
 

Engineering and Applied Sciences 
2017; 2(5): 77-88 

http://www.sciencepublishinggroup.com/j/eas 

doi: 10.11648/j.eas.20170205.11 

ISSN: 2575-2022 (Print); ISSN: 2575-1468 (Online)  

 

Algorithm for Calculating the Initial Defect Structure of 
Semiconductor Silicon 

Vitalyi Igorevich Talanin, Igor Evgenievich Talanin, Vladislav Igorevich Lashko 

Department of Computer Science & Software Engineering, Institute of Economics & Information Technologies, Zaporozhye, Ukraine 

Email address: 

v.i.talanin@mail.ru (V. I. Talanin) 

To cite this article: 
Vitalyi Igorevich Talanin, Igor Evgenievich Talanin, Vladislav Igorevich Lashko. Algorithm for Calculating the Initial Defect Structure of 

Semiconductor Silicon. Engineering and Applied Sciences. Vol. 2, No. 5, 2017, pp. 77-88. doi: 10.11648/j.eas.20170205.11 

Received: June 5, 2017; Accepted: June 21, 2017; Published: November 28, 2017 

 

Abstract: An algorithm for calculating the defect structure of semiconductor silicon crystals was proposed. The proposed 

approach makes it possible to calculate the sizes, distribution densities of grown-in microdefects at any point of the crystal. 

Calculations are performed by using and analyzing the thermal conditions of crystal growth in the temperature range from 

1683 K to 300 K. The algorithm flowchart is given. 
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1. Introduction 

Semiconductor silicon includes dislocation-free single 

crystals of silicon, which were grown by the Czochralski 

(CZ-Si) and floating zone melting (FZ-Si). At present, 

without such crystals, it is impossible to imagine the 

development of the electronics industry. The parameters 

and properties of silicon devices depend critically on the 

defective structure of CZ-Si and FZ-Si crystals. Various 

technological treatments of silicon for the creation of 

devices lead to the transformation of the initual defect 

structure. 

Recently, physical foundations for the formation of the 

initial defect structure of semiconductor silicon [1, 2]. 

Mathematical models of the formation of various structural 

defects have also been developed [3]. This means that defect 

formation during crystal growth can be a completely 

controlled process. To do this, it is necessary to create a 

software package that could analyze the processes of defect 

formation in silicon from a unified position. Thus, the task of 

developing virtual methods for investigating (controlling) the 

initial defect structure of silicon with the help of algorithms 

of formation and transformation, both individual types of 

defects, and the entire structure, depending on the thermal 

conditions of crystal growth is relevant. The solution of this 

problem is the purpose of this work. 

2. Physical Model of Formation and 

Transformation of Structural Defects 

In the process of growth of dislocation-free single crystals 

of silicon are formed structural imperfections. They are 

called grown-in microdefects. It is well known that the 

formation and transformation of grown-in microdefects 

depends critically on the thermal conditions of the crystal 

growth [1, 2]. The thermal conditions for crystal growth 

include: (i) growing method, (ii) crystal growth rate (�� ), 

axial and radial temperature gradients (��  and �� ), crystal 

cooling rate (�����), crystal diameter. 

Experimental studies of growth microdefects made it 

possible to establish the existence of three types of structural 

imperfections: precipitates of impurities [1, 3], dislocation 

loops [4], and microvoids [5]. It was found that microvoids 

and dislocation loops are formed in different regions of the 

crystal, depending on the growth parameter �� ��⁄ = ���
� 
(where ���
�  is a constant) [6]. It was established that 

irrespective of the growth method near the crystallization 

front in unalloyed silicon single crystals precipitates of 

oxygen (SiO2) and carbon (SiC) are formed. The defect 

formation in accordance with the diffusion model occurs in 

three stages [3]: (i) the formation of impurity complexes near 

the crystallization front; (ii) the formation, growth, and 
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coalescence of precipitates during cooling of the crystal from 

the crystallization (melting) temperature to room 

temperature; and (iii) the formation of microvoids or 

dislocation loops at temperatures � ≤ 1423� depending on 

the growth parameter �� ��⁄ . This physical model is called 

the diffusion model of the formation of grown-in 

microdefects. The mathematical apparatus of the diffusion 

model using modern information technologies can provide 

the basis for the development of a software complex for 

analysis and calculation of the formation of growth and 

postgrowth microdefects in dislocation-free silicon single 

crystals [2]. 

