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Abstract: Numerical analyses have been carried out for magnetohydrodynamic flow between a rotating and a stationary disk, 
whose radii are sufficiently large in comparison with the gap between the two parallel coaxial disks. The gap is filled with an 
electric conducting fluid and a uniform axial magnetic field is imposed. The magnetic Prandtl number is assumed to be so small 
that the influence of the induced magnetic field is neglected. The flow depends on both the rotational Reynolds number and the 
Hartmann number as well as the wall conductance ratios of upper and lower disks. As the Reynolds number increases, the core 
region of rigid body rotation having slight axial component of velocity is observed between the two boundary layers, whose 
thickness becomes thinner in proportional to the square root of the Reynolds number. On the other hand, as the Hartmann number 
increases, the Lorentz force tends to suppress the secondary flow significantly and boundary layer thickness of the azimuthal 
component of velocity is proportional to the inverse of the Hartmann number. The derived boundary condition for the normal 
component of electric current density at the interface allows us to obtain similarity solutions for various combinations of each 
wall conductance ratio and its influence on the flow is quite significant. 

Keywords: Magnetohydrodynamics, Similarity Solution, Secondary Flow, Hartmann Number, Rotating Disk,  
Wall Conductance Ratio 

 

1. Introduction 

The research of the flow induced by an infinitely large 
rotating plain disk in the stationary fluid was commenced 
by von Kármán [1] who noticed that the radial and 
azimuthal components of the velocity are proportional to 
the radial distance from the center of axis and by which he 
revealed that the Navier-Stokes equations can be reduced to 
a set of ordinary differential equations (Kármán’s 
transformation). Cochran [2] first successfully solved the 
set of ordinary differential equations numerically. On the 
contrary, Bödewadt et al. [3] investigated the 
boundary-layer flow, which is formed in the vicinity of the 
stationary plain disk fixed perpendicular to the 
rigid-body-rotation of fluid. These two boundary-layer 
rotating flows are known as typical non-linear self-similar 
solutions of the Navier-Stokes equation. However, the flow 
of Bödewadt’s type is much more unstable than the single 
rotating disk flow of Kármán’s type. 

On the other hand, the flows between two coaxial 
rotating disks [4-13] exhibit more complicated phenomena 
than the two typical single-disk flows as mentioned above. 
The general treatment for this should consider that both 
disks are rotating at each angular velocity independently. 
However, for the sake of simplicity in terms of the 
reduction of input parameters, it is often the case that one 
disk is stationary and the opposing disk only rotates at a 
constant angular velocity. Apart from the single-disk flow, 
it is noted that the gap flow between the two disks varies its 
velocity profile depending on the Reynolds number based 
on the gap distance although it still keeps the Kármán’s 
similarity. As increase in the Reynolds number, the flow 
tends to be divided into two boundary layers formed in the 
vicinity of the rotating and stationary disks respectively and 
a core region where the radial component of velocity is 
almost zero. The angular velocity of the core flow, which 
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accompanies slight axial flow from the Bödewadt layer 
(stationary disk) to the Kármán layer (rotating disk), is 
about 30% of that of the rotating disk. 

Concerning the effect of the applied magnetic field on such 
disk flows, Davidson and Pothérat [14] investigated details of 
Bödewadt-Hartmann flow for a single-disk case. Moresco and 
Alboussière [15] performed a linear stability analysis of the 
MHD Bödewadt flow. Stephenson [16] studied liquid metal 
flow between the rotating and stationary coaxial disks in the 
presence of a uniform axial magnetic field with the analysis of 
similar solution as well as the experiment using mercury. 
Kamiyama and Sato [17] investigated a similar system to 
Stephenson’s study with considering the effect of 
wall-conductance of disks. They limited their theoretical 
analyses to the case that the interaction parameter is much 
larger than unity (N >> 1), which enables to derive 
approximate solutions by expanding each variable such as 
velocity and pressure in powers of 1/N. 
Magnetohydrodynamic flow between a rotating disk and a 
stationary disk with the effect of suction from the porous disk 
were numerically investigated in the references [18, 19]. 
However, no studies have been considered for the effect of 
wall conductivity with large Reynolds number cases. In this 
paper, the characteristic of the fluid flow at relatively high 
Reynolds numbers between the two coaxial disks in the 
presence of a uniform axial magnetic field is numerically 
studied together with the consideration of wall-conductance of 
disks. 

