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Abstract: Two dimensional steady Stokes flow around a circular cylinder is examined in the light of complex variable 

theory and a circle theorem for the flow, are established. The theorem gives a complex variable expression of the velocity for a 

Stokes flow external to a circular cylinder, in terms of the same variable expression of the velocity for a slow and steady 

irrotational flow in unbounded incompressible viscous fluid, and also gives a formula for the steam function for the flow. A 

few illustrative solutions of Stokes flow around a circular cylinder are presented. 

Keywords: Two Dimensional Stokes Flow, Complex Variable Theory, Circle Theorem 

 

1. Introduction 

It is well known (1) that for a two –dimensional uniform 

streaming motion past a circular cylinder there exists no 

solution of the governing Stokes equations. It is in great 

contrast to the corresponding three-dimensional problem of a 

uniform stream disturbed by a sphere. This situation for the 

motion past a circular cylinder is known as the Stokes 

paradox. (2) Recently, Avudainayagam, Jotiram and 

Ramakrishna (3) have established a necessary condition 

(called the consistency condition) for the existence of plane 

Stokes flow past a circular cylinder and the authors have also 

given, for the first time, an explanation of the Stokes paradox 

with the aid of the same condition. Sen (4) has given a circle 

theorem for the stream function for two-dimensional steady 

Stokes flow past a rigid circular cylinder in terms of the 

stream function for a slow flow in an unbounded 

incompressible viscous fluid. Usha and Hemalatha (5) have 

also established a circle theorem for the stream function for 

plane Stokes flow past a shear free impermeable circular 

cylinder. 

In the present paper, we have found it much convenient to 

a study on Stokes flow past a circular cylinder in the light of 

complex variable theory is considerably convenient here for 

the formulae for the same flow are mathematically concise, 

and have “initial conditions” which are very simple. In 

Section 3,we have given the first theorem for the complex 

velocity and the stream function for plane Stokes flow 

external to the circular cylinder, when the primary flow in an 

unbounded incompressible viscous fluid is irrotational 

everywhere, and this theorem corresponds to Milne-

Thomson’s circle theorem for potential flow (6) By making 

use of Taylor’s series which is well known in complex 

variable theory, the second theorem which is similar to the 

first one stands for the flow internal to a circular cylinder. We 

also easily show that the Stokes flow problem only for a two 

dimensional source or sink, etc. outside a circular cylinder or 

a two dimensional uniform streaming function past the same 

cylinder does not exist; but we have found that their 

combination taken two or more at a time, by choosing their 

“strengths” and “positions” suitably, gives Stokes flow 

around a circular cylinder. This phenomenon is illustrated by 

the exact solutions of a number of the Stokes flow past a 

circular cylinder with the aid of the “Cauchy Integral formula 

for multiply-connected region”, well known in complex 

variable theory ; and the same theorem gives the formulae for 

the velocity and the stream function for the flow. In Section 2 

we begin with a discussion of the fundamental singular 

solutions of the Stokes equations with external force and give 

the formulation of the velocity and pressure of the two 

dimensional fundamental singularities, such as Stokeslet, 

Stoke doublet, rotlet, potential doublet, etc in order to use the 

theorem in the application of theorem. 

2. Fundamental Solutions of the Two 

Dimensional Stokes Equations 

The complex variable formed by the two dimensional 
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Stokes equations for a steady motion in an incompressible 

viscous fluid can be obtained in a quite easy manner and 

these are 

22
4 ( )

p
u iv F

z z z
ϑ

ρ
∂ ∂= + +
∂ ∂ ∂

                   (1) 

And. 

�

��
�� + ��� 	+

�	

��̅
�� − ��� = 0              (2) 

Where � = √−1 , u and v are the Cartesian velocity 

components, p the pressure, �  the constant viscosity co-

efficient and ϑ  is kinematic viscosity where 

1 2 1 2,F F iF F and F= +  being the Cartesian components of 

external force per unit volume. In this note for two 

dimensional flow in a viscous fluid we denote the 

combination u-iv by the symbol υ  so that. 