3. Calculation of the Initial Defect 

Structure of Semiconductor Silicon 

Proceeding from the diffusion model of formation and 

transformation of grown-in microdefects, the unified 

algorithm for calculating the defect structure of silicon 

should be a complex of algorithms for the formation of 

individual grown-in microdefects, taking into account the 

thermal conditions for growing crystals. The experimental 

and theoretical investigations of ultrapure dislocation-free 

silicon crystals demonstrated that the formation of a defect 

structure during the crystal growth occurs in the direction 

from the high-temperature precipitation of impurities to the 

formation of secondary growth defects (microvoids or 

dislocation loops). The main role in the process of defect 

formation is played by the precipitation of impurities [2]. 

Therefore, in the center of the unified algorithm is the 

algorithm for the formation of precipitates. 

3.1. Algorithm for the Formation of Precipitates 

At present, two approaches are used to calculate the initial 

stage of formation of precipitates (formation of impurity-

intrinsic defect complexes): classical and probabilistic [3, 7]. 

3.1.1. Classic Approach 

In [8], was calculated the formation of “impurity–intrinsic 

point defect” complexes during the growth of silicon crystals 

with the inclusion of the elastic interaction between the 

components of the complex. The calculation algorithm is 

based on approximation of the strong complexation for 

model of consistent diffusion, which allows a simple physical 

interpretation and can be the most adequate for the physical 

model. [9]. The solution to the problem of diffusion of a 

component A in a semi-infinite sample homogeneously 

doped with a component B, with the absence of evaporation 

of the component B from the sample and the presence of the 

free component A at the sample boundary, has the form [10]: 
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0λ  is determined from equation: 
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where � is the concentration of complexes; ��, �� , and ��  

are the diffusion coefficients of the free components �, � and 

complexes, respectively; � is the coordinate (crystal length); 

and � is time. 

The component � is the background impurity (oxygen � 

or carbon �) and the component � is intrinsic point defects 

(vacancies �  or interstitials  ). !�  and !�  are the 

concentrations of the free impurities �  and �  and "�#  and 

"�# are the impurity concentrations at the interface [8]. In the 

calculations, the following quantities were used:  

15 3(0) (0) 4 10 ( );A oH H сm FZ Si−= = ⋅ −  

16 3(0) (0) 8 10 ( );A oH H сm CZ Si−= = ⋅ −  

14 38,84 10 ;VC сm −= ⋅ 5 24 10 / ;VD сm c−= ⋅  

0,17oD =
 
exp( 2.54 / ),kT−

 

58,6153 10 / , (0) ( ) 4A c mk eV K H H T−= ⋅ = = ×
15 310 ( ),сm FZ Si− −  

16 3 14 3(0) (0) 1 10 ( ), (0) 6,31 10 ,A c IH H сm CZ Si C сm− −= = ⋅ − = ⋅

4,75ID = × 
4 210 / , 1,9 exp( 3.1/ ).cсm s D kT− = ⋅ −

 

The solution to equations has a physical meaning ("�$ ≈
10$' − 10$)  cm

–3
) only at * = 0.01 . Note that, in the 

approximation of strong complex formation, *# is interpreted 
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as the front boundary of the complex formation reaction. 

Since �  is the crystal length and �#  is the position of the 

crystallization front, we can conclude that complex formation 

occurs near the crystallization front [10]. 

This approximation is valid at the initial stages of the 

formation of nuclei, when their sizes are small and the use of 

Fokker–Planck continuity differential equations is 

impossible. 

