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Abstract: Linear thermal instability analysis of a ferrofluid layer confined between in Hele-Shaw cell is investigated. The 

stability theory is based upon perturbation method and normal mode technique and the resulting equations are solved by using 

Galerkin weighted residuals method to find expressions for Rayleigh number and critical Rayleigh number. ‘Principle of 

Exchange of Stabilities’ hold and the oscillatory modes are not allowed in the problem. It is found that Hele-Shaw number 

delays the onset of convection while magnetization parameter and buoyancy magnetization parameter hasten the onset of 

convection. 
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1. Introduction 

Ferrodynamics deals with the interaction of the magnetic 

fields on conducting, as well as non-conducting 

ferromagnetic fluids. Magnetic fluids also called 

‘ferromagnetic fluids’ are electrically non-conducting 

colloidal suspensions of solid ferromagnetic magnetite 

particles in a non-electrically conducting carrier fluid like 

water, kerosene, hydrocarbon etc. A typical ferromagnetic 

fluid contains 10
23

 particles per cubic meter. These fluids are 

not found in nature but are artificially synthesized. The 

investigations on ferrofluids attracted researchers because of 

its applications in area such as instrumentation, lubrication, 

vacuum technology, metals recovery, bio- medical 

applications, acoustics etc. These fluids are widely used in 

sealing of hard disc drives rotating X-ray tubes under 

engineering applications. One of the major applications of 

ferrofluid is its use in medical fields such as the transport of 

drugs to an injured site and the removal of tumors from the 

body. Convection of ferromagnetic is gaining much 

importance due to their astounding physical properties and 

one such property is viscosity of ferrofluid. A detailed 

introduction to this subject has been given in the celebrated 

monograph by Rosensweig [1]. This monograph reviews 

several applications of heat transfer through ferrofluids. 

Since magnetization depends on the magnetic field, 

temperature and density, any variation of the above causes a 

change in the body force of the fluid and gives rise ferro 

convection which is similar to Bénard convection given by 

Chandrasekhar [2]. Finlayson [3] has studied the convective 

instability of ferromagnetic fluids, whereas thermo 

convective stability of ferrofluids without considering 

buoyancy effects has been investigated by Lalas and Carmi 

[4]. Thermo convective stability of ferromagnetic fluids was 

continued by Blennerhassett et al. [5]. Thermosolutal 

convection in ferromagnetic fluid was studied by Sunil et al. 

[6]. Mahajan [7] studied the linear and nonlinear convective 

instability of a ferromagnetic fluid for a fluid layer heated 

from below under various assumptions. Recently Chand and 

Bala [8-9], Bala and Chand [10-12] studied the problem 

related to the thermal instability in a horizontal layer of 

ferrofluid by using Galerkin weighted residuals method. But 

in the present study, we studied the stability of ferrofluid 

layer confined within Hel-Shaw cell heated from below. 

Hele-Shaw cell is device, whose essential features are two 

parallel plates separated by an infinitesimally small gap 

containing a thin layer of fluid. Hele-Shaw flow finds its 

applications in various fields of sciences and engineering 
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particular in matter physics and material science. The 

governing equations of the fluid flow in Hele-Shaw cell are 

similar to those governing the fluid flow in porous medium. 

Hele-Shaw [13] was first showed the analogy between flow 

in porous medium and Hele-Shaw cell by defining an 

equivalent permeability of b
2
/12 for the Hele-Shaw cell, 

where b is the width of fluid layer gap. Wooding [14] used 

free convection in Hele-Shaw cells to simulate thermal 

convection in porous medium.The objective of the present 

investigation is to study the onset of the convection ofa 

ferromagnetic fluid confined within a Hele-Shaw cell using 

Brinkman model. 