( ),= = −z z u ivυ υ                         (3) 

Here we shall call �  the complex velocity after Milne-

Thomson (6) who first called � , having expression (3) 

without, �̅, the complex velocity in connection with potential 

flow. 

We then define the complex conjugate of the complex 

velocity � as  

( ),z z u ivυ υ= = +                          (4) 

Now we need the relation between � the complex velocity  

�̅ and the stream function ( , )z zψ
 

For a flow in an incompressible viscous fluid; and since 

we have, in (6, p.174), the expression. 

2u iv i
z

ψ∂− = −
∂

                              (5) 

Next by making use of results (3) and (4) in the Stokes 

equations (1) and (2), we obtain the new Stokes equations as. 

22
4

p

z z z
ν υ

ρ
∂ ∂=
∂ ∂ ∂

                     (6) 

And 

0
z z

υ υ∂ ∂+ =
∂ ∂                             (7) 

Here note that expression (6) is the complex conjugate of 

equation (1) and further note that p p=  since p is a real 

scalar function. In this case the vorticity, ξ , of the fluid 

motion is given by. 

2i
z

υξ ∂=
∂

                              (8) 

We then give below the complex variable forms of the 

fundamental solutions to the two dimensional Stokes 

Equations (6) and (7), which corresponds to the vector forms 

of the fundamental solutions to the three dimensional Stokes 

equations in Chwang and Wu (9). 

The primary fundamental solution of Equations (6) and 

(7), is concerned with a singular point force located, say at 

the origin, 

4 ( ) ( )sF x yπµαξ ξ=                           (9) 

α  being a constant complex quantity, and ( ) ( )x and yξ ξ  

one-dimensional Dirrac delta functions. α  characterizes its 

strength (in magnitude α  and direction arg α ). 

In fact, expression (9) is the rwo-dimensional Stokeslet in 

(7, expression (18)) by treating the constant vector α̂ . The 

solution of equations (6) and (7) for the Stokeslet 
sFF =

can be obtained in quite a straightforward manner. Thus the 

complex velocity 
s sand pressure Pυ

 
of a Stokeslet of 

strength α  at the origin are given by. 

( ) ( )1 1
, ; log

2 2
s

z
z z zz

z

α
υ α α

α
= − +             (10) 

And 

( ), ;sP z z
z z

α αα µ
 

= + 
 

                (11) 

Clearly, a derivative of any order of s sand Pυ  is also a 

solution of equation (2.7), the corresponding. 

F  being the derivative of the same order of the conjugate 

of the Stokeslet. We may now introduce two-dimensional 

potential doublet, potential quadrapole, rotlet, stresslet etc. as 

follows. A two- dimesnional potential doublet corresponding 

to its three dimensional as analogue in (9) has the simple 

complex velocity representation. 

( ) 2

1
, ;D z z

z
υ α α=                      (12) 

Where α  (a constant complex quantity) is the doublet 

strength. It is of interest to note that a potential doublet is 

related to the Stokeslet by. 

( ) ( )21
, ; , ;

2
D sz z z zυ α υ α= − ∇                   (13) 

Where 
2

2 4
.

z z

∂∇ =
∂ ∂  

The corresponding pressure is given by. 

( )21
( , ; ) , ; 0

2
D sP z z P z zα α= − ∇ =                (14) 

The potential quadrapole and potential octupole may be 

introduced respectively as the complex velocities. 
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( ) ( )4

3

, ; , , ;

1
2

D Dz z z z
z z

z

υ α β β β υ α

αβ

∂ ∂ = − + ∂ ∂ 

=
       (15) 

And. 

( ) ( )8

4

, ; , , , ;

1
6

D Dz z z z
z zz z

z

υ α β γ γ γ β β υ α

αβγ

∂ ∂ ∂ ∂  = + +  ∂ ∂∂ ∂  

= −
  (16) 

And their corresponding pressures are zero andβ γ , being 

constant complex quantities. Similarly, the Stokes doublet, 

Stokes quadrupole, etc. may be introduced as follows. 