In paper [11] was considered the modern approach based 

on solving systems of coupled discrete differential equations 

of quasi-chemical reactions for the description of the initial 

stages of the formation of nuclei of new phases and a similar 

system of Fokker–Planck continuity differential equations. 

The nucleation and evolution of a complex system of grown-

in microdefects (which consists of oxygen and carbon 

precipitates) during cooling of the crystal are described by 

the systems of coupled differential equations for each type of 

defect: 
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In the system of equations (7), we took into account that 

the oxygen precipitates serves as sinks for oxygen atoms and 

vacancies and as sources of interstitial silicon atoms. Then, 

we can write the following equations: 
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At the same time, the carbon precipitates, in turn, also 

serve as sinks for carbon atoms and interstitial silicon atoms 

and as sources for vacancies. Therefore, we can write
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In the general case, the proportionality factors 

, , ,v i v iγ γ γ γ∗ ∗  can depend on the quantities ,o cn n  and are 

determined by the conditions of thermodynamic equilibrium 

[12]. 

The corresponding system of coupled Fokker–Planck 

equations can be transformed into the dimensionless form: 
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where 
o

t

t
τ =  is the dimensionless time. The time constants 

in the system of equations (10) are given by the expressions 

2
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growth rates of the precipitates are defined as 
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The normalized sizes of the precipitates are determined in the 

system of equations (10) as follows:
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normalizing critical sizes of the precipitates. The quantities 
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numbers of particles in the vicinity of the corresponding 

precipitates with critical sizes. The size distribution functions 

of the precipitates in the system of equations (10) are 

normalized to the initial concentrations of the corresponding 

nucleation centers: 
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The fluxes of particles on the right hand sides of the 

system of equations (10) are described by the expressions 
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in which the following notation is used for the normalized kinetic coefficients: 
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The normalized rates of growth and dissolution of the 

precipitates in expressions (14)-(15) take the form 
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The critical size of the precipitates can be determined 

according to [12] from the expressions: 
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are the supersaturations of the oxygen atoms, carbon atoms, 

intrinsic interstitial silicon atoms, and vacancies, 

respectively; σ  is the density of the surface energy of the 

interface between the precipitate and the matrix; µ  is the 

shear modulus of silicon; δ  and ε  are the relative linear and 

volume misfit strains of the precipitate and the matrix, 

respectively; iγ  and vγ  are the fractions of the intrinsic 

interstitial silicon atoms and vacancies per impurity atom 

attached to the precipitate, respectively; pV  is the molecular 

volume of the precipitate; 
1 31

(1 ) ( )
1

i vu x x
εγ γ
δ

− += + + ⋅
+

. 

The number of impurity atoms in the compressed 

precipitates with the radii Or  and Cr  is determined according 

to [13] from the formula: 
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where � is the fraction of impurity atoms per intrinsic defect, 

x ≤ 2, iγ ≤ ½, vγ ≤ ½. 

The calculations were performed using the following data: 

pV = 4,302·10
-2

 nm
3
 (SiO2); pV = 2,04·10

-2
 nm

3
 (SiС); σ = 

310 erg/cm
2
 (SiO2); σ = 1000 erg/cm

2
 (SiС); µ = 6,41·10

10
 

Pa; δ = 0,3; ε = 0,15; 0,4; 0,1i vγ γ= = ; х = 1,5; 
2SiOδ = 

0,5431 nm; 0,4359SiC nmδ = ; 16 38 10 ;
eq
OC cm−= ⋅  

16 31 10 ;eq
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0,17exp( 2,54 / ); 1,9exp( 3,1 / );O cD eV kT D eV kT= − = −  

2 2,54SiO
actG eV= , 3,17SiC

actG eV= , 
5

8,6153 10 /k eV K
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[11]. 