2. Mathematical Formulation of the 

Problem 

Consider a horizontal layer of an electrically non-

conducting incompressible ferromagnetic fluid of height ‘d’, 

vertically confined between two parallel boundaries at z = 0 

and z = d. Fluid layer shall be infinitely extended in the x-

direction, but confined in the y-direction by vertical 

impermeable boundaries (side walls) at y = 0 and y = b 

(˂˂d). Fluid layer is heated from below in a porous medium 

of porosity is ε and medium permeability is k(= b2/12)in 

such a way that a uniform temperature gradient 
dT

dz
β
 

= 
 

 

is maintained, where T denote the temperature. The 

temperature T at z = 0 taken to be T0 and T1 at z = d, (T0 > 

T1). Let the system is acted upon by gravity force g(0,0,-g) 

and a uniform magnetic field 
0

ˆextH k=H also acts outside the 

fluidlayer. 

2.1. Assumptions 

The mathematical equations describing the physical model 

are based upon the following assumptions 

ii. Thermo physical properties of fluid expect for density 

in the buoyancy force (Boussinesq hypothesis) are 

constant for the purpose of characterization and 

estimates of the various effects on the order of 

magnitude. 

iii. Dilute mixture. 

iv. No chemical reactions take place in fluid layer. 

v. Negligible viscous dissipation. 

vi. Negligible radiative heat transfer. 

vii. Fluid is incompressibleand laminar flow.  

2.2. Governing Equations 

When the Hele-shaw cell gap width is not sufficiently 

small with regard to appearing wavelength of the instability, 

the correction to Darcy’s law is needed. Therefore on 

employing the Brinkman model, the governing equations 

under Hele-Shaw approximation for ferrofluid 

(Chandrasekhar [2], Resenweig [1] and Finlayson [3]) are 

0∇⋅ =q ,                                        (1) 

( )20

0 0

d
p

dt k

ρ µρ µ µ
ε

= −∇ + − + ∇ + ⋅∇q
g q q M H ,   (2) 

where ( )d 1

dt t ε

∂= + ⋅∇
∂

q  stands for convection derivative, 

q(u, v, w) is the velocity vector, ρ0 is reference density, p is 

the hydrostatic pressure, k(= b2/12) is medium permeability 

of fluid, µ is viscosity of the fluid,µ0 is magnetic 

permeability, H magnetic field, M is magnetization. 

( ) ( ) 2

0 0 mm f

T
C C q T k T

t
ρ ρ∂ + ⋅∇ = ∇

∂� �
,              (3) 

where (ρ0C0)m is heat capacity offluid in porous medium, 

(ρ0C0)f is heat capacity offluid andkm is thermal conductivity. 

Maxwell’s equations, in magnetostatic limit: 

0∇⋅ =B , 0∇× =H , ( )0B µ= +H M ..      (4) 

The magnetization has the relationship 

( ) ( )0 0 1 1M H H K T T
H

χ = + − − − 
H

M          (5) 

Where B is magnetic induction, K1 is thermal conductivity, 

,H = H M = M  and ( )0 0 , aM M H T= .  

The magnetic susceptibility and pyomagnetic coefficient are 

defined by 
,H T a

M

H
χ ∂ =  ∂ 

�

 and 1

,H T a

M
K

T

∂ =  ∂ 
�

 respectively. 

The density equation of state is taken as 

( )1
a

T Tρ ρ α = − − �
,                               (6) 

Where Ta is the average temperature given by 

0 1

2
a

T T
T

+ =  
 

. 

The boundary conditions (Chandrasekhar [2]) are  

0,w 0,    T T  H 0  at    z 0= = = =  and

1,w 0,   T T  H 0  at    z d.= = = =               (7) 

2.3. Basic Solutions 

The basic state is assumed to be a quiescent state and is 

given by 

( ) ( ), , , , 0bq u v w q u v w= = , ( )bp p z= ,

( )b aT T z z Tβ= = − + ,
( )1 ˆ
1

b a

b

K T T
H H k

χ
 −

= + +  
�

, 

( )2 ˆ
1

b a

b

K T T
M M k

χ
 −

= − +  
�

, H M H ext+ =
� � �

.  (8) 

