stresses and strains 

and the elements of the deformation-displacement matrices in 

solid mechanics, the analysts in general are needing actually 

to obtain the results at the levels of nods of elements, such 

that the extrapolation functions and especially at the edge 

nods, don’t allow to offer good precisions. Moreover, the 

proposed integration formulas for polynomials, which 

addressed especially to the finite elements developers, such 

as they could be more favorable for finite elements analysts, 

and also for the integration of polynomials in general. In 

addition, such as the same obtained numerical results using 

the developed formulas and would be otherwise, obtained 

using Gauss quadrature and exact direct integration ones, 

thereof the intervention of the first derivatives ordinates 

herein, mean just that the complete liberty of the choosing 

points positions, and their contributions in this effect to get 

exact numerical integration of polynomial functions and 

avoid actually the required points’ positions in the classical 

Gaussian quadrature. 

Appendix 

Table 1. The scale of numbers, points’ positions and the weights of the 

proposed quadrature. � �� ������ ��QQQQ��′�� 
1 0. +2. 0. 

2 -1. +1. +1/3 

 +1. +1. -1/3 

3 -1. +7/15 +1/15 

 0. +16/15 0. 

 +1. +7/15 -1/15 

4 -1. +453457/1500625 +3419/128625 

 -1/6 +1047168/1500625 -8352/42875 

 +1/6 +1047168/1500625 +8352/42875 

 +1. +453457/1500625 -3419/128625 

4 -1. +61/189 +1/35 

 -1/2 +128/189 +32/315 

 +1/2 +128/189 -32/315 

 +1. +61/189 -1/35 

5 -1. +1601/8505 +29/2835 

 -1/2 +4096/8505 -128/2835 

 0. +208/315 0. 

 +1/2 +4096/8505 +128/2835 

 +1. +1601/8505 -29/2835 
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