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Abstract: Considering the uncertainty of load and the random variation of wind farm output power in power system, a 

probabilistic voltage stability analysis method is proposed based on unscented transformation technique. According to the 

statistical characteristics of random variables in power system, the statistical characteristics of voltage stability margins, such as 

mean, standard deviation and moments, can be calculated by using a small number of samples and the conventional method. The 

maximum entropy method is applied to determine the probability distribution of voltage stability margin. In compared with 

Monte Carlo method, the effectiveness of the proposed method is verified on 39-bus and IEEE 57-bus system. The results show 

that the proposed method can accurately compute the statistical characteristics and the probability distribution of the voltage 

stability margin, and the computational efficiency is improved. 

Keywords: Voltage Stability, Probabilistic Voltage Stability Margin, Unscented Transformation Technique, Sigma Points, 

Maximum Entropy Principle 

 

1. Introduction 

The security and stability of power system is the basic 

requirement, and voltage stability is an important content in 

the research of power system stability. The reformation of the 

power market in the world makes the network operator make 

full use of the transmission ability of the existing transmission 

system, and makes the system run on the operating point 

closer to the critical point of voltage stability. In order to 

prevent the voltage collapse accident, power system 

dispatchers are very concerned about voltage stability and 

stability margins [1, 2] of power system under the current 

operating conditions. Voltage stability margins are related to 

the current operating point and the increase direction of the 

loads and the generator power. As the loads in the system vary 

randomly and there are random errors in the process of 

measurement, estimation and prediction, the voltage stability 

margin of power system is also uncertain. 

To address the issue of the stable operation of power 

systems, Dobson and Alvarado presented the concepts of the 

closest voltage stability critical point, the load increase worst 

scenario, the minimum load margin, and the method to 

calculate the minimum load margin [3, 4]. A fast calculation 

method for the minimum voltage stability margin was 

proposed in [5]. Since the closest critical voltage stability 

point is the one that has the shortest distance from the initial 

operating point, the voltage stability margin is the smallest and 

the most conservative. In the practical system the load may not 

increase in the worst scenario, which will affect the critical 

point. To address this problem, the super-cone and 

super-pyramid load model which simulate the uncertainty of 

load increase direction were presented [6-8], and the closest 

critical point are calculated with loads increased among the 

super-cone and super-pyramid. However, to the best of our 



82 Zhang Jianfen et al.:  Probabilistic Voltage Stability Analysis Based on Unscented 

Transformation and Maximum Entropy Principle 

knowledge, the probability of the closest critical point 

occurrence and the probability distribution of the voltage 

stability margin are not provided. 

Loads in the power systems are timely variable. With the 

development of electric vehicles, high-power charging 

enhances the load fluctuation [9]. Many renewable energy 

sources (including wind power, solar power) and other 

distributed power generation are integrated into the grid. 

These factors are stochastic and will certainly affect the power 

system voltage stability. In order to consider the influence of 

these new uncertainties on voltage stability, researchers 

proposed some voltage stability analysis methods based on 

probability theory. The probability distribution of power 

system voltage stability margin is calculated by the probability 

distribution or statistic characteristics of the stochastic factors 

in the power system, so that the power system voltage stability 

probability at a certain load level can be determined. At 

present, Monte Carlo method, analytic method [12, 14, 17, 19], 

point estimation method [11, 16, 20] are the common 

techniques for probabilistic voltage stability analysis [10-20]. 