( ) ( )

( ) 2

, ; , , ;

1 1 1

2

SD Sz z z z
z z

z

z z z

υ α β β β υ α

αβ αβ αβ αβ

∂ ∂ = − + ∂ ∂ 

  
= − + +   

  

             (17) 

( ) ( )

2 2

, ; , , ;

1 1

SD SP z z P z z
z z

z z

α β β β α

µ αβ αβ

∂ ∂ = − + ∂ ∂ 

 
= + 

 

             (18) 

( ) ( )

( )( )

4

2 2 3

, ; , , , ;

1 1 1
2

2

S Sz z z z
z zz z

z

z zz

υ α β γ γ γ β β υ α

γ αβ αβ γαβ αβγ αβγ

∂ ∂ ∂ ∂  = + +  ∂ ∂∂ ∂  

  
= − + − +  

   

 (19) 

( ) ( )4

3 3

, ; , , , ;

1 1
2

S SP z z P z z
z zz z

z z

α β γ γ γ β β α

µ αβγ αβγ

∂ ∂ ∂ ∂  = + +  ∂ ∂∂ ∂  

 
= + 

 

  (20) 

We then recognize the anti-symmetric component (with 

respect to interchange of the complex quantities andα β ) of 

the Stokes doublet (17) gives a fundamental singularity; it is 

called a rotlet by Chwang and Wu (8), and also a couplet by 

Batchalor (11). Its complex velocity and pressure have the 

following simple representations. 

( ) ( ) ( )1
, ; , ; , ;

2

1

R S Sz z ik z z z z
z zz z

ik
z

υ α α υ β β β υ α∂ ∂ ∂ ∂    = + − +    ∂ ∂∂ ∂    

=

                                  (21)

And. 

( ) ( ) ( )1
, ; , ; , ; 0

2
R S SP z z ik P z z P z z

z zz z
α α β β β α∂ ∂ ∂ ∂    = + − + =    ∂ ∂∂ ∂    

                      (22) 

Where ( )1

2
ik αβ αβ= −  is a pure complex number. 

Again the symmetric component (with respect to an 

interchange of the complex quantities )andα β  of the 

Stokes doublet is itself a physical quantity called a stresslet 

after Batchelor (11). Its complex velocity and pressure are 

respectively. 

( ) 2

1 1
, ; ,

2
SS

z
z z

z z
υ α β α β αβ

 
= + 

 
            (23) 

And. 

( ) 2 2

1 1
, ; ,SSP z z

z z
α β µ αβ αβ

 
= + 

 
         (24) 

Finally, note that the term of 
2

1

z
 in the Stokes quadrapole 

(19) is a fundamental singularity, i.e., a potential doublet; and 

so the remaining terms of 
2 3

1 z
and

zz

, as a whole, in the 

same quadrapole constitute another fundamental singularity 

which is symmetric with respect to interchange of any two of 

the complex quantities , , .α β γ
 
We may call it the Stokes 

quadrapole and its velocity and pressure are as follows. 

( )4 2 3

1 1
, ; , , 2

2
S S

z
z z

zz
υ α β γ αβγ αβγ

 
= − + 

 
      (25) 

And. 

( )4 3 3

1 1
, ; , , 2S SP z z

z z
α β γ µ αβγ α βγ

 
= + 

 
       (26) 

3. The Circle Theorems 

In the case f conservative forces the Stokes equation (6) 

reduces to the form. 

( )
2

2p
z z z

υ∂ ∂+ Ω =
∂ ∂ ∂

                    (27) 

Where Ω  is the potential function due to the forces. The 
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complex conjugate form of this equation is. 

( )
2

2p
z z z

υ∂ ∂+ Ω =
∂ ∂ ∂

                   (28) 

Wherein we note p p and= Ω = Ω , since p and Ω  are 

real (scalar) functions. 

