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Abstract: The paper introduces the incompressible Newtonian fluid with heat transfer in a vertical cylindrical tube under the 

assumptions of long wavelength and low Reynolds number. The system of mass, momentum, and energy equations are solved 

analytically. The velocity and temperature field are obtained for two-phase densities. The growth of vapour bubble and its 

velocity between two-phase densities are obtained for first time under the effect of Grashof number and constant heating 

source. The obtained results are compared with experiment and Mohammadein at all model with good agreement.  
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1. Introduction 

The study of temperature field and behavior vapour bubble 

dynamics between two-phase densities [1-3, 5-7, and 9] are 

most important physical phenomena because of its necessity 

in many technical processes. The mixed lubrication, chemical 

metallurgic, oil and gas processes are applications of heat 

exchange. It plays a major role in the industry of 

refrigerators, boilers and nuclear reactors which are used for 

generation of electrical current. The vapour bubble is 

considered as a finite sink growing inside a mixture (vapor 

and superheated liquid).There are three stages for bubble 

growth, inertial, thermal, and diffusion. In the inertial stage, 

the bubble nucleus depends strongly on the interfacial 

mechanical interactions such as acceleration, pressure force, 

and surface tension forces. The inertial stage takes a few 

milliseconds and thermal phenomena are negligible, 

therefore, this stage is called isothermal. In the thermal stage, 

the radius of the nucleus increases and growth becomes 

mostly dependent on the supply of heat that is consumed to 

vaporize the liquid on the bubble’s surface. The growth of 

vapour bubble is affected by heat transfer and pressure 

changes between two densities. The bubble radius grows 

within a superheated liquid has been studied by many 

workers [1-10]. The effect of heat transfer of a Newtonian 

fluid through asymmetric vertical cylindrical tube is studied 

by Raoet. al. [10]. The closed form solutions of velocity field 

and temperature are obtained. The influence of various 

physical parameters on the flow is observed. The temperature 

and the heat transfer are discussed through graphs. In Sec. 2, 

the mathematical model is presented and solving the velocity 

and temperature distribution, in addition to, the radius of 

vapour bubble and velocity of bubble are obtained. The 

discussion and results are presented in Sec. 3. In Sec. 4, the 

concluded remarks are indicated to the importance of study 

velocity and temperature distribution around the growing 

vapour bubble. 

1.1. Analysis 

Consider the flow of a viscous incompressible Newtonian 

fluid through a vertical tube. The flow is generated by 

sinusoidal wave trains propagating with constant speed along 

the wall of the outer rube. The axisymmetric cylindrical polar 

coordinate system is chosen such that the coordinate is along 

the center line of the tube and coordinate along the radial 

coordinate. The wall of the tube is maintained at a 

temperature ��and at the center we have used axisymmetric 

condition on temperature as in Fig. 1; which depicts the 

physical model of the problem. Where� the radius of the tube 

is, � is the amplitude of the wave, � is the wavelength and � 
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is the time. The flow is unsteady in the fixed frame �z, 
�. 
However, in a coordinate system moving with the 

propagation velocity �. 

 
Fig. 1. Physical Model. 

The equations governing the flow of a Newtonian fluid are 

the linear momentum, the conservation of mass and the heat 

equation are given as follows: 


� ��� �
	�� � ���� � 0	       (1) 

� �� ���� � � ����� � � ���� � 
� ��� �
 �����     (2) 

� �� ���� � � ����� � � ���� � 
� ��� �
 ����� � ������ � �� �� � ���  (3) 

��� �� �!�� � � �!��� � " ���!��� � 
� �!�� � ��!���� � #�   (4) 

Introducing the dimensionless variables as follows 


̅ � 
� , %̅ � %� , �& � �� , �' � ��( , )̅ � )�*+��, 
,̅ � � � ���� , (̅ � �� , - � ��, 

./ � 0123 , 4 � 2567!89� , :
 � 31;< = � 2�>8<!8 ,    (5) 

Substituting by the equation (5) into the equations (1-4), 

we obtain 


� ��� �
	�� � ���� � 0                              (6) 

./(? �� ���� � � ����� � � ���� � @� ��� �
 ����� � (* ������      (7) 