Monte Carlo method is used to simulate various uncertainties, 

such as the varieties of loads and the outages of equipment in 

power systems. Since Monte Carlo method is time-consuming, 

its application is limited in the practical system. However, it is 

usually treated as a reference to evaluate the accuracy of other 

probabilistic methods [14-16, 19, 20]. The analytic method 

exploits the linearized relationship between the input and 

output random variables at the critical point by using 

mathematical assumptions. According to the probabilistic 

distribution or statistic characteristics of the input random 

variables, the cumulants of other variables such as load margin 

can be calculated, and then the Gram-Charlier series or 

Edgeworth series are used to determine the cumulative 

probability or probability density function of the load margin 

[12, 14, 17]. This method is more efficient, but cumulants 

computation needs to assume that the input variables are 

independent of each other. The point estimation method 

applies the statistical information of the input random 

variables to extract the sampling points and to determine the 

probability of the sampling points. The statistical information 

of voltage stability margin can be calculated in terms of the 

sampling points, and the probability distribution of the system 

voltage stability margin is estimated by Cornish-Fisher series 

[11, 16]. Point estimation method is convenient for 

independent input random variables. However, for the 

correlative random variables, additional transformation is 

required to make these variables irrelative [21]. The stochastic 

response surface method is also used to determine the 

probability distributions of the power system voltage stability 

margin [13, 18]. This method treats the voltage stability 

margin as a Hermite polynomial of standard normal random 

variables and the coefficients of the Hermite polynomial are 

determined according to the samples. Therefore the 

distribution of input random variable should be unambiguous 

and can be transformed into a standard normal distribution. 

In this paper, a probabilistic voltage stability analysis 

method based on unscented transformation (UT) [22] is 

proposed, and this method is combined with the maximum 

entropy method [19, 23] to determine the probability 

distribution of system voltage stability margin. The unscented 

transformation determines a small number of sampling points 

and their distribution probability. These sampling points 

represent different loads and output power of the wind farm, 

and are named as sigma points. The sampling voltage stability 

margins for these sigma points are calculated by the direct 

method and continuous power flow method. With these 

sampling values, the mean and variance for the population of 

voltage stability margin can be estimated. And the probability 

distribution for this population is determined by the maximum 

entropy method. 

The rest of this paper is organized as follows. Section II 

gives the power flow equations at the critical point and the 

probabilistic models of different random variables in the 

power system. Section III outlines the process for the 

determination of the voltage stability margin probability 

distribution. The validation of the proposed method is 

examined on 39 bus and IEEE 57 bus system in section IV. 

Conclusion are given in section V. 

2. Probabilistic Voltage Stability Analysis 

Model 

In the static voltage stability analysis, the voltage stability 

critical point is the point where the Jacobian matrix of power 

flow equation is singular. The power flow equation at the 

critical point is 

( ) ( ) 0
G L

− − =F X S S             (1) 

where X is the bus voltage vector, SG and SL represent 

respectively the generator and the load vectors at the critical 

point. The main methods for finding the critical points are 

continuous power flow method, direct method and 

optimization method. In this paper, we used the continuous 

power flow and direct method to calculate the critical point. 

The load increment from the current operating point to the 

critical point is named as the voltage stability margin, and it is 

a measure of the voltage stability of the power system. The 

voltage stability margin is related to the current operating 

point and increase pattern of load and generator power. That 

means the voltage stability margin depends on the initial 

operating point and the increase direction of loads and 

generator outputs. Deterministic voltage stability margin is 

calculated under deterministic operating condition and the 

predefined load increase direction [1, 2]. The minimum 

voltage stability is obtained under the conditions of the worst 

load increase scenario and the determined operation condition 

[3, 4]. The probabilistic voltage stability margin is obtained 

considering the random variation of the initial operating point 

[10, 11, 13, 14, 16-19]. 

With the stochastic variance of loads and the output 

uncertainties of wind farms led by wind speed, the probability 

characteristics and probability distribution of voltage stability 

margin can be determined. Assuming that the loads at the 
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initial operating point are subject to normal distribution, all 

loads are increased following the conditions that the increased 

gains are same and the power factors maintain constant. The 

generators in the system consist of conventional synchronous 

generators and wind generators. The outputs of the 

conventional synchronous generators can be adjusted and their 

power increases in proportion to the power at the initial 

operating point. The outputs of the wind turbines affected by 

wind speed are random variables, and they do not increase 

with the load. The probability distribution of wind speed is 

assumed as Weibull distribution. The random distribution of 

the wind turbine output power is acquired in terms of the 

approximate relationship between the output power and wind 

speed of the wind turbine [16]. As the load and the wind 

turbine outputs are random variables, the corresponding 

voltage stability margin is also a random variable. According 

to the statistical characteristics of the voltage stability margin, 

the maximum entropy method is exploited to determine the 

probability distribution and cumulative probability of voltage 

stability margin. 