Now a differential equation satisfied by ( )p + Ω  without 

the complex velocity υ  can be obtained from equations (27) 

and (28) with the aid of the mass conservation equation (7) 

as. 

( )
2

0p
z z

∂ + Ω =
∂ ∂

                           (29) 

And therefore by using this result in (27) we have the 

following equation for the complex velocity. 

3

2
0

z z
υ∂ =

∂ ∂
                             (30) 

Finally, substituting (2.6) in this expression, gives the 

equation for steady Stokes flow, satisfied by the stream 

function ( ),z zΨ  as. 

( )
4

22
2 0i

z z

∂ Ψ =
∂ ∂

                          (31) 

This equation for Stokes flow is in agreement with that in 

Milne-Thomson (6, p.683), and the solution of it for 2iΨ , 

due to him is stated here in a slight different form for future 

reference as follows. 

( )2 ( ) ( ) ( )i zW z zW z w z dz w z d zΨ = − + −∫ ∫         (32) 

Where w (z) and w (z) are arbitrary complex functions. By 

applying formula (5) to this expression, we then obtain the 

general complex velocity for two-dimensional steady Stokes 

flow as follows. 

( ) ( ) ( ), ( )z z W z zW z w zυ ′= − −               (33) 

Where the prime in second term of the R.H.S of (33) 

denotes differentiation with respect to z. The expression for 

( )p + Ω  corresponding to the complex velocity (33) is given 

by. 

( ) ( ) 02p W z W z pµ ′ ′+ Ω = − + + 
 

             (34) 

Where 
0p  is an arbitrary real constant. 

First we present relatively simple expressions for he 

complex velocity and the stream function for a two-

dimensional steady Stokes flow external (or internal) to a 

circular cylinder in terms of the complex velocity for a slow 

irrotational flow in an incompressible viscous fluid with no 

rigid boundaries. 

Circle Theorem: Let there be steady, slow and two-

dimensional irrotational flow in incompressible viscous fluid 

with no rigid boundaries, in the z-plane. Let the flow be 

characterized by the complex velocity 0 0 ( )zυ υ= , whose 

singularities are all at a distance greater than a from the 

origin, and let 0 ( )kzυ ο≈  for 1k ≥ , at the origin. If a circular 

cylinder of radius a (whose intersection with the z-plane is 

the circle : z aΓ = ), be introduced into the flow, the 

complex velocity and the stream function for the Stokes flow 

past the circular cylinder become respectively. 

( )
2 2 2

*
00 0 0 0, ( )

a a a
z z z z

z zz
υ υ υ υ υ υ

     ′
= + = − + −     

     
  (35) 

And 

( )

( )

2 2

0 0
0

2 2 2 2

00
0

1

2

( )

a a
i z z z dz

z z

a a a a
z d z d z dz

z zz z

υ υ υ

υ υ υ

   
Ψ = − +   

   

  ′′− + − 
 

∫

∫ ∫ ∫
     (36) 

2 2 2
*

00 0

a a a
where z

z zz
υ υ υ

     ′
= − + −     

     
       (37) 

is the perturbation complex velocity and where the prime 

denotes differentiation with respect to z. 

Proof The proof essentially consists in showing that the 

complex velocity (35) must satisfy the following four 

conditions, and in deriving the stream function (36) out of the 

complex velocity. 

(i) Expression (35) must be obtained from the general 

complex velocity (33) 

(ii) ( ): , , 0On z a z zυΓ = =  (implying that the radial 

and azimuthal (or tangential) components of the 

velocity of the fluid motion on Γ vanish). 

(iii) *
0υ  must introduce no singularities outside .Γ  

(iv) The perturbation velocity, i.e., 
*

0υ  must tend to 

vanish as .z → ∞  

First, if we assign to the (arbitrary) complex functions W 

(z) and w (z) referred to the general complex velocity (3.7) 

the expressions 
2 2 2

0 00( ) ( ) ( )
a a a

W z and w z z
z z z

υ υ υ
   ′

= − = − +   
   

 

the complex velocity (35) is obviously obtained. Thus 

condition (i) is satisfied. 