2.4. The Perturbation Equations 

We shall analyze the stability of the basic state by 



10 Ankuj Bala and Ramesh Chand:  Thermal Instability in a Horizontal Layer of Ferrofluid Confined  

Within Hele-Shaw Cell 

introducing the following perturbations: 

b
q q q′= + , ( )bp p z pδ= + , ( )bT T z θ= + , ( )bH H z H= + ′

( )bM M z M ′= + ,                               (9) 

where q′(u,v,w), δp, θ, H′(H'1,H'2,H'3) and M′(M'1,M'2,M'3)are 

perturbations in velocity, pressure, temperature, magnetic 

field and magnetization. These perturbations are assumed to 

be small. Then the linearized perturbation equations are 

0′∇ ⋅ =q ,                                   (10) 

( ) )

2

0

1 1
1

ˆ

ˆ ˆ1
1

′∂ ′ ′= −∇ − + ∇ +
′∂

′ ∂− + −  ′+ ∂ 

q
q q�

�

p g k
t k

K
k K k

z

ρ µδ µ ρ α θ
ε

µ β φχ θ
χ

,          (11) 

2

t
w

θσ κ θ β∂ ′= ∇ +
′∂

,                       (12) 

2

20 0 1
1 12

0 0

1 ,
M M

K
H H zz

ϕ θϕ χ
    ′∂ ∂′+ ∇ − − =    ′′ ∂∂   

    (13) 

where 1 1
   and φ φ′ ′ ′= ∇H is the perturbed magnetic potential, 

( )
( )

0 0

0 0

ρ c

ρ c

m

f

σ =  and ( )0 0

k
κ

ρ c
f

=  is thermal diffusivity of the 

fluid. 

The dimensionless boundary conditions are 

1w 0,    1, D 0   at    z 0θ φ′ ′= = = = and

1w 0,    0, D 0   at    z d.θ φ′ ′= = = =         (14) 

Introducing non-dimensional variables as  

x ,y ,z
(x ,y ,z ) ,

d

′ ′ ′ ′′ ′′ ′′ =  
 

,
d

κ
′′ ′=q q

2

κ
t t,

d
′ =

k
p ,

κ
pδ δ

µ
′ =

,
d

θθ
β

′ = ( )
1 12

1

1

K d

χ
φ φ

β
+

′′ ′= , 

Where ( )
m

0 0

k
κ

ρ c
f

=  is thermal diffusivity of the fluid. 

Equations (10)-(14), in non-dimensional form can be 

written as  

0∇⋅ =q ,                                    (15) 

( )2 1

1 1
ˆ ˆ1

Pr

Hs
p Hs R M k RM k

t z

φδ θ ∂∂ = −∇ − + ∇ + + −
∂ ∂
q

q q , (16) 

2

t
w

θσ θ∂ = ∇ +
∂

,                          (17) 

( )
2

2 1

3 1 3 2
1M M

zz

ϕ θϕ ∂ ∂∇ − − =
∂∂

.              (18) 

[Dashes ( '' ) have beendroppedfor simplicity] 

Here non-dimensional parameters are given as  

0

µ
 Pr

ρ κ
=  is the Prandtl number;  

1

2

k
 Hs

d
=  is the Hele-Shaw number; 

2

0ρ gα d
R

µκ

kβ
=  is the Rayleigh number; 

( )
2

0 1

1

0

 M    
1

K

g

µ β
αρ χ

=
+

 measure the ratio of magnetic to 

gravitational forces; ( )
2 2 4

0 1

1

d
 N RM   

µκ 1

Kµ β
χ

= =
+

 is the 

magnetic thermal Rayleigh number;  

( )

0

0

3

1

 M   
1

M

H

χ

 
+ 

 =
+

 measure the departure of linearity in 

the magnetic equation of state and values from one 

( )0 0 M Hχ=  higher values are possible for the usual 

equation of state. 

Non- dimensional boundary conditions are given by 

1w 0, 0, D 0  at    z 0θ φ= = = = and

1w 0,  0,   D 0  at    z 1θ φ= = = = .                (19) 

On eliminating δp from equation (16), we have 

( )2 2 2 2

1 1 11 1 0,
Pr

H H

Hs
Hs w R M RM D

t
θ φ∂ ∇ − − ∇ + + ∇ − ∇ = ∂ 

  (20) 

where 

2 2
2

H 2 2x y

∂ ∂∇ = +
∂ ∂

 is two-dimensional Laplacian 

operator on horizontal plane. 