3. Probability Voltage Stability Margin 

Calculation 

3.1. Unscented Transformation Sampling Method 

The probability characteristic of the voltage stability margin 

is calculated by the unscented transformation technique in this 

paper. The sigma points and their probability are obtained 

according to the statistical characteristics of input random 

variables. Here the input variables are the loads and the wind 

turbine outputs. Related to these sigma points of input 

variables, the sigma points of the output variable (i.e. 

sampling voltage stability margin) are determined by the 

conventional method. And from the output sigma points, the 

statistical characteristics for the voltage stability margin λP of 

the power system (i.e. the population) can be calculated [22]. 

The distribution of wind turbine output is determined 

according to the distribution of the wind speed, and then the 

mean P  and covariance 
P

C
 

for wind turbine output and 

load can be estimated. After that the sigma point set 

1 2
{ , , , , , }

l N
⋯ ⋯P P P P  is obtained by using the symmetric 

sampling method as follows, 

0 =P P                       (2) 

0

1,2, ,
1

i Pi

n
i n

w
= + =

−
⋯P P S           (3) 

0

1,2, ,
1

i n Pi

n
i n

w
+ = − =

−
⋯P P S          (4) 

where n is the number of input random variables.
Pi

S
 

is the 

ith n-dimensional column vector of matrix 
P

S  obtained by 

Cholesky decomposition, and 
P

S  satisfies 
T

P p p=C S S . 

Each sample point , 1, 2,l i N= ⋯P  is also a column vector. 

The weights corresponding to each sample point are: 

0 0
w w=                     (5) 

01
1,2, ,

2
i

w
w i n

n

−
= = ⋯              (6) 

01
1, 2, ,

2
i n

w
w i n

n
+

−
= = ⋯             (7) 

The mean, standard deviation and probability of the sigma 

sample points satisfy the following expression 

1

1
N

l

l

w
=

=∑                   (8) 

1

N

l l

l

w
=

=∑ P P                 (9) 

1

( )( )
N

l il i jl j Pij

l

w P P P P C
=

− − =∑         (10) 

where ilP  and jlP  represents respectively the i-th and j-th 

elements of the l-th sigma point. 

From (2)-(10), it can be seen that the covariance matrix CP 

is used to determine the sample points. That means the 

correlation between random variables has been taken into 

account. No additional transformation is required to deal with 

the correlation between random variables, and therefore the 

method is convenient to consider the correlation between 

random variables. 

3.2. Voltage Stability Margin Probability Characteristics 

Calculation 

In this paper, with the weight of center sample w0 = 0.5, the 

probabilistic characteristics of the voltage stability margin is 

calculated using the unscented transformation method. The 

steps are as follows: 

(1) According to the distribution of loads and the 

distribution of wind turbine outputs, the mean P  of 

load and wind turbine output and their covariance 

matrix PC
 

can be determined. 

(2) The symmetric sampling method is used to determine 

sigma sampling points Pl and its weight lw , l = 1,2, 

…N. 

(3) For each sampling point Pl, the voltage stability margin 

Plλ  can be calculated by deterministic continuation 

power flow and direct method. 

(4) By combining the voltage stability margin calculated 

for each sampling point and the weight wl of each 

sampling point, the mean and standard deviation of 

voltage stability margin and other probability statistical 

information such as moments are obtained by weighted 

calculation. 
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3.3. Distribution Determination of Voltage Stability Margin 

As is stated in reference [24], the random variable entropy 

is defined as ( ) ln ( )H p x p x dx= −∫  
which represents the 

measure of uncertainty, where p(x) is the probability density 

function of the random variable. The maximum entropy 

principle can be used to determine the probability distribution 

of the random variable with the expectation and other 

statistical characteristics of random variables. The general 

form of the maximum entropy principle is described as 

follows [25]: 

max ( ) ln ( )H p x p x dx= −∫               (11) 

. . { ( )} ( ) ( ) , 0, ,
n n n

s t E x x p x dx n Mφ φ µ= = =∫ ⋯    (12) 

where ( )
n

xφ  refers to known function, and in this paper 

( ) , 1,2
n

n x x n Mφ = = ⋯ . 
n

µ  is the n-th moment of random 

variable x, and when 
0

1µ = , 
0

1φ = . 

