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Abstract: The performance of the Automatic Voltage Regulate (AVR) and the Power System Stability (PSS) methods may be 
degraded stability of the power system. This paper presents an Adaptive Neural Fuzzy Inference Systems (ANFIS) algorithm for 
stability of the power system, we use an Adaptive Network based Fuzzy Interference System architecture extended to response 
with multivariable systems. By using a hybrid learning method, the suggested ANFIS can setting structure diagram input - output 
based on both human knowledge and stipulated input-output data pairs. Simulation results present the convergence of the 
algorithm is improved. 
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1. Introduction 
In power systems, the electromechanical oscillations of the 

generators may adversely affect. Thus, using the power 
system stabilizer PSS controllers is necessary. It will damp 
the electromechanical oscillations in power systems. The 
plants of linear models at each operating point are different. 
The proposed PSS based primarily on a transfer function and 
a linear model of the plant has been widely used [1, 2, 3]. 

However, the feature of the power systems has dynamic 
and highly nonlinear. Therefore, the performance of PSS can 
degrade under variations of the nonlinear characteristics of 
the plant. 

In recent years researchers used neural - fuzzy techniques 
to control complex systems utilizing solely the input-output 
data sets. Meanwhile, fuzzy control technique requires 
human knowledge and experience to set the IF – THEN rules. 
This deficiency can be overcome by combining the neural 
networks and fuzzy logic, the proposed ANFIS with 
rule-based of controllers has shown promising results [ 5, 6]. 

The viewpoint proposed here which is Adaptive Neural 
Fuzzy Inference Systems is used to solve the problems 
mentioned above. We use ANFIS replace the conventional 
control method to solve the performance concerns. In this 
study, a first step is taken towards systematic analysis using 

ANFIS algorithm. 
This paper refers to a controller using Adaptive Neural 

Fuzzy Inference Systems to replace the power system 
stabilizer (PSS). This is one control algorithm is used widely 
in the field of automatic control which is effective for the 
nonlinear of plants. Adaptive Neural Fuzzy Inference 
Systems algorithm is used for power system operation which 
excitation system of the generator will be automatically 
adjusted to limit disturbance. In there, research issues set for 
controller parameters is very important, it determines the 
performance characteristics of the system generator.  

The remainder of the paper is organized as follows. 
Section II describes Mathematical model of the system to 
synchronize generators. In section III, The Adaptive Neural 
Fuzzy Inference Systems (ANFIS) in Small-signal Stability 
for Power System is presented. Section IV presents 
simulation results. The conclusions are given in section V. 

2. Mathematical Model of the System to 
Synchronize Generators 

For small-signal stability analysis, dynamic modeling is 
required for the major components of the power system. It 
includes the synchronous generator, excitation system, 
automatic voltage regulator (AVR), etc. The model shown in 
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Figure 1 is used to obtain the linearized dynamic model [13]. 

 

Figure 1. Single machine connected to a large system through transmission 
lines 

The governing dynamic equations of the system [9] are 
shown as in (1). 
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Where 
KS is synchronizing torque coefficient in pu torque/rad  
KD is damping torque coefficient in pu torque/pu speed 

deviation 
H is inertia constant in (MW-Sec/MVA) 

rω∆ is speed deviation in ( )0 0/rpu ω ω ω= −  

δ∆  is rotor angle deviation in elec. rad 

0ω is rated speed in elec. rad/s = 02 fπ   

The coefficients K1 ->K6 depend on the parameters of the 
grid and the power system voltage. 
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On the other hand, excitation system is used ST1A which is 
synthesized in the form of small disturbance in the literature [7, 
9, 11]: 

                (2) 

Therefore, the model synthesis of linear systems has been 
derived from power system disturbances as Figure 2. 

 

Figure 2. Block diagram representation with Exciter and AVR. 