2. Governing Equations 

Figure 1 shows the schematic model for the present 
problem considered. The upper disk whose thickness is tK, 
is rotating at a constant angular velocity while the lower 
disk whose thickness is tB, is stationary. We assume that the 
working fluid between the two coaxial disks is an 
incompressible, Newtonian, electric conducting fluid, and 
it is subjected to a uniform axial magnetic field. The effect 
of the viscous dissipation, the Joule heat and the induced 
magnetic field on the flow is neglected. The gap distance 
between the two disks is d, which is sufficiently small in 
comparison with the radius of the disks. Therefore, we 
expect that the Kármán’s similarity is valid even in the 
present problem except near the edge of disks, i.e. the flow 
and electromagnetic fields are axisymmetric and their 
radial and azimuthal components are proportional to the 
radial location from the center of rotating axis. The 
assumption of the Kármán’s similarity in this problem 
allows us to derive a set of ordinary differential equations, 
whose solution can be numerically computed with high 
accuracy owing to the reduction of the dimension. The most 
crucial point in this problem is to obtain both the radial 
pressure gradient and electric potential gradient. As will be 
mentioned later, the radial pressure gradient and the radial 
electric field are not functions of axial location but 
constants due to the assumption of the Kármán’s similarity. 

 

Figure 1. Schematic of the problem considered. The upper disk whose 

thickness is tK is rotating at a constant angular velocity ω, while the lower disk 

whose thickness is tB is stationary. The gap space between the two disks is 

filled with an electric conducting fluid and an external uniform axial magnetic 

field is imposed. 

The followings show the axisymmetric Navier-Stokes 
equation in the cylindrical coordinate system. 

                     (1) 

     (2) 

   (3) 

  (4) 

Each component of the external force appeared in the 
momentum equations indicates the electromagnetic force. To 
obtain the electromagnetic force, each component of electric 
current density governed by the conservation of electric 
charge and the Ohm’s law is given as follows: 

                  (5) 

                (6) 

                    (7) 

                   (8) 

The electromagnetic force incorporated in the momentum 
equations is given as follows: 

           (9) 

The boundary condition for the electric current density at 
the rotating disk is illustrated in Fig. 2. The upper side of the 
disk is insulating while the lower side is facing to an 
electro-conducting fluid. It is assumed that the tangential 
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electric current density is constant over the thickness of the 
disk. 

 

Figure 2. The electric current density balance within an infinitesimal element 

for the conducting wall at the rotating disk. 

The electric current density balance within an infinitesimal 
element for the conducting disk is as follows. 

   (10) 

Using of the Taylor expansion, 

             (11) 

Taking Eqs. (10) and (11) into account, the normal 
component of electric current density at the interface is written 
as 

.       (12) 

The radial electric current density within the rotating disk is 
given by the Ohm’s law. 

             (13) 

Combining Eqs. (12) and (13) and assuming the uniformity 
of electric conductivity of the disk, we can obtain the normal 
component of electric current density as follows: 

    (14) 

Finally, the boundary conditions at the rotating disk and 
stationary disk are summarized as follows together with three 
velocity components. 

         (15) 

3. Dimensionless Equations 

By considering the following Karman’s similarity for the 
three components of velocity 

    (16) 

and by differentiating with respect to r for Eq. (4), it yields that 
the radial pressure gradient is not a function of z. 

                (17) 

The radial component of the momentum equation in a 
dimensionless form can be expressed as 

          (18) 

The left-hand-side is a function of z, while the 
right-hand-side is a function of r. Therefore, both should be a 
constant to satisfy the double requirements. As indicated in Eq. 
(19), the dimensionless radial pressure gradient must be a 
constant. 

      (19) 

Therefore, the pressure can be expressed as summation of a 
function of r and a function of z as follows. 