The classical solution of this optimal problem is given by 

[25] 

0

( ) exp[ ( )]
M

n n
n

p x xλ φ
=

= −∑               (13) 

where the M+1 Lagrange parameters 
0 1

[ , , , ]
M

λ λ λ=λ ⋯  are 

obtained by solving the following M+1 nonlinear equations, 

0

( ) exp[ ( )] , 0, ,
M

n n n n

n

x x dx n Mφ λ φ µ
=

− = =∑∫ ⋯       (14) 

Substituting the Lagrange parameters solved from equation 

(14) into equation (13), we can find the probability density 

function p(x) and the cumulative probability of stability 

margin. 

4. Case Study and Result Analysis 

4.1. Test System Information 

In order to examine effectiveness of the proposed method, 

the probabilistic voltage stability analysis are performed on 

England 39- bus system [26] and IEEE 57-bus system, and the 

results will be compared with the ones obtained by Monte 

Carlo method. Real power loads of bus 12 and 20 are 

respectively modified to be 8.5 MW and 680 MW. The rate 

outputs of wind farm integrated at buses 30 and 35 are 250 

MW and 350 MW in England 39-bus system. In the IEEE 

57-bus system, the wind farms are attached to buses 9, 13 and 

14 respectively. Wind turbines are equipped with DFIG, which 

could adjust reactive power by itself. Therefore, they are 

regarded as PQ nodes with constant power factor cosϕ=0.98, 

absorbing reactive power. The parameters of wind farms are 

listed in Table 1. Outages of power components, economic 

dispatch and generator power limit are not considered. The 

speeds of wind farms are assumed to follow two-parameter 

Weibull distribution. The loads are assumed to be normal 

distribution and independent of each other. All loads in the 

system increase in the same proportion and with the power 

factor kept.  

Table 1. Parameters of wind farms. 

 Wind farm Rated power (MW) Cut-in speed (m.s-1) Cut-out speed (m.s-1) Rated wind speed (m.s-1) k c 

39-bus system 
1 250 3.0 25 15 2.0 8.5 

2 350 3.0 25 15 2.0 8.5 

IEEE57-bus system 

1 45 4.0 25 15 1.4 7.0 

2 45 4.0 30 14 1.8 6.0 

3 10 3.0 25 14 1.6 6.5 

 

4.2. Result and Analysis 

The voltage stability margins of the two test systems are 

respectively obtained by the proposed unscented 

transformation technique and Monte Carlo with 10000 

sampling sizes. In this paper, voltage stability margin is 

defined as the total active power increments of all loads 

(without the loads at slack bus) from the initial operating point 

to the critical point. The means and standard deviations of 

voltage stability margins are listed in Tables 2, 3 and 4. 

Table 2 and 3 show the means and standard deviations of the 

voltage stability margin for the 39-bus system and their relative 

errors compared with Monte Carlo results. In order to 

investigate the impact of standard deviations of loads on voltage 

stability margin, the variance of each load is selected such that 

95%, 90%, 85% and 80% confidence interval are 

corresponding to the interval [µ-10%µ, µ-10%µ]. µ is the mean 

value of random load. In other words, the standard deviations of 

loads are respectively 0.0510µ, 0.0606µ, 0.0694µ and 0.0775µ. 

The wind speeds of two wind farms are assumed to be 

uncorrelated for Table 2. The correlation coefficient of wind 

speed of two wind farms is assumed to be 0.2 for Table 3. 

Table 2. Mean and standard deviation of voltage stability margin for uncorrelated wind speed. 

 σL 
Proposed method Monte Carlo Relative error 

Mean (MW) Standard deviation (MW) Mean (MW) Standard deviation (MW) Mean Standard deviation 

(a) 0.0510µi 3665.69 449.31 3663.99 453.56 0.05％ 0.94％ 

(b) 0.0606µi 3665.18 497.99 3663.90 505.51 0.03% 1.49% 

(c) 0.0694µi 3664.44 543.85 3663.75 555.60 0.02% 2.11% 

(d) 0.0775µi 3663.47 585.88 3663.53 602.61 0.06% 2.78% 
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Table 3. Mean and standard deviation of voltage stability margin for correlated of wind speed. 