3. The Adaptive Neural Fuzzy Inference 
Systems (ANFIS) In Small-Signal 
Stability for Power System 

The Adaptive Neural Fuzzy Inference Systems is a kind of 
neural network which is based on Takagi–Sugeno fuzzy 
inference system. Since it integrates both neural networks and 
fuzzy logic principles, it has ability to capture the advantages 
of both in a single framework. Its inference system 
corresponds to a set of fuzzy IF–THEN rules that it is capable 
of learning to approximate nonlinear functions [10]. Hence, 
ANFIS is regarded to be a universal estimator.[8] 

In this section, we propose a class of adaptive networks 
which are functionally equivalent to fuzzy inference systems. 
The proposed architecture this is called ANFIS, standing for 
Adaptive Neural Fuzzy Inference Systems. We describe how 
to analyse the parameter set in order to apply the hybrid 
learning rule. Besides, we demonstrate how to apply the 
Stone-Weierstrass theorem to ANFIS will be simplified [4, 5] 

Fuzzy if-then rules and how the radial basis function 
network relate to this kind of simplified ANFIS  

For simplicity, we assume the fuzzy inference system under 
consideration has two inputs x ω= ∆  and y Pe= ∆  and one 
output f. Suppose that the rule base includes two fuzzy if-then 
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rules of Takagi and Sugeno’s type [6, 10]. 
In this study using 5 set of fuzzy rule, such as: 

 

For the training of the network, there is a forward pass and a 
backward pass. We now look at each layer in turn for the 
forward pass. The forward pass propagates the input vector 
through the network layer by layer.  In the backward pass, the 
error is sent back through the network in a similar manner to 
back-propagation. 

Then the fuzzy reasoning is illustrated in Figure 3. And the 
corresponding equivalent ANFIS architecture is in as Figure4. 

 

Figure 3. Fuzzy reasoning 

The node functions in the same layer are of the same 
function family as described below: 

- Layer 1: Every node in this layer is a square node with a 
node function. 

                    (3) 

Where: 1 2i = ÷ , 1 5j = ÷ , x is the input to node i and jA  is 
the linguistic label (small , large, etc.); associated with this 
node function. In other words j

iO  is the membership function 

of jA , and it specifies the degree to which the given x satisfies 

the quantifier jA . 

 

Figure 4. ANFIS architecture 

In this study we choose (3) to be bell-shaped with maximum 
equal to 1 and minimum equal to 0, such as (4) and (5). 

         (4) 

         (5) 

Where {aij, bij, cij} is the parameter set. As the values of 

these parameters change, the Bell-shaped functions vary 

accordingly, thus exhibiting various forms of membership 

functions on linguistic label Aj, Bj. Parameters in this layer are 

referred to as premise parameters. 
- Layer 2: Every node in this layer is a circle node labeled II 

which multiplies the incoming signals and sends the product 
out, as in (6). 

    (6) 

 

 

 

 

 

Each node output represents the firing strength of a rule, (In 
fact, other T-norm operators that perform generalized AND 
can be used as the node function in this layer). 

- Layer 3: Every node in this layer is a circle node labeled N. 
The i-th node calculates the ratio of the i-th rule’s firing 
strength to the sum of all rules’ firing strengths, as in (7): 

           (7) 
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For convenience, outputs of this layer will be called 
normalized firing strengths 

- Layer 4:  Every node i in this layer is a square node with a 
node function: 

        (8) 

Where jw  is the output of layer 3, and {pj, qj, rj} is the 

parameter set. Parameters in this layer will be referred to as 
consequent parameters. 

       (9) 

- Layer 5 The single node in this layer is a circle node 
labeled E that computes the overall output as the summation of 
all incoming signals, i.e, as in (10): 

            (10) 

Where ,x y is the input: x ω= ∆  and y Pe= ∆ ; Output 
signal is in layer 5 f  is the output, shown in Figure 4. 

Hybrid Learning Algorithm 
From the proposed ANFIS architecture in Figure 4, it is 

observed that given the values of premise parameters, the 
overall output can be expressed as a linear combinations of the 
consequent parameters. More precisely, the output f in Figure 4 
can be rewritten as in (11). 

         (11) 

4. Simulation Results 

In this section the ANFIS system is simulated using 
Matlab-Simulink [12]. 

In power system analysis, the parameters are usually 
convenient to user a per unit system to normalize system 
variables. The simulation parameters are selected as following 
Table 1 in literature [14]. 