              (20) 

Considering Eq. (20), the axial component of momentum 
equation can be rewritten as follows: 

              (21) 

This equation can be expressed in a dimensionless form as 
follows: 

             (22) 

where, the dimensionless pressure is defined as follows. 

                (23) 

Eq. (20) is rewritten as follows: 

            (24) 
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     (25) 

and by differentiating with respect to r for Eq. (8), it is recognized 
that the radial potential gradient is not a function of z. 

               (26) 

The radial component of the Ohm’s law in a dimensionless 
form can be expressed as follows. 

              (27) 

The left-hand-side is a function of z, while the 
right-hand-side is a function of r. As shown in Eq. (28), the 
dimensionless radial potential gradient must be a constant. 

       (28) 

Therefore, the electric potential can be expressed as 
summation of a function of r and a function of z as follows. 

             (29) 

Therefore, Eq. (8) can be rewritten as follows: 

                 (30) 

This equation can be written in a dimensionless form as 
follows: 

                  (31) 

where, the dimensionless electric potential is as follows. 

                 (32) 

Eq. (29) is written 

   (33) 

A set of dimensionless ordinary differential equations and 
the boundary conditions are summarized as follows: 

                 (34) 
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The boundary conditions at the interfaces between the fluid 
layer and the disks, and the outside of the two disks are given 
respectively as follows: 

         (42) 

             (43) 

Finally the dimensionless variables are modified as follows: 

   (44) 

The non-dimensional numbers are the Hartmann number, 
the Reynolds number based on the angular velocity of the 
rotating disk, and conductance ratios for the rotating disk and 
the stationary disk. 

     (45) 

4. Computational Strategy 

Under the boundary conditions of Eq. (42), the simultaneous 
ordinary differential equations are discretized and numerically 
solved on a one-dimensional grid system using the central 
difference method for all the terms in Eqs. (34) - (41). From Eqs. 
(35) and (36), the radial and azimuthal components of velocity 
was obtained iteratively using the Jacobi method during which 
Eq. (34) was used to obtain the axial velocity. Although the 
pressure does not influence on the system of the simultaneous 
differential equations, if necessary it can be obtained from Eq. 
(37) by integrating with respect to Z. Eqs. (38) – (41) are 
necessary for getting the three components of electric current 
density and electric potential but they are independent of the 
electromagnetic force terms in the momentum equations. As 
easily recognized from Eq. (34) and the boundary condition of 
the axial velocity, the integration over the fluid layer for the 
radial velocity must be zero. 
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                   (46) 

Therefore, the pressure gradient PR appeared in Eq. (35) can 
be obtained by the use of Eq. (46) as follows. 

        (47) 

On the other hand, the potential gradient ΨR appeared in Eq. 
(39) should be obtained to satisfy the integrated value of the 
radial electric current over the two disks and the fluid layer 
would be zero. 

   (48) 

As a consequence, the potential gradient ΨR is shown in Eq. 
(49). 

          (49) 

From this equation, we recognize that the radial potential 
gradient is influenced by the wall conductance ratios of both 

rotating and stationary disks. Specific computational 
examples for several combinations of the wall conductance 
are illustrated in section 5.4. The number of grids in the 
Z-direction is 512 and the obtained results are almost identical 
to the cases having more number of grids. 

5. Numerical Results 

5.1. Validity of the Present Computational Method 

Figure 3 shows comparison between the previous study 
done by Stephenson [16] and the present results for the 
Reynolds number 176 with several cases of Hartmann number 
to ensure the validity of the present code utilized in this study. 
In order to meet the Stephenson’s configuration, the upper 
boundary indicates the stationary disk and the lower boundary 
is the rotating disk. Both disks are electrically insulated. For 
all the cases, the present results agree with the Stephenson’s 
results. 

 

  

Figure 3. Comparison of the azimuthal and radial components of velocity profiles between the Stephenson’s (upper) and present (lower) results for Re = 176. 