Since on the circle 
2, zz aΓ = , it is then simple to see that 

on the same circle ( ), 0z zυ = . Therefore condition (ii) is 

satisfied. 

Next, to verify condition (iii) we note that z and 
2a

z
 are 

inverse points with respect to the circle Γ . So if the point z 
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is outside Γ , the point 
2a

z
 is inside Γand vice versa. Thus 

the singularities of ( )0 zυ  f, by hypothesis, being at distances 

greater than a from the origin (i.e. outside Γ ), those of 
2 2

00( ) ( )
a a

and
zz

υ υ ′
 and therefore of *

0υ  are at distances less 

than a from the origin (i.e., inside the circle) Therefore *
0υ  

introduces no singularities outside so that condition (iii) is 

satisfied. 

Again since 0 ( )kzυ ≈ Ο  for 1k ≥  at the origin, it is simple 

to calculate that 
*

0

1
k

z
υ

 
 ≈ Ο
 
 

 for large z  so that the 

perturbation velocity 
*

0υ  tends to zero as z → ∞ . This 

shows that the remaining condition (iv) is satisfied. 

Finally, substitution of the complex functions 
2 2

0 0 0( ) ( )z

a a
W and w z z

z z
υ υ υ
  ′

= − = − + 
 

 in formula (32) 

yields easily required stream function (3.10) for the Stokes 

flow past the circular cylinder z a= . (Here note that by 

making use the complex velocity (35) in formula (5), we can 

also obtain the stream function (36). This completes the proof 

of the theorem. 

[Remarks: When the singularities of an arbitrary complex 

velocity ( )0 zυ  are all outside the circle 0: , ( )z a zυΓ =  is 

analytic inside Γ; and therefore at each point z inside, has in 

general, a Taylor’s series, well-known in complex variable 

theory, about the origin (the centre of Γ ), of the form. 

2
0 0 1 2( )z b b z b zυ = + + +                        (38) 

Where 0 1 2, , ,b b b etc  are all constants. 

It is now simple to see ( )0 0 0( ) , 0z b bυ ≈ Ο ≠  at the origin, 

and therefore expression (3.11) referred to in the circle 

theorem 1 yields non-zero perturbation velocity, i.e, 

( )*
0 0 .b as zυ ≈ Ο → ∞  Hence for a primary flow 

characterized by the complex velocity )(00 zυυ =  whose 

singularities are all at distances greater than a from the origin 

and ( )0 0 0( ) , 0z O b bυ ≈ ≠ , at the origin the Circle Theorem 1 

does not give the Stokes flow past the circular cylinder 

z a= . 
 
For example, the primary complex velocities of a 

uniform stream in the positive direction of the x-axis, a 

simple source of strength 1m  at the point 1z z= , and a simple 

sink of strength 2m  at the point 2zz = , in an 

incompressible viscous fluid, are respectively, say 

(1) (2) (3)1 2
0 0 0

1 2

( ) , ( ) ( )
( )

m m
z z and z

z z z z
υ υ υ υ −= = =

− −
, where 

the points 1 2z and z  are outside the circle Γ . It is then easy 

to calculate that each of these complex velocities follows the 

condition ( )0 0 0( ) , 0z b bυ ≈ Ο ≠ , at the origin, referred above 

(instead of the condition ( )0( ) , 1kz z kυ ≈ Ο ≥ , at the origin, 

referred to in the Circle Theorem 1). Thus by the Circle 

Theorem 1 the Stokes flow problem for a uniform stream or a 

simple source or sink outside a circular cylinder does not 

exist but after taking the suitable combination of them taken 

two or more at a time, that the same theorem gives the Stokes 

flow past a circular cylinder is illustrated below]. 

