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Abstract: In Madagascar, domestic rice production does not meet the local demand. Thus, increasing productivity is crucial 

for ensuring food security for a booming population. The last two decades have been marked by technological improvements in 

support of a vision of agricultural development. The main objective of the present study is to evaluate rice productivity in 

Madagascar based on changes in technology and the planted area during the period from 1961 to 2017. To conduct our analysis, 

we construct a set of statistical models involving time-varying parameters that capture the changes in productivity and progress 

in rice production technology. To estimate these time-varying parameters, we apply Bayesian methods based on the smoothness 

prior approach. The estimates for variances in system noise show that the proposed model is well fitted to the data. In addition, 

the results provide the interesting finding that technological change is estimated to be elastic, with values increasing from 1 to 8 

during the six decades of the study period. However, the planted area estimates are inelastic, despite positive values fluctuating 

around 0.9–1. Thus, rice productivity in Madagascar is highly dependent on technology, although more time is required before a 

positive response is seen. 
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1. Introduction 

In Madagascar, the agricultural economy revolves around 

rice production, which is a staple food item accounting for 

44% of local food consumption, as well as the most 

lucrative crop, accounting for 30% of total income [1]. 

However, the agricultural sector has performed poorly over 

the last few decades, with domestic production failing to 

satisfy local demand, necessitating the importation of rice 

[2]. This has been at least partly attributable to the booming 

population, which is mainly composed of rural farming 

families, and has increased from five million in 1960 to 

more than 25 million in 2019 [3, 4]. Thus, food security has 

become a crucial issue, and improving rice productivity is a 

major challenge [5]. Technological improvements have 

provided support for rice farmers via agricultural projects 

undertaken by international organizations in an effort to 

enhance productivity in a sustainable way [6, 7, 8].  

Thus, this study focuses on evaluating the dynamics of rice 

production in Madagascar. We consider the changes in 

technology related to rice production and production 

elasticity with respect to the planted area (hereafter planted 

area elasticity). The main purpose of this study is the 

estimation of the time-varying technological elasticity and 

the time-varying planted area elasticity in Madagascar during 

the period 1961–2017. Thus, we construct a set of Bayesian 

linear models with smoothness priors for the time-varying 

parameters. The models can be expressed in state–space form, 

and thus we can use Kalman filter algorithms to estimate the 

time-varying parameters that are involved in the state vector. 

We hypothesize that rice productivity can be explained by 

two main factors: improved technology over time, and 

decreasing planted area elasticity as the planted area has 

increased. This approach has been used in the few studies 

applying advanced statistical methods to analyze rice 

productivity in Madagascar, while other studies have used 

traditional econometric models.  

The rest of the paper is structured as follows: Section 2 
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explains the data used in the analysis and presents the 

model specifications and the Kalman filter methodology. 

Section 3 analyzes the estimated results and presents a 

discussion of the findings. Section 4 concludes. 

2. Materials and Methods 

2.1. Data 

In this study, we estimated and analyzed rice productivity in 

Madagascar based on annual time-series data for planted area 

(ha) and crop yield (tons) during the period from 1961 to 2017. 

The data were obtained from the FAOSTAT database (2019). 

Figure 1 shows the analytical process.  

 
Figure 1. The analytical process. 

Table 1. Descriptive statistics for rice planted area, yield, and production in 

Madagascar. 

DESCRIPTIVE 

STATISTICS 

PLANTED AREA YIELD PRODUCTION 

HA KG/HA TONS 

MEAN 1,101,543 2,3 2,543,013 

MINIMUM 730,000 1,66 1,465,000 

MAXIMUM 1,307,043 4,4 4,737,965 

Table 1 presents the descriptive statistics based on the raw 

data. The rice planted area in Madagascar accounts for 12% of 

the African total of 8 million hectares and 5% of the global 

total of 160 million hectares. Madagascar is one of the three 

biggest producers of rice in Africa, together with Egypt and 

Nigeria. The average yield in Madagascar is less than 0.7 

tons/ha, while the average global yield is 3 tons/ha [9]. 

 
Figure 2. Planted area (solid area) and rice production (dotted line) in 

Madagascar from 1961 to 2017. 

The Figure 2 shows the time-series data for the rice planted 

are and rice production in Madagascar from 1961 to 2017. 