Note that a lower disk is rotated and an opposing upper disk is held at rest. M indicates the Hartmann number. 
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5.2. Without Magnetic Field 

 

 

Figure 4. A two-dimensional visualization of the velocity field at Re = 1000 

and Ha = 10. The black arrows represent the secondary velocity and the green 

contour lines indicate the azimuthal velocity. The left end is the center axis of 

rotation. 

Figure 4 shows an example of two-dimensional 
visualization for understanding the whole feature of the flow 
at Re = 1000 and Ha = 0. The arrows indicate the meridional 
flow and the contour lines indicate the azimuthal flow. It is 
recognized that the radial and azimuthal velocity components 

are proportional to the distance from the center axis of rotation 
while the axial component of velocity is constant and 
independent of radial location. In the vicinity of the upper 
rotating disk the radially-outward flow takes place while in the 
lower boundary layer the radially-inward flow appears. Since 
this analysis supposes the similarity flow, it cannot predict the 
stability of the flow. In general, the lower boundary layer is 
less stable than the upper boundary layer and it exhibits flow 
transition from laminar to turbulent as increase in the radial 
distance from the center axis of rotation. We will not mention 
the stability of the flow but will show some basic flows in the 
subsequent sections. 

Figure 5 shows (a) radial, (b) azimuthal, (c) axial 
components of velocity, and (d) pressure distribution for 
various values of the Reynolds number as indicated in the 
figures. In the limit of the small Reynolds number, the radial 
and axial components of velocity are zero and azimuthal 
velocity exhibits the linear profile. When the Reynolds 
number exceeds 1000 or so, the distinct boundary layers and a 
core region are formed. In such high Reynolds number cases, 
the thickness of the layers is proportional to the inverse of the 
square root of the Reynolds number. Within the Kármán layer 
formed in the vicinity of the rotating disk at Z = 1, 
radially-outward flow is induced due to the centrifugal force. 
On the contrary, within the Bödewadt layer formed in the 
vicinity of the stationary disk at Z = 0, an oscillatory velocity 
distribution in the radial and azimuthal components is 
observed. 
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(c)                                           (d) 

Figure 5. The velocity and pressure profiles for the various Reynolds numbers at Ha = 0. (a) Radial component of velocity, (b) Azimuthal component of velocity, 

(c) Axial component of velocity, (d) Pressure. 

The characteristic of the boundary layers in the present 
coaxial two-disk flow qualitatively agrees with that of single 
disk flow such as the Kármán flow or the Bödewadt flow. 
According to the present numerical results, in the limit of the 
high Reynolds number cases, the azimuthal component of 
velocity at the core region indicates Vc = 0.313 and the axial one 
Wc = 0.755 / Re 

0.5. The value of pressure in the core region can 
be directly obtained from the axial velocity as Pc = - 0.285 / Re. 
Let us compare the numerical results of the present two-disk 
flow in the limit of the high Reynolds number case with those of 
single-disk flows. According to the present result using a code 
of single-disk flows, the Kármán flow indicates that Wc = 
0.8845 / Re 

0.5, Pc = - 0.3911 / Re, while the Bödewadt flow 
indicates Wc = 1.350 / Re 

0.5, Pc = - 0.9107 / Re. This suggests 
that those values in the single-disk flows are greater than those 
in the present two-disk flow. Table 1 summarizes such values of 
velocity in the core region together with the values of azimuthal 
velocity gradient at each wall. 

 

Figure 6. The azimuthal velocity gradient at the walls for the various 

Reynolds numbers at Ha = 0. 

Table 1. Asymptotic values obtained for the large Reynolds number limit in the absence of magnetic field. 

 Single-disk flow Present two-disk flow 

 Kármán flow Bödewadt flow Kármán layer Bödewadt layer 

Uw’ 0.5102 Re 0.5 0.9420 Re 0.5 0.510 Re 0.5 0.170 Re 0.5 

Vw’ 0.6159 Re 0.5 0.7728 Re 0.5 0.526 Re 0.5 0.135 Re 0.5 

Vc 0.000 1.000 0.313 

Wc 0.8845 / Re 0.5 1.350 / Re 0.5 0.755 / Re 0.5 

Pc 0.3911 / Re 0.9107 / Re 0.285 / Re 

 
Appendix A shows the detailed description of the governing 

equations and the numerical results of the tangential velocities 
for several values of N. 