We now show how Circle Theorem 1 presents, in a 

relatively simple way, exact solutions to a number of stokes 

flow problems (a), (b), (c), (d), and (e) referred below. The 

last two ones have been previously obtained by different 

methods. (a) a source superimposed on a uniform stream past 

a circular cylinder. 

Let there be a simple source of strength m at the point on 

the x-axis of the positive direction and a uniform stream 
m

f
 

in the same direction of the same axis, in an incompressible 

viscous fluid, where ( ),f a∈ ∞  They constitute a basic flow 

whose complex velocity is given by. 

0 ( )
m m

z
z f f

υ = +
−

                         (39) 

We then easily see ( )0 zυ ≈ Ο  at the origin. Therefore 

when the circular cylinder z a=  is introduced into the flow, 

the circle theorem 1 yields the following expression for the 

complex velocity for the Stokes flow past the cylinder. 

( ) ( )
2

2 2 22

2 2 2 2 3 2
2 2

1 1
,

( )

a
z ma f am m ma m mf

z z
z f f zf z a a f z aa zf z f ff

υ

 
 − − 

= + + + − + − − − −   −−  
  

               (40) 

Where the last five terms constitute the image system 
within the circular cylinder, which thus consists of. 

(i) A stresslet of strength 
2

2

2ma

f
 formed by the 

combination of the third and fourth terms, at the point 

2

.
a

z
f

=  

(ii) A sink of strength m at the origin. 

(iii) A source of strength m at the point 
2a

z
f

= , and, 
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(iv) A doublet of strength 
2 2 2

3

( )ma f a

f

−
 at the point 

2a
z

f
=  with its axis in the negative direction of the x-

axis. 

(v) Here we are interested in seeing the form of the stream 

function Ψ in terms of the polar co-ordinates ( , )r θ . 

Substitution of expression (39) in formula (36) yields the 

stream function Ψ  in terms of z and z  for the Stokes flow 

which on the transformation to the polar co-ordinates ( , )r θ , 

takes after reduction the form. 

2

2
1

2 2 4
2

2

2 2 2
1

2 3 2 4
2

2

sin 2 2 ( )sin
sin

tan ( ) sin
cos

2 ( )cos

sin ( ) sin
tan ( ) .

cos 2 cos

a
r r

r m ma f
m r

r f f f a a
r r

f f

r ma f a r
m m

a f a a
r r r

f f f

θ θ
θ θ

θ
θ

θ θθ
θ θ

−

−

−
Ψ = − − −

−
− +

−+ − +
 

− − + 
 

                                       (41) 

Here it is of interest to note that the expression 

1 ( sin )
tan , sin ,

cos

r m
m r etc

r f f

θ θ
θ

−− −
−

 of this result are 

respectively the stream functions of the (flow) singularities 

( )
,

m m
etc

z f f−
, referred to in the complex velocity (3.14). 

(b) A source and a sink outside a circular cylinder. 

Consider a source of strength 
1

2
m  at the point z f−  and 

a sink of strength m at the point 2z f= . On the x-axis of the 

positive direction, in a viscous fluid, where ( ),f a∈ ∞ . The 

complex potential of the primary flow in this case may be 

given by 

0

1

2( )
( ) ( 2 )

m
m

z
z f z f

υ = −
− −

                 (42) 

Next it is simple to calculate 0 ( ) ( )z zυ ≈ Ο  at the origin. 

Therefore, the circle theorem 1 is applied here; and thus from 

(35) the complex velocity for the Stokes flow past the 

circular cylinder z a= , on omitting the details of the 

algebraic reduction, becomes. 

( ) ( )

( ) ( )

2

2

2 2 2
2

2

2

2 2 2
2

2 2 2 2 2 2

2 3 2 3 22 22

1
, ( )

2 2 2
( )

1 1 12
(

24

2 2

41 1 1

2 2 8
( ) ( )

2 2 2

a
z

m m ma f
z z

z f z f f a a
z z

f f

a
z

ma f
m

zf a z az
f f

ma f a ma f am m

a f a fa az zz zf ff f

υ
−

= − + +
− −

− −

−
− + +

 −−
 
 

− −
+ − − +

   − −−  − 
   

             (43) 

Where the last nine terms constitute the image system 

within the circular cylinder in the following manner. 