The algorithm used for solving the problem of simulation 

of the simultaneous growth and dissolution of the oxygen and 

carbon precipitates due to the interaction of point defects 

during cooling of the crystal from the crystallization 

temperature is based on the monotonic explicit difference 

scheme of the first order accuracy as applied to the Fokker–

Planck equations (10) [11]. 

The critical size distribution functions of the oxygen and 

carbon precipitates can be found only from the Fokker–

Planck continuity differential equations. The model of 

dissociative diffusion makes it possible to analyze the 

processes occurring in the diffusion region near the 

crystallization front. These mathematical models, together 

with the experimental results obtained from the investigation 

of quenched crystals, have demonstrated that the nucleation 

processes occur very rapidly near the crystallization front. 

3.1.2. Probabilistic Approach 

The classical concepts of a periodic structure of a crystal 

are based on physical limitations, such as the localization of 

each atom in the vicinity of a fixed site of the crystal lattice, 

the consistency of introducing the concept of probability and 

the mechanical description of the behavior of particles, and 

the assumption that the number of atoms in a crystal is an 

integer. Meanwhile, in [14, 15] Vlasov developed a different 

model of a crystal. In this model, the periodic structure of a 

crystal not is a consequence of the restrictions on the freedom 

of movement of atoms in the crystal, but is determined by 

specific statistical laws of motion of particles, in accordance 

with which the periodic structure agrees with the freedom of 

movement of atoms, so that the probability of finding an 

atom in interstitials is always different from zero [14]. 

The Vlasov model is based on the following basic physical 

concepts [14]: (i) the rejection of the principle of the spatial 

and velocity localization of particles (in terms of the classical 

mechanics), which takes place regardless of the force 

interactions; (ii) the introduction of force interactions by 

analogy with the classical mechanics, but with the inclusion 

of a new principle of nonlocalization of particles; and (iii) the 

behavior of each particle of the system is described by means 

of an ,-function extended in phase space. 

The stationary properties of a crystal are described using 

the distribution density of particles -./0 = 1 ,./, 3043. The 

molecular field is determined by only probable, rather than 

exact, positions of the atoms. This is expressed by the 

potential function containing the probability density of the 

particles with the inclusion of the temperature distribution of 

the particles [14]. The choice of the pair interaction potential 

depends on the problem under consideration. Then, the 

nonlocal model of a crystal is based on the following 

nonlinear equations, which allow us to calculate the 

molecular potential and the particle position density under 

thermal equilibrium conditions [14]: 

�./0 = *5� 1 �$,'./06�7 8− 9:,;.�0
<= > 4/?

@? 	-./0 = *5�6�7 8− 9:,;.�0
<= >                                    (19) 

where k is the Boltzmann constant; �$,' is the pair interaction 

potential; *  is a certain characteristic number. The initial 

equations are equations for two particles under the steady-

state conditions 8 B
B� = 0> . The characteristic number is 

considered to mean such a value of the parameter * for which 

the equations of system (19) have solutions other than trivial. 

If the position of one of the particles is taken as the origin of 

the coordinates, we can determine -.00 = *5�. 

The characteristic number * can be determined from the 

main criterion for the existence of the crystalline. In this case, 
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the crystallization condition can be written as follows: 

)CD
<=E 1 �$,'∗ .-0-'4- = 1?

#                        (20) 

where "  is the number of particles; �G  is the melting 

(crystallization) temperature of the crystal; �$,'∗ = −�$,'. 

For the evaluation of the parameters of the formation of 

silicon–carbon and silicon–oxygen complexes, the 

interatomic interaction can be represented in the form of the 

Mee–Lennard-Jones potential: 

H./0 = �$,'./0 = I
.J@�0 KL 8�M

� >J − N 8�M
� >�O        (21) 

where �  and /#  are the depth and the coordinate of the 

minimum of the interatomic potential, respectively; N and L 

are the parameters, N > L. In the case of the formation of a 

stable bond between the atoms, we have / = √2R /#  and 

H./0 = HG
S. For silicon, the parameters of the interatomic 

potential are as follows: L =2.48, N =4.0, � =2.32 eV; for 

carbon, the parameters of the potential are L=2.21, N=3.79, 

�=3.68 eV; and for oxygen, the parameters of the potential 

are L=2.6, N=4.2, �=3.38 eV [16. 17]. 