Figure 6 shows the azimuthal velocity gradient at each 
boundary as a function of the Reynolds number. The velocity 
gradient at the Kármán layer is larger than that at the 

Bödewadt layer. For the Reynolds number more than 1000 or 
so, it is recognized that the azimuthal velocity gradient at each 
layer is proportional to the square root of the Reynolds number. 
For the moderate Reynolds number, the two layers interact 
with each other, and thus the Bödewadt layer exhibits a 
complicated behavior. 
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5.3. Influence of the Axial Uniform Magnetic Field 

Figure 7 shows the velocity, electric current and potential 
profiles at N = 0.3. Although the value of the interaction 
parameter is not very large, it is recognized that there is 
substantial influence on the velocity profile. In (a), the radial 
velocity tends to be damped. As will be mentioned, the core 
velocity seems to be zero at a glance but it deviates slightly 
from zero depending on the values of the non-dimensional 
parameters. Hence, the core flow at the high Reynolds number 
is slightly different from the flow of rigid-body-rotation which 
was observed in the non-magnetic cases. In (b), the core 
velocity tends to be a constant value for the cases of the larger 
Reynolds number. In (c), the axial velocity is not directly 
influenced by the Lorentz force but is damped to some extent 
due to the reduction of the radial velocity affected by the 
Lorentz force. As a consequence, the secondary flow tends to 
be damped. It is noted that the axial core velocity profile at the 
high Reynolds number cases exhibits slight inclination. This 

implies that radial core velocity is not exactly zero because of 
the mass conservation given in Eq. (34). In (d), the radial 
component of electric current density JR is equivalent to the 
one shifted in the amount of radial electric field from the 
azimuthal velocity as suggested in Eq. (39). The amount of 
radial electric field depends on the Reynolds and Hartmann 
numbers. The radial component of electric current density is 
included in Eq. (36) as an external force term, and although 
the absolute value is not very large, this Lorentz force must 
keep a state of balance with other terms. Therefore, the radial 
velocity cannot keep zero and the balance between the Lorentz 
force and inertial force takes place. In (e), the axial electric 
current density in the core region for the large Reynolds 
number cases is not a constant but is inclined. This implies 
that there is the azimuthal Lorentz force balancing with the 
azimuthal inertial force (2UV) as can be recognized from Eqs. 
(36) and (38). In (f), the electric potential indicates the value 
of integration of JZ. The axial electric current flows from the 
stationary disk to the rotating disk. 
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(e)                                      (f) 

Figure 7. The profiles for the various Reynolds numbers at N = 0.3. (a) Radial component of velocity, (b) Azimuthal component of velocity, (c) Axial component 

of velocity, (d) Radial component of electric current density，(e) Axial component of electric current density，(f) Electric potential. 

Figure 8 shows the influence of the Hartmann number on the flow at Re = 5000. As increase in the Hartmann number, the 
azimuthal velocity at the core approaches the value of 0.5, while the radial velocity within the boundary layers is damped as 
increase in the Hartmann number. At a glance, the radial velocity in the core region seems to be zero as shown in (a), but its 
magnified figure indicates that the core velocity exhibits complicated behavior taking positive or negative values depending on 
the Hartmann number. This means that the core velocity is not a rigid-body-rotation flow but a slight spiral flow. 
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(b) 

Figure 8. Velocity profiles for the various Hartmann numbers at Re = 5000 for various Hartmann numbers. (a) Radial component of velocity, (b) Azimuthal 

component of velocity. 