There are similar trends in relation to the planted area and rice 

production over this period, whereby they both increased from 

1960 to 2010, after which they both decreased. This reflects 

the major political crisis in 2009 that impacted 60% of the rice 

crop because foreign financial aid ceased until 2013 and 

interrupted international agricultural development projects, 

also the impact of climate change causing dryness in 2016 

[10-13]. It can be seen that the planted area roughly doubled 

from 1960 to 2010, peaking at almost 1.3 million hectares 

before decreasing sharply to about half that by 2017. Thus, in 

one decade, Madagascar lost almost half of the rice planted 

area that had been developed during the five preceding 

decades. In terms of production, between 1960 and 2000, 

annual production increased by 71% from 1.4 million tons to 

2.4 million tons. Then, from 2000 to 2010, production 

increased by 83% from 2.4 million tons to 4.4 million tons 

before declining sharply after 2010.  

 
Figure 3. Rice crop yield from 1961 to 2017. 

Using the time-series data for the planted area and rice 

production, we can calculate time-series data for crop yields 

during the same period (see Figure 3). It can be seen from 

Figure 3 that yields remained relatively constant at around 2 

tons/ha during the period 1961–2000, after which they 

steadily increased to a peak of 4 tons/ha in 2017. 

2.2. Methodology 

2.2.1. Model Specification 

The model for the production function was constructed 

using data from the period 1961–2017. We followed Jin and 

Jorgenson and Kyo et al., who constructed models in a form of 
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a Cobb–Douglas production function based on the assumption 

of constant elasticity of substitution [14, 15]. For the purpose 

of the present study, we constructed a production function as 

follows:  

�� � �������� with 0 < γn < 1,                      (1) 

where Yn denotes rice production, Zn denotes the planted area, 

An denotes the technology factor, γn is the planted area 

elasticity, and En is an error term. An important feature of the 

model shown in Eq. (1) is that the parameters An and γn are 

time-varying, allowing us to analyze the dynamic 

relationship between rice production (Yn) and the planted 

area (Zn). 

Taking the logarithm of both sides of Eq. (1), the following 

relationship is obtained:  

logYn=logAn + γnlogZn + logEn. 

This can be expressed as follows by setting yn=log Yn, 

an=logAn, zn=logZn, and en=logEn:  

yn = an + γn zn + en,  en ~N (0, σ2).         (2) 

To obtain stable estimates of the time-varying parameters 

an and γn, we use a Bayesian modeling method. We regard the 

time-varying parameters an and γn as random variables and 

introduce a set of smoothness priors for them as follows (for 

more information about the smoothness priors [16], 

an=2an-1-an-2+vn1,  vn1 ~ N (0, Ψ1
2),        (3) 

γn=2γn-1-γn-2+vn2,  vn2 ~ N (0, Ψ2
2).          (4) 

The models in Equations (2) and (3) can be expressed in a 

matrix-vector form as follows: 

	 
�
���
�
��� �= 	2 �1 0 01 0 0 00 0 2 �10 0 1 0 � 	

���
���
���
��� �+	1 00 00 10 0� �

�������,  (5) 

yn=[1  0  zn  0] 	 
�
���
�
����+ en.                            (6) 

2.2.2. The Kalman Filter 

The Kalman filter is a recursive algorithm that is used to 

find an optimal estimation of the state in a state–space 

model and to estimate time-varying random variables that 

cannot be observed based on a set of noisy measurements. 

There are two steps involved in the Kalman filter algorithm: 

prediction and filtering. In the prediction step, the Kalman 

filter provides the mean of the current state variables and 

the covariance of the predictive error. Filtering 

incorporates the new measurement at the corresponding 

time point into the prior information that is obtained in the 

prediction step to obtain an improved posterior distribution 

for the present state [17, 18, 19]. However, before using the 

Kalman filter, we need to construct a state–space model to 

enable a state to be estimated. Generally, a state–space 

model involves a state (or system) equation and a 

measurement (or observation) equation [20]. Consider the 

dynamic system as follows: 

xn = Fnxn-1+Gnvn    (state equation),            (7) 

yn = Hnxn+wn        (measurement equation),        (8) 

where, xn is the state vector (object of estimation), yn is the 

observable time series, vn~ N(0, Qn) is the system noise,  

wn~N(0, Rn) is the observation noise, and Fn, Gn, and Hn are 

the coefficient matrices. The system expressed in Equations 

(7) and (8) is called the state–space model. It can be seen that 

the model in Equations (5) and (6) is equivalent to the state–

space model in Equations (7) and (8) if we set xn = [ an an-1 γn 

γn-1]
 T

, Qn=diag.(Ψ1
2
, Ψ2

2
), and Rn=σ

2
 and construct 

appropriate coefficient matrices Fn, Gn, and Hn.  