 σL 
Proposed Monte Carlo Relative error 

Mean (MW) Standard deviation (MW) Mean (MW) Standard deviation (MW) Mean Standard deviation 

(a) 0.0510µi 3743.86 469.08 3742.28 474.51 0.04% 1.15% 

(b) 0.0606µi 3743.23 515.81 3742.07 524.41 0.03% 1.64% 

(c) 0.0694µi 3742.35 560.10 3741.78 572.82 0.02% 2.22% 

(d) 0.0775µi 3741.24 600.88 3741.41 618.47 0.01% 2.84% 

 

It can be seen from Table 2 and 3 that the voltage stability 

margin obtained by using the unscented transformation 

method is very close to the ones of Monte Carlo method. The 

maximum relative errors for means of voltage stability margin 

are 0.06% and 0.04% respectively in table 2 and 3. The 

relative errors for standard deviation is larger than the ones for 

means of voltage stability margin, and the maximum errors are 

2.78% and 2.84% respectively in table 2 and 3. The error is 

small and the accuracy of the proposed method is acceptable. 

Furthermore, in Tables 2 and 3 the results obtained by both the 

proposed and Monte Carlo methods show that when the 

standard deviations of the loads increase the means of the 

stability margins for probabilistic voltage stability decrease 

slightly, and the standard deviations for the probabilistic 

voltage stability margin increase. In addition, for the same 

standard deviation of the loads, the mean and standard 

deviation of the probability voltage stability margins in Table 

3 are bigger than those in Table 2. For example, for σL = 

0.0775µ, the mean and standard deviation of stability margins 

are 3663.47MW and 585.88MW, respectively. The mean and 

standard deviation of stability margin are 3741.24MW and 

600.88 MW respectively when the wind speeds are correlated. 

They were increased by 2.12% and 2.56% respectively. 

Table 4 shows the results of the IEEE 57-bus system by the 

two methods. It is assumed that the partial loads (loads on 

buses 3, 6, 8, 9 and 12) are random variables and their standard 

deviations are 0.0775µ (µ is their means). Assuming the wind 

speed correlation coefficient matrix R is: 

1.0 0.28 0.22

0.28 1.0 0.18

0.22 0.18 1.0

 
 =  
  

R

 

Table 4. Mean and standard deviation of voltage stability margin of IEEE 57-bus system. 

 
Proposed method Monte Carlo Relative error 

Mean (MW) Standard deviation (MW) Mean (MW) Standard deviation (MW) Mean Standard deviation 

Uncorrelated wind speed 891.65 19.76 891.44 19.85 0.02％ 0.45％ 

Correlated wind speed 890.99 19.84 890.78 19.95 0.02% 0.55% 

 

From Table 4, it also can be seen that the probability 

stability margin calculated by two methods is very close. The 

relative errors for the mean value are both 0.02% and the 

relative errors for standard deviation are 0.45% and 0.55% 

respectively, and these results are in the acceptable range for 

the practical applications. Table 4 also shows that the 

unscented transformation method can calculate the probability 

voltage stability margin accurately. In addition, when wind 

speed is correlated, the standard deviation is slightly larger 

than that when the wind speed is uncorrelated, however the 

mean value is slightly reduced. This is different from the result 

of 39-bus system. Therefore, if the wind speed correlation of 

the wind farm is neglected, especially when the correlation is 

strong, the analysis result may have a large deviation from the 

actual situation. 

In order to illustrate the efficiency of the proposed method, 

the computational time and the number of sampling points are 

listed in Table 5. The standard deviation of the load is 0.0775µ 

and the wind speeds are correlated. For 39-bus system, the 

direct method combined with the continuous power flow 

method is adopted and for IEEE 57 bus system continuous 

power flow method is applied. All computation procedures are 

performed in Matlab on the desktop computer. The CPU 

frequency is 3.1GHz, and the memory is 8G. 