5.4. Influence of the Conducting Disks on the Flow 

Figures 9 and 10 show the influence of the conductance of 
the two disks on the three components of the velocity and axial 
electric current density at Re = 1000 and Ha = 10. For both 
cases, each figure shows the radial, azimuthal and axial 
components of velocity and axial component of electric 
current density. Although the Hartmann number is not very 
large, the velocity profiles vary significantly depending on the 
conductance of the disks. The azimuthal core velocity is about 

0.34 for CK = 0, but it increases as increase in the value of CK. 
This is due to the suction of axial electric current density from 
the upper rotating disk. On the other hand, the effect of 
conductance of stationary disk, the azimuthal core velocity 
decreases as increase in the value of CB. The reason for the 
effect of wall conductance ratios on the significant change in 
the azimuthal velocity could be qualitatively explained by 
considering Eqs. (42) and (49). In this study, using Eqs. from 
(34) to (49), any combinations between CK and CB are possible 
for obtaining the numerical results. 
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(c)                                      (d) 

Figure 9. Effect of the wall conductance ratios on the three components of velocity profile and axial electric current density at Re = 1000, Ha = 10 and CB = 0 for 

various values of CK. (a) Radial component of velocity, (b) Azimuthal component of velocity, (c) Axial component of velocity, (d) Axial component of electric 

current density. 

 

(a)                                      (b) 

 

(c)                                      (d) 

Figure 10. Effect of the wall conductance ratios on the three components of velocity profile and axial electric current density at Re = 1000, Ha = 10 and CK = 0 

for various values of CB. (a) Radial component of velocity, (b) Azimuthal component of velocity, (c) Axial component of velocity, (d) Axial component of electric 

current density. 
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6. Conclusions 

The magnetohydrodynamic flows in the gap between the 
coaxial rotating and stationary disks in the presence of a 
uniform axial magnetic field have been solved with the 
assumption of the Kármán’s similarity and the followings 
results have been obtained. 

1. The radial pressure gradient and the radial potential 
gradient, which do not vary along axial direction, must 
be obtained numerically so as to satisfy the continuity of 
mass and electric charge respectively. 

2. In the limit of high Reynolds number cases, the fluid 
region can be divided into the distinct two boundary 
layers and a core region. The radial velocity in the core 
region is zero and the azimuthal one is about 0.313 when 
the magnetic effect is negligibly small. 

3. When the interaction parameter N is much larger than 
unity and the disks are electrically insulated, the 
secondary flow is almost damped out and the azimuthal 
velocity in the core is nearly equal to 0.5. 

4. Even for the high Reynolds number cases, the flow 
around N = 1 exhibits that the radial core velocity 
deviates from zero depending on the cases. This means 
that core velocity is not a rigid-body-rotation flow but a 
slight spiral flow. 

5. The boundary condition for the electric current density 
penetrating the interface given in Eq. (42) allows us to 
obtain similarity solutions for various combinations of 
each wall conductance ratio. The influence of the wall 
conductance on the flow is quite significant. 

Nomenclature 

B
�

: Magnetic flux density vector [T] 

0b : Imposed magnetic flux density [T] 

C : Wall conductance ratio [-] 

d : Distance between the coaxial disks [m] 

Re
� : Radial unit vector [-] 

eθ
� : Azimuthal unit vector [-] 

Ze
� : Axial unit vector [-] 

f
�

: Electromagnetic force vector [N/m3] 

Rf : Radial electromagnetic force [N/m3] 

fθ : Azimuthal electromagnetic force [N/m3] 

Zf : Axial electromagnetic force [N/m3] 

Ha : Hartmann number
0b dσ µ=  [-] 

j
�

: Electric current density vector [A/m2] 

Rj : Radial current density [A/m2] 

jθ : Azimuthal current density [A/m2] 

Zj : Axial current density [A/m2] 

pk
: Constant for radial pressure gradient [Pa/m2] 

kψ
: Constant for radial potential gradient [V/m2] 

N : Interaction parameter 2Ha Re=  [-] 

p : Pressure [Pa] 

P : Dimensionless pressure [-] 

r : Radial coordinate [m] 

Re : Reynolds number 2ω ν= d  [-] 

t : Thickness of disk [m] 

u : Radial component of velocity [m/s] 

U : Dimensionless radial velocity ( )ω= u r  [-] 

v : Azimuthal component of velocity [m/s] 

V : Dimensionless azimuthal velocity ( )ω= v r  [-] 

w : Axial component of velocity [m/s] 