One of the features of the state–space modeling approach 

is that information related to past processes is merged into 

the current state. This is usually called a Markovian property 

[21]. Figure 4 shows a block diagram of the state estimation 

process for a dynamic system that is expressed as a state–

space model [22]. 

 
Figure 4. Block diagram of the state estimation process. 

The Kalman filter algorithm is given by Equations (9)–

(13), where xn|n-1 denotes the mean of the state vector at n 

given observations up to time point n-1, e Vn|n-1 denotes 

the corresponding covariance matrix, and so on. For a set 

of observations Y1:N= {y1, y2, …, yN}, we can obtain a set 

of estimates for the state by pursuing the Kalman filter for 

n = 1, 2, …, N − 1, N. Note that the Kalman filter starts 

from initial values of x0|0 and V0|0, which are provided in 

advance. 

Prediction step: 

xn|n-1 = Fnxn-1|n-1                      (9) 

Vn|n-1=FnVn-1|n-1FnT+GnQnGnT            (10) 

Filtering step of the Kalman gain equation: 

Kn= Vn|n-1Hn
T(HnVn|n-1Hn

T+Rn)
-1              (11) 
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Update step: 

xn|n=xn|n-1+Kn(yn-Hnxn|n-1)                 (12) 

Vn|n=(I-KnHn)Vn|n-1                 (13) 

Another aspect of inference based on the state–space 

model is the smoothing step. Based on data Y1:N ={y1, y2, …, 

yn} collected over a fixed time period {1, 2,..., N}, smoothing 

attempts to find the posterior distribution of the state xn 

conditional on Y1:N for any n ∈ {1, 2,..., N}. For linear 

Gaussian state–space models, this can be done precisely 

using the Kalman smoother, which consists of a Kalman 

filter plus subsequent recursive “backward smoothing” for n 

= (N, N−1,…, 1) [23]. This is also called fixed-interval 

smoothing. The formula for fixed-interval smoothing is as 

follows [17]: 

An =Vn|nFn
TV-1

n+1|n 

xn|N = xn|n + An (xn+1|N - xn+1|n) 

Vn|N=Vn|n + An (Vn+1|N-Vn+1|N) AT
n. 

However, when some elements in the matrices Fn, Gn, Hn, 

Qn, and Rn are unknown parameters, it is necessary to 

estimate them in advance. Let θ denote the vector of the 

unknown parameters. In the model in Equations (5) and (6), θ 

contains the parameters σ², Ψ1
2
, and Ψ2

2
. Based on the 

Kalman filter predictive distribution of the time series, yn can 

be obtained with yn|n-1 and Un|n-1 denoting the mean and the 

covariance matrix, respectively. At time n, these can be 

calculated based on the results of the Kalman filter as 

follows:  

yn|n-1 = Hnxn|-1 

Un|n-1 = HnVn|n-1���+Rn. 

From the Kalman filter algorithm, we can see that the 

results of the Kalman filter depend on the parameters θ, 

hence yn|n-1 and Un|n-1 also depend on θ. Thus, for given 

values of θ, the density of the predictive distribution for yn is 

given by  

 

Based on this density, the likelihood function of θ can be 

defined by  

L(θ)= f(Y1:N|θ) = �����
 fn(yn|Y1:(n-1), θ),         (14) 

where the time-series data Y1:(n-1)= {y1, y2, …, yn-1}, and so on. 

This likelihood function will generally be a complex 

nonlinear function of the parameters θ, and thus the estimates 

for the parameters θ can be obtained by maximizing the 

likelihood function in Eq. (14) numerically with respect to θ 

[23, 24]. 

3. Results 

Table 2. Estimates of the parameters. 