3. Normal Mode Analysis 

Analyzing the disturbances into the normal modes and 

assuming that the perturbed quantities are of the form  

[ ] [ ] ( )1 x y
w, ,φ W(z),Θ(z),Φ(z) exp ik x ik y ntθ = + + , (21) 

Where kx and ky are wave numbers in x and y directions 

respectively, while n is the growth rate of disturbances. 

Using equation (21), equations (20) and (17) - (18) become 

( ) ( )
( )

2 2 2 2

2 2

1 1

n
D a 1 W

Pr

a R 1 M Θ a RM DΦ 0,

 − − − − 
 

− + + =

Hs
Hs D a

        (22) 

2 2W D a Θ 0,
n

σ
 + − − = 
 

                    (23) 

( )2 2

3 0D D a MΘ − − Φ = ,                 (24) 
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where 
d

D
dz

≡ and 2 2a x yk k= + is the dimensionless the 

resultant wave number. 

The boundary conditions of the problem in view of normal 

mode analysis are 

2
W 0,  0,  0,    D 0   at    z 0,1D W= = Θ = Φ = = .  (25) 

4. Method of Solution 

The Galerkin weighted residuals method is used to obtain 

an approximate solute on to the system of equations (22) – 

(24) with the corresponding boundary conditions (25). In this 

method, the test functions are the same as the base (trial) 

functions. Accordingly W, Θ and Φ are taken as 

p p p

1 1 1

W W , ,DΦ
N N N

p p p

p p p

A B C D
= = =

= Θ = Θ = Φ∑ ∑ ∑ ,      (26)  

where Ap, Bp and Cp are unknown coefficients, p =1, 2, 3,..., 

N and the base functions Wp, Θp and DΦp are assumed in the 

following form for free-free boundary conditions are: 

p p pW C pπ  z , Θ C p π z, DΦ C pπ z ,os os os= = =      (27) 

such that Wp, Θp and Φp satisfying the corresponding boundary 

conditions. Using expression for W, Θ and DΦ in equations 

(22) – (24)and multiplying first equation by Wp second 

equation by Θp and third by DΦp and integrating in the limits 

from zero to unity, we obtain a set of 3N linear homogeneous 

equations in 3N unknown Ap, Bp and Cp;p =1,2,3,..., N. For 

existing of non trivial solution, the vanishing of the 

determinant of coefficients produces the characteristics 

equation of the system in term of Rayleigh number R. 

5. Linear Stability Analysis 

We confined our analysis to the one term Galerkin 

approximation; for one term Galerkin approximation, we take 

N=1, the appropriate trial function are given as 

p p pW cos π  z , Θ cos π  z, DΦ cos π  z ,= = =   (28) 

which satisfies boundary conditions 

2W 0, 0,  0,   D 0   at    z 0D W= = Θ = Φ = =  and 
2W 0, 0,  0,   D 0   at    z 1D W= = Θ = Φ = = .       (29) 

Substituting solution (28) into equations (22)-(24), 

integrating each equation from z = 0 to z = 1, by parts and 

using boundary conditions (29), we obtain following matrix 

equation  

( )2 2

1 1

nHs
J HsJ 1                 -a R 1 M               a RM     

Pr

n
                   1                      - J                      0                

                   0                        

σ

 + + + 
 

 + 
 

0

0

02

3

0

0

0
a M

 -                          

W

D

π π
π

 
 
     
     Θ =     
     Φ    
 +
  

 

where 2 2J π a= + . 