W : Dimensionless axial velocity ( )ω=w r  [-] 

z : Axial coordinate [m] 

Z : Dimensionless axial coordinate = z d  [-] 

µ: Viscosity [Pa·s] 

µm: Magnetic permeability [H/m] 

ν: Kinematic viscosity = µ/ρ [m2/s] 

θ: Azimuthal angle [rad] 

σ: Electric conductivity of fluid [1/(Ω·m)] 

ρ: Density of fluid [kg/m3] 

ω: Angular velocity of rotating disk [rad/s] 

Ω: Angular velocity of fluid rotation [rad/s] 

ψ: Electric potential [V] 

Ψ: Dimensionless electric potential [-] 

Subscripts: 

B: Bödewadt layer 

c: Core region 

K: Kármán layer 

R: Partial derivative in radial direction 

Appendix A 

These ordinary equations shown below include the Coriolis 
force and Lorentz force. N indicates the interaction parameter 
and γ indicates the ratio between angular velocity of fluid and 
that of disk. If we set this value into zero, Karaman layer, 
which is formed in the vicinity of a rotating disk can be treated, 
while if we set it to minus one (-1), Bödewadt layer, which is 
formed near the stationary disk, is treated. 
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Boundary conditions: 
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: 0

0: 0 1,

η
η

→ ∞ = =
 = = = =

U V

U W V
 

Dimensionless variables and non-dimensional numbers are 
defined as follows: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) 2
2 0

, ,
, , ,

, , ,

η η η
ω ω ων

σω Ωη η γ
ρων ν ω ρω

= = =

= = = =

u r z v r z w z
U V W

r r

p z b
P z N

 

The numerical results for several values of interaction 
parameters are shown in Figure A1. Tables A1 and A2 show 
the numerical values for the Kármán flow and the Bödewadt 
flow respectively. 

Table A1. Numerical values obtained for the Kármán flow. 

η U V W P 

0.000000 0.000000 1.000000 0.000000 0.000000 

1.000000 0.180149 0.476618 -0.265529 -0.395470 

2.000000 0.118843 0.203342 -0.573246 -0.401997 

3.000000 0.058115 0.084519 -0.745273 -0.393959 

4.000000 0.025665 0.034942 -0.825077 -0.391714 

5.000000 0.010892 0.014432 -0.859617 -0.391258 

6.000000 0.004548 0.005959 -0.874157 -0.391174 

7.000000 0.001887 0.002461 -0.880209 -0.391158 

8.000000 0.000781 0.001016 -0.882716 -0.391155 

9.000000 0.000323 0.000420 -0.883753 -0.391155 

10.000000 0.000133 0.000173 -0.884181 -0.391155 

15.000000 0.000002 0.000002 -0.884479 -0.391155 

Table A2. Numerical values obtained for the Bödewadt flow. 

η U V W P 

0.000000 0.000000 1.000000 0.000000 0.000000 
1.000000 -0.478802 0.264581 0.624248 0.762501 
2.000000 -0.328801 -0.192396 1.493165 -0.457221 
3.000000 -0.036109 -0.271473 1.850009 -1.638988 
4.000000 0.122681 -0.141337 1.732849 -1.746675 
5.000000 0.121030 -0.001644 1.468749 -1.320643 
6.000000 0.049953 0.057316 1.294546 -0.937838 
7.000000 -0.008376 0.046999 1.259049 -0.775868 
8.000000 -0.026777 0.014308 1.300525 -0.792140 
9.000000 -0.017882 -0.007786 1.347812 -0.872536 
10.000000 -0.003288 -0.012127 1.368512 -0.929834 
20.000000 0.000102 0.000107 1.349498 -0.910776 
30.000000 -0.000002 -0.000001 1.349598 -0.910705 
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(b) 

 

(c) 

Figure A1. Effect of the interaction parameter for the two types of the single-disk flow. The left-hand side indicates Kármán flow (γ = 0) and the right-hand-side 

Bödewadt flow (γ = -1). (a) Radial component of velocity, (b) Azimuthal component of velocity, (c) Axial component of velocity. 
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