Method: State space with Kalman filter 

Sample period 1961-2017 

Included and valid observations 57 

Ψ1
2 3.35*10�� 

Ψ2
2 9.12*10�� 

σ² 1.14*10�� 

Log likelihood (goodness of fit) 30.86 

The panel in Table 2 shows the results of the estimation of 

the state–space model using the Kalman filter algorithm. In 

particular, Ψ1
2
 and Ψ2

2
 are the estimates for variances in the 

system noise, and σ² represents the variance in the 

observation noise.  

 
Figure 5. Estimates of the technology factor and planted area elasticity. 

The upper panel in Figure 5 shows the estimates (mean) 

for the technology factor (An = exp(an)) and the lower panel 

shows the estimates for planted area elasticity (γn). There is a 

continuous upward trend in the technology factor during the 

period, and it is eight times higher in 2017 than it was in 

1961. This change in the technology factor has had a 

significant influence on productivity and yield in recent years. 

Conversely, planted area elasticity shows a significant 

downward trend, with values falling from around 1.04 in 

1961 to around 0.92 in the early 2000s, reflecting the 

increase in the planted area. Since then, there has been a 

slight increase, with values rising to around 0.96 in 2017, 

which is not significant compared with the values seen in 

previous decades, and is related to the decrease in the planted 

area. Productivity has not responded sensitively to changes in 

the planted area, and there is a crossover between both 

elasticities where the level of technology has increased and 

the planted area has decreased. Thus, improvements in 

agricultural technology have not been accompanied by 

agricultural expansion. Technological change has had a 

greater effect than the planted area on productivity.  

Technological change elasticity is a time-varying indicator 

that changes positively over time. It is influenced by 

agricultural policies that contribute to diversifying and 

enhancing agricultural productivity [26, 27]. Madagascar’s 

fn(yn|Y1:(n-1), θ) � 1�2� ! |! −1  exp '− ()! −)! |! −1*2
2 ! |! −1 +. 
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agricultural policy is marked by national agricultural projects 

and reforms via technological support and fertilizer 

distribution to rice farmers during the post-independence 

period from the 1960s to the 1990s, followed by a global 

policy of economic liberalization [28, 29, 30]. In addition, 

there has been increased investment in technology diffusion 

in relation to agricultural development projects, mainly by 

international organizations, since the early 2000s [1, 30, 31]. 

The system of rice intensification technology was developed 

locally in the early 1990s, but was not widely adopted. It has 

since been readapted in the context of agroecology, or smart 

agriculture for an improved rice intensification system [32, 

33, 34]. A combination of these socio-agroeconomic policies 

has resulted in a gradual transformation in Madagascar’s 

agricultural sector, although it will take time to fully evolve. 

Meanwhile, the rice planted area is influenced by a lack of 

investment in irrigation infrastructure, vulnerability to 

climate change and extreme weather events such as cyclones, 

drought and lack of security in terms of land tenure [30, 35, 

36]. In addition, the system of land transfers between 

generations through inheritance has become inefficient, as 

the average area of land per farmer has decreased from 1.2 

hectares in 1985 to 0.25 hectares in 2016 as the rural 

population has increased [37, 38]. 

4. Conclusion 

In the context of a population explosion and a vision of 

economic development, increasing agricultural productivity is 

a challenge that Madagascar must meet if it is to ensure food 

security. The demand for rice is likely to increase in the future, 

and thus evaluating the current state of rice productivity is 

crucial to implementing improved agricultural policies and 

practices.  

In this study, we estimated the technology factor and 

planted area elasticities based on data for rice production and 

the rice planted area in Madagascar during the period from 

1961 to 2017 using a state–space modeling approach. Using 

recursive prediction and updating, we obtained estimates for 

the technology factor and planted area elasticities using a set 

of optimal algorithms with minimum error and time-varying 

indicators.  

The estimates for variances in system noise showed that 

the proposed model is well-fitted to the data. There is a 

significant upward trend in technology factor elasticity, with 

values rising from 1 to 8 during the study period, while, 

while the planted area elasticity values fluctuate between 0 

and 1, decreasing during the period from 1961 to 2000 before 

increasing slightly from 2007 to 2017. These results show 

that technological change has had a greater effect on 

productivity than rice planted area. In addition, our 

hypotheses are supported. Importantly, these findings are 

helpful for decision-makers aiming to develop strategies to 

support ongoing technological improvement and also 

increase the rice planted area to enhance rice productivity in 

Madagascar. 
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