As is seen from Table 5, since 20 random variables are 

considered in the 39-bus system and 8 random variable are 

considered in IEEE 57-bus system, the numbers of sampling 

points are 41 and 17 respectively. Compared with the Monte 

Carlo method, the number of samples is reduced significantly. 

Therefore the unscented transformation method requires less 

computational time which is only 0.81% and 0.26% of the 

ones of Monte Carlo method for two test systems. With the 

increase of the number of random variables in a large-scale 

system, the required sampling point will increase, and the 

computational performance of the proposed method will be 

reduced. 

Table 5. Number of samples and calculation time. 

  
Proposed 

method 

Monte 

Carlo 

39-bus system 
Simple number 41 10000 

Time 4.7850s 589.3729s 

IEEE57-bus system 
Simple number 17 10000 

Time 6.8219s 2587.4660 

Besides the mean and standard deviation obtained by the 

unscented transformation method, the moments of the 

probability voltage stability margin can also be approximated 

by using the weights of sampling points and the voltage 

stability margins corresponding to the sampling points. 

Substituting the first fourth order moments of voltage stability 

margin into equation (14), 
0 1 4

[ , , , ]λ λ λ=λ ⋯

 
can be solved 

shown in table 6. The Probability Density Function (PDF) of 
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probabilistic stability margin is obtained in terms of equation 

(13). The PDF curve of probabilistic stability margin in terms 

of Monte Carlo results is also estimated to examine the 

validation of the maximum entropy method. The PDF curves 

and the cumulative probability curves of 39 bus system and 

IEEE 57 bus system are shown in Fig. 1-4 and Fig. 5-6. 

Table 6. Lagrange parameters for 39-bus system. 

 σL λ0 λ1
 λ2

 λ3
 λ4 

Uncorrelated 
0.0510µ 6.9407 1.4201 -0.1077 0.2343×10

-2
 -0.1513×10

-4
 

0.0775µ 7.2047 0.7297 -0.6229×10
-1

 0.1402×10
-2

 -0.9248×10
-5

 

Correlated 
0.0510µ 6.8301 1.3064 -0.9681×10

-1
 0.2047×10

-2
 -0.1274×10

-4
 

0.0775µ 7.2605 0.6756 -0.5679×10
-1

 0.1242×10
-2

 -0.7886×10
-5

 

 

 

Figure 1. Probability density function of voltage stability margin of 39-bus system for uncorrelated wind speeds. 

 

 

Figure 2. Cumulative probability of voltage stability margin of 39-bus system for uncorrelated wind speeds. 
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From Figures 1 to 6, we can see that PDF curves and 

cumulative probability curves of voltage stability margin by the 

two methods are very close, which shows that the maximum 

entropy method is effective and accurate to determine the 

probabilistic distribution of voltage stability margin. In addition, 

it can be seen from Fig. 1-4 that when the standard deviation of 

the random variable increases, the distribution range of the 

voltage stability margin becomes wider. 

 

 

Figure 3. Probability density function of voltage stability margin of 39-bus system for correlated wind speeds. 

 

 

Figure 4. Cumulative probability of voltage stability margin of 39-bus system for correlated wind speeds. 
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Figure 5. PDF and cumulative probability of voltage stability margin of IEEE 57-bus system for uncorrelated wind speeds. 
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5. Conclusion 

In this paper, a method to calculate the probabilistic 

voltage stability margin of power system integrated with 

wind farm is proposed based on unscented transformation 

technology and maximum entropy principle. Unscented 

transformation technology is used to determine the statistical 

characteristics of probabilistic voltage stability margin, and 

the maximum entropy principle is used to determine the 

distribution of voltage stability margin. The uncertainties of 

wind farm output and random loads are considered. The 

effectiveness and accuracy of the proposed method are 

validated through comparing with the Monte Carlo method. 

The effect of standard deviation and correlation of random 

variables on voltage stability margin are discussed. 

Compared with Monte Carlo method, the computational time 

is reduced significantly, but with the increase of the number 

of random variables, the computational performance of this 

method will be reduced. 
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