./( �� ���� � � ����� � � ���� � 
� ��� �
 ����� � @������ � 4, (8) 

./ 	:
	( �� �!�� � � �!��� � ��A��� � 
� �A�� � (* ��!��� � =.    (9) 

When the wavelength is large �( ≪ 1� , the Reynolds 

number is quite small �./ → 0�  and the equations (7-9) 

becomes 

���� � 0                                      (10) 

���� � 
� ��� �
 ����� � 4,                      (11) 

��A��� � 
� �A�� � = � 0.                              (12) 

The dimensionless volume flow rate in the fixed frame of 

reference is given by 

E � 2G �
H
I�                                 (13) 

the corresponding dimensionless boundary conditions are 

���� � 0	��	
 � 0                                (14) 

� � �1	��	
 � J                              (15) 

�A�� � 0	��	
 � 0                                  (16) 

, � 0	��	
 � J.                                  (17) 

Solving Eq. (12) using the Eqs. (16) and (17), we get 

, � KL �J* � 
*�,                               (18) 

substituting by Eq. (18) into the Eq. (11) and solving Eq. (11) 

with the boundary conditions of Eqs. (14) and (15), we get 

� � 
L M�M� �
* � J*� � NKL �I���L � �O
P� � ?	NKIOPL � 1,   (19) 

The volume flow rate is given by 

E � � M�M� �IOQ � � N	K	IRLQ � J*.                     (20) 

From the Eq. (20), we have 

� � �NKI�*L � *SIO � *I�� �
* � J*� � NKL �I���L � �O
P� � ?	NKIOPL � 1.  (21) 

On the basis of continuity Eq. (1), we find that, the 

velocity of cylindrical coordinates of the vapour bubble, can 

be written as 

� � T	U	UV� .                                  (22) 

From the Eq. (22), we can obtain the velocity of vapour 

bubble radius in a vertical cylindrical tube as the form 

.V �
, �� � �WX� �NKI�*L � *SIO � *I�� �
* � J*� � NKL �I���L � �O
P� �?	NKIOPL � 1,                                (23) 

.��� � YZ[ tan _tan`
 U8
Yab � √Z	[X �� � ���d,      (24) 

where, 
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e � �1 − �`*SI� − 2�, 

f = `*S
IO −

*
I�, 

g = �1 + 0h
0i
�.                            (25) 

1.2. Discussion and Results 

The problem of Newtonian flow through a vertical 

cylindrical tube is described in Fig. 1, the physical problems 

is described by the system of equations (1-4), and solved 

analytically to calculate the temperature distribution in Eq. 

(18), velocity distribution is derived in Eq. (21), and the 

velocity and radius of vapour bubble are presented in Eqs. 

(23), (24). The bubble radius is derived in terms of r, z, and t. 

Heat equation surrounding the vapour bubbly flow is solved. 

The equation (18) represents temperature distribution in the 

mixture surrounding the vapour bubble. The equation (23) 

describes the vapour bubble flow in a vertical cylindrical 

pipe. The temperature distribution inside a superheated water 

under atmospheric pressure ( ∞P =247kPa and Ts=400 K). 