The non-trivial solution of the above matrix requires that 

 ( )( )( )
( )

2 2 2

1 3 1

2 2 2

3

a R 1 M

HsJ
Pr

+ + −

  = + + + +  
  

a M M

nHs n
J J a M

π π

π
σ

.     (30) 

For neutral stability, the real part of n is zero. Hence on 

putting n = iω, ( where ω is real and is dimensionless 

frequency) in equation (30), we have  

1 2R iω= ∆ + ∆ ,                              (31) 

Where 

( )
( )( )( )

2
3 2 2 2

3

1
2 2 2 2

1 3 1

ω
HsJ

Pr
∆

1

Hs
J a M

a M a M M

π

π π

 
+ − + 

 =
+ + −

,       (32) 

and 

( )
( )( )( )

2
2 2

3

2
2 2 2 2

1 3 1

HsJ JHs

Pr
∆ .

1

J
a M

a M a M M

π
σ

π π

 + − + 
 =

+ + −
          (33) 

Since Ris a physical quantity, so it must be real. Hence, it 

follow from the equation (31) that eitherω= 0 (exchange of 

stability, steady state) or ∆2 = 0 (ω ≠ 0 overstability or 

oscillatory onset). 

But ∆2 ≠ 0, we must have ω = 0, which means that 

oscillatory modes are not allowed and the ‘Principle of 

Exchange of Stabilities’ is satisfied. This is the good 

agreement of the result as obtained by Finlayson [3]. 

Consider the case of stationary convection (n=ω = 0), from 

equation (30), we have 

( ) ( )( )( )
( )

3 2
2 2 2 2 2 2

3

2 2 2 2

3 1 3

R
a

Hs a a a M

a M a M M

π π π

π

+ + + +
=

+ +
   (34) 

In the absence of Hele-Shaw number i.e. Hs = 0, then 

equation (34) gives 

( ) ( )
( )

2
2 2 2 2

3

2 2 2 2

3 1 3

R .
a

a a M

a M a M M

π π

π

+ +
=

+ +
 

This is the good agreement of the result as obtained by 

Finlayson [3]. 

In the absence of magnetic parameters (M1 = M3 = 0) and 

Hele-Shaw number (Hs = 0), the Rayleigh number R for 

steady onset is given by  

( )2
2 2

2
R

a

aπ +
=                              (35) 
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Consequently critical Rayleigh number is given by
2Rc 4 .π=  

This is good agreement of the classical result of Rayleigh-

Bénard problem for Newtonian fluid. 

6. Result and Discussions 

In order to investigate the effects of magnetization 

parameter M3buoyancy magnetization M1 and Hs on the 

stationary convection, we examine the behavior of 

3 1

,  and 
R R R

M M Hs

∂ ∂ ∂
∂ ∂ ∂

 analytically. 

Equation (37), we have 

3

0
R

M

∂ <
∂

, which mean magnetization parameter M3 has 

destabilizing effect on fluid layer. This is the good agreement 

of the result obtained by Bala and Chand [10-12]. 

1

0
R

M

∂ <
∂

, which imply buoyancy magnetization M1 

destabilize the fluid layer. This is the good agreement of the 

result obtained by Bala and Chand [10-12]. 

0
R

Hs

∂ >
∂

 which mean Hele-Shaw parameter Hs has 

stabilizing effect on fluid layer.  

Thus Hele-Shaw parameter Hs has stabilizing effect while 

magnetization parameters M3 and buoyancy magnetization 

M1 have destabilizing effect on stationary convection of the 

fluid layer. 

7. Conclusions 

Thermal instability in a vertically oriented Hele-Shaw cell 

was investigated using linearly stability theory. Anexpression 

for Rayleigh number for the stationary convection is obtained 

by using Galerkin residual weighted method. 

The main conclusions are as follows:  

(i) The magnetization parameters M3 and buoyancy 

magnetization M1have destabilizing effect while 

Hele-Shaw parameter Hs has stabilizing effect on 

stationary convection of the fluid layer. 

(ii) In the absence of magnetic parameters and Hele-Shaw 

parameter the obtained result is same as the result 

obtained by Chandrasekhar in the classical Bénard 

problem. 

(iii) The oscillatory modes are does not exist for the 

problem. 

(iv) The ‘Principle of Exchange of Stabilities’ is valid for 

the problem. 
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