Table 1. Synchronous Machine Parameters 

Symbol Parameters Value 

R1 Stator winding resistance at 150C 0.0077 pu 

R2 Rotor winding resistance at 150C 0.126 pu 

xd Direct axis synchronous reactance 1.0494 pu 

xq Quadrature axis synchronous reactance 0.648 pu 

x’d Direct axis transient reactance 0.2887 pu 

x’’d Direct axis over transient reactance 0.191 pu 

xe Stator leakage reactance 0.1244 pu 

xq Quadrature axis synchronous reactance 0.648 pu  

x″q Quadrature axis over transient reactance 0.197 pu 

T’do 
Excitation winding time constant when stator 
winding open circuit 

6.88 s 

Cosϕ Rated power factor  0.85 

H The coefficient of inertia 1.5 

S Rated capacity 1.0  pu 

P Rated power 0.85 pu 

Q Rated power 0.85 pu 

Ut Rated voltage 1.0 pu 

It Rated current 1.0 pu 

ω Rated  angular speed of rotor 1.0 

f Rated frequency 50 Hz 

(pu = Per unit, Hz = Hertz, s = second.) 

- With PSS-2A and excitation system is shown in Figure 5. 

 

Figure 5. PSS-2A and excitation system 

The IEEE Type-ST1A  dynamic equation [9] with PSS-2A 
is shown as in (12): 

( )1
fd A ref PSS t fd

A

E K V V V E
T

 = + − − 
ɺ       (12) 

- With ANFFIS and excitation system is shown in Figure 6. 
The IEEE Type-ST1A dynamic equation with ANFIS is 

shown as in (13): 

 

Figure 6. ANFIS and excitation system 
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( )1
fd A ref ANFIS t fd

A

E K V V V E
T

 = + − − 
ɺ      (13) 

The simulation results: 
At the time t=0s, the generator is connected with the power 

system. We compare the performances of three different 
approaches: 1) the power systems using traditional AVR. 2) 
The power systems using PSS algorithm. 3) The power 
systems using ANFIS algorithm. Figure 7 and Figure 8 show 
simulation results of the characteristics of rotor speed. Figure 
8 gives rotor speed using ANFIS algorithm has fluctuated in 
2.2 seconds (from 0s to 2.2s) and stable with ω=1pu. 

 

Figure 7. The characteristic of angular speed of rotor, the generator is 
connected into the power system at time t=0s 

 

Figure 8. The characteristic of angular speed of rotor zoom in Figure 7 

Figure 8 also gives power systems using ANFIS algorithm 
works better than AVR and PSS algorithm.  

At time t = 8s, we add connected load 300MV to power 
system. Figure 9 show that simulation results of the 
characteristics of rotor speed under three different methods. 
Figure 9 show that the rotor speed has fluctuated in 2.23 
seconds (from 8s to 10.23s) and stable with ω=1pu. Figure 9 
also show that the performance of the power system using 
ANFIS algorithm is superior to another two methods. 

 

Figure 9. The characteristic of angular speed of rotor, the load power of 
300MW is connected into the power system after time 8s 

Figure 10, Figure 11 and Figure 12 give the simulation 
results of the characteristic of available power under three 
different methods. 

Figure 11 shows power of the power system using ANFIS 
algorithm has fluctuated in 2.3 seconds (from 0s to2.3s) and 
stable with Pe=0.85pu at time t = 0s the generator is connected 
to power system. 

 

Figure 10. The characteristic of angular speed of power, the generator is 
connected into the power system at time t=0 

 

Figure 11. The characteristic of angular speed of power, the generator is 
connected into the power system zoom in Figure 10 
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Figure 12. The characteristic of angular speed of power, the load power of 
300MW is connected into the power system after time 8s 

After 8 seconds, we connect a load of 300MW into the 
power system. Figure 12 illustrates power of the power system 
using ANFIS algorithm has fluctuated in 2.23 seconds (from 
8s to 10.23s) and stable with Pe=0.85pu. 

Through the results in Figure 10, Figure 11, Figure 12, we 
see that the power system stability using ANFIS algorithm can 
achieve better results than AVR and PSS methods. 

5. Conclusion 
In this paper, an ANFIS algorithm has been presented for 

stability control of the power system.  The main contributions 
of the paper are that we use ANFIS algorithm for the problem 
of small signal stability in power system which enhancing 
damping of system oscillations via generator excitation control. 
This study provides an alternative algorithm for power system 
stabilizer PSS to reduce the response time of the rotor speed, 
the response time of output power of the generator and 
reinforcing the power stability in the power system. Simulation 
results show that the ANFIS algorithm can achieve better 
results than PSS and AVR methods. 
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