The physical values are calculated by Haar [3] as given by 

Table 1. Moreover, by using Mathematica program (version 

6.0), we get the following graphs that demonstrate the effect 

of the physical parameters on temperature, velocity 

distribution and the vapour bubble. Velocity distribution in 

terms of parameter r for two different values of Non-

dimensional heat source parameter =, is obtained in Fig. 2 

(a), it is clearly the velocity distribution increases with the 

increasing of parameter =. The velocity distribution taken the 

same behavior in the Fig. 2(b) under the effect of Grashof 

number4.This behavior is in agreement with Refs. [10]. In 

the Fig. 3, we can show the velocity distribution is plotted as 

a function or 
	and %. We note that the velocity distribution 

�(
, %) increases with the increasing of the volume rate flow 

E .On the other hand, we can show the temperature 

distribution in terms of parameter r for two different values 

of amplitude ratio -is obtained in Fig. 4, it is observed that 

the temperature distribution is proportional with amplitude 

ratio e. The behavior of vapour bubble radius for different 

values of two phase densities g  is shown in Fig. 5. It is 

observed that the bubble radius is increasing and shifted for 

the lower values with increasing of g . This behavior is 

agreement with Ref. [7]. In the Fig. 6, the velocity of vapour 

bubble is plotted as a function of time � with two different 

values of physical parameter g , which decreasing with the 

increasing of time	�, and shifted for lower values when the 

increasing of physical parameter g .The velocity of vapour 

bubble is proportionally inversely with the radius of vapour 

bubble and shifted for the upper values with increasing the 

Grashof number 4 , heat source parameter =  as shown in 

Figs. 7, 8, and this is agreement with Ref. [4].The growth of 

vapour bubble compared with Mohammadein et. al. model is 

shows in Fig. 9. It is observed that the present model 

performs at lower values than Mohammadein model with 

fraction density g = 0.4  and initial velocity .V� = 5 ×
10`nm/s. 

Table 1. Parameters’ values used in the present problem.  

Parameter Value Unite Parameter Value Unite 

�r 0.597 "�/u? " 0.6857 x/u"� 

�y 958.3 "�/u? { 0.0535 "�/|* 

�6 1.37 "�/u? ∆,� 2.5 "� 

.� 1 × 10`n u �� 273.15 "� 

�� 4240 ~("�"�)    

� 533000 ~"�    

.�V  .���
��
5  u/|    

.� 10`L u    

 

 

Fig. 2a. The velocity distribution is plotted as a function of 
  with 

thedifferent values of heat source parameter = (= =5.5, 5). 

 

Fig. 2b. The velocity distribution is plotted as a function of 
with the 

different values of Grashof number G (G=3, 3.5). 
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Fig. 3. The velocity distribution is plotted in 3D as a function of 
, % with 

thedifferent values of volume flow rate E. 

 

Fig. 4. Temperature distribution ,�
, %�is plotted as a function of 
  with 

thedifferent Values of heat source parameter = (= =5, 5.5). 

 
 

Fig. 5. The radius of vapour bubble is plotted as a function of time t for two 

different values of parameter g	�g � 1.1, 1.2�. 

 

Fig. 6. The Velocity of bubble radius is plotted as a function of time twith the 

different values ofg	�g � 1.3, 1.4�. 

 

Fig. 7. The Velocity of bubble radius is plotted as a function of bubble radius 

R with the different Values of heat source parameter= (= =5, 5.5). 

 

Fig. 8. The Velocity of bubble radius is plotted as a function of bubble radius 

R with the different Values of Grashof number G (G=3.5, 3). 
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Fig. 9. The comparison of present model with Mohammadein et al. [13]. 

2. Conclusion 

The flow of a viscous incompressible Newtonian flow in a 

vertical tube with observing of vapour bubbles is formulated. 

The flow is generated by sinusoidal wave trains propagating 

with constant speed �  along the wall of the outer tube. 

Temperature distribution in the mixture is proportional with 

different values of amplitude ratio - . The velocity 

distribution in the mixture is proportional with different 

values of amplitude ratio -, Grashof number 4, heat source 

parameter = . The behavior of vapour bubble radius in the 

mixture increasing with the increasing values of physical 

parameter g . The temperature, velocity distributions, and 

behavior of bubble radius in vertical cylindrical tube are 

obtained as special case when the amplitude ratio tends to 

zero. 

3. Nomenclature 

� Radius of the tube � Amplitude of the wave � Wavelength  �� 
Specific heat of liquid at constant pressure �Kg`
J/k� �r, �y Density of vapour and liquid �Kg	m`?� #� Constant heat addition/absorption " Thermal conductivity 
 Radial coordinate 

z Coordinate z 

R Instantaneous bubble radius �m� .V  Instantaneous radial velocity of bubble 

boundary T Time of bubble growth �s� � Temperature of liquid�K�� �� Initial temperature of liquid �K�� � Liquid velocity , Temperature distribution 

- Amplitude Factor g Constant defined by Eq. 25 4 Grashof number :
 Prandtl number = Non-dimensional heat source parameter E Dimensionless volume flow rat ./ Reynolds number ( Wave number 

Subscript � Liquid � Vapour : Pressure 
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