A stresslet of strength 
2

2

ma

f
, consisting of the third and 

fourth terms, at the point 
2

.
a

z
f

=  

Another stresslet of strength 
2

22

ma

f
− , consisting of the fifth 

and sixth terms, at the point 
2

.
2

a
z

f
=  

(i) A source of strength 
1

2
m  at the origin. 

(ii) Another source of strength 
1

2
m  at the point 

2a
z

f
= . 

(iii) A sink of strength m at the point 
2

.
2

a
z

f
=  
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(iv) A doublet of strength 
( )2 2

2

3
2

f a
ma

f

−
 at the point 

2

2

a
z

f
=  in the negative direction of the x-axis. 

(v) Another doublet of strength 
( )2 2

2

3

4 f a
ma

af

−
 at the 

point 
2

2

a
z

f
=  in the positive direction of the x-axis. 

(vi) The corresponding stream function Ψ  for the Stokes 

flow, in the same way of getting expression (41) 

appear as  

( ) ( )

2
2

2
1 1

2 2 4
2

2

2
2

2
1 1

2 2 4 2
2

2

sin 2 2 sin
1 sin sin

tan tan
2 cos cos 2 2

2 cos

sin 2 sin
1 1 sin sin

tan tan
2 24

coscos cos
4

a
r r

fr r ma
m m

r f r f f a a
r r

f f

a
r r

fma r r
m m m

f aa a a
rr r r

f ff

θ θ
θ θ

θ θ
θ

θ θ
θ θθ

θθ θ

− −

− −

 
−  

 Ψ = + −
− −  

− + 
 

 
−  

 + − − +
   

−− + −   
   

2

2 2 2 2 2 2

3 32 4 2 4
2 2

2 2

2

( ) sin (4 ) sin

2 8
2 cos cos

4

f

ma f a r ma f a r

f fa a a a
r r r r

f ff f

θ θ

θ θ

 
 
 
 
 
 

− −+ −
   

− + − +   
   

 

4. Conclusion 

In the present paper, we have found it much convenient to 

a study on Stokes flow past a circular cylinder in the light of 

complex variable theory and it is considerably convenient 

here. That is because the formulae for the same flow are 

mathematically concise and have “initial conditions” which 

are very simple. Therefore, it has been possible to establish a 

circle theorem for the flow with respect to the complex 

variable theory. 

 

References 

[1] G. G STOKES, Trans.Camb.Phil.SOC. 8 (1845), 287-319. 

[2] J. HAPPEL and H. BRENNER, Low Reynolds Number 
Hydrodynamics (4th print, Martinus, Nijhoff Publishers 
1986). 

[3] A. AVUDAINAYAGAM, B. JOTHIRAM and J. Ramakrishna, 
Q. JI Mech appl. Math.39 (1986), 425-434. 

[4] S. K. SEN, Z. angew, Math. Phys (ZAMP), 40, (1989) 139-
146. 

[5] R. USHA and K. Hemalatha, Z. angew, Math. Phys (ZAMP) 
44, (1993), 73-84. 

[6] L. M. MILNE-THOMSON, Theoretical Hydrodynamics, 5th 
Edition, 1968. 

[7] E. W. Langlois, Slow Viaocus Flow, The Macmillan 
Company, New York, 1964, 159. 

[8] A. E. Green and W. Zerba, Theoretical elasticity 2nd edition, 
Oxford University pass, 1968, 286-287. 

[9] A. T CHWANG and T. Y. WU, J. PLUID. Mech.67 
(1975).787-815. 

[10] A. T CHWANG and T. Y. WU. proc. ROY. Soc. B 178 (1971) 
327-346. 

[11] G. K. BATCHELOR, J.Fluid.Mech.41 (1970a) 545-570. 
 