The characteristic numbers of the silicon-oxygen (*$) and 

silicon-carbon ( *' ) complexes were determined using 

equation (20) for the number of particles in complex for the 

number of particles N=2 and �.-0 = 5� T1 − 6@U:,;
VW X. The 

calculation gave the following values: *$ = 4.482 ∙ 10[6�@$ 

and *' = 1.099 ∙ 10]6�@$[7]. 

Equation (19) is written for the conditions of thermal 

equilibrium of the system. Since the minima of the 

interatomic potentials correspond to stable equilibrium 

positions of the atoms in the silicon–oxygen and silicon–

carbon complexes, the distribution density of the complexes 

can be determined as a function of the cooling temperature of 

the crystal 

-.�0 = *5�6�7 8− ^:E_`,;E_`
<= >                 (22) 

The results of the calculations showed that the classical 

theory of nucleation and growth of second-phase particles in 

crystals and the Vlasov model of crystal formation identically 

describe the processes of high-temperature precipitation, 

which provides the basis for the defect formation in crystals. 

It is important to note that the Vlasov model of a solid state 

does not require introduction of additional parameters, such 

as the growth rate and the axial temperature gradient of the 

crystal, into the calculations. 

3.1.3. Algorithm for Calculating the Growth and 

Coalescence of Precipitates 

In the classical theory of nucleation and growth of new-

phase particles, the process of precipitation in a crystal is 

treated as a firstorder phase transition and the kinetics of this 

process is divided into three stages: the formation of 

newphase nuclei, the growth of clusters, and the coalescence 

stage [18]. At the second stage of the precipitation process, 

clusters grow without a change in their number. This growth 

is accompanied by a considerable decrease in the degree of 

supersaturation of the solid solution. 

The nucleation centers attach and detach monomers, which 

is described by the system of equations [9]: 
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0
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where iN  is the volume average concentration of nucleation 

centers that attach i  particles; N  is the monomer 

concentration; ik N  is the rate of attachment of a monomer 

for a nucleation center; ig  is the rate of detachment of a 

monomer for a nucleation center. At the initial instant of 

time, the system contains only monomers and nucleation 

centers. The growth of precipitates is limited by the monomer 

diffusion. The kinetic coefficients are given by the formula 

4i ik R Dπ= , where iR  is the radius of attachment of a free 

particle by a cluster consisting of i  particles; D  is the 

diffusion coefficient of a free particle. 

The system of equations (23) obeys the law of 

conservation of nucleation centers 

1
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N N t
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=∑  and the 

law of conservation of the total number of particles, 
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precipitates, i.e., ( ) ( )
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=

= +∑ , where ( )0N  is the 

monomer concentration at the initial instant of time. 

Therefore, the average number of particles at the nucleation 

centers can be represented in the form: 
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In the case of the diffusion controlled precipitation, the 

mathematical expectation ( )i t  can be described by the 

macroscopic equation [19]: 

( ) ( )( )0 E

di
k N N i t m

dt

α
= − + ,                  (25) 

where 0 4 ik R Dπ= , m  is the initial size of precipitates; α  

is the parameter dependent on the cluster geometry. 

Expressions (23) and (25) allow us to write the differential 

equation that describes the variation in the monomer 

concentration during the decomposition of the solid solution 

[9]: 

( ) ( )( ) ( ) ( )( )1
0 0c E c

dN t
k N N t N N mN N t

dt

αα−= − − × +   (26) 
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By numerically solving Eq. (26) simultaneously with Eq. 

(23) we can calculated the average radius of the precipitate at 

the growth stage: 

( ) ( )
3

3

4

bi t
R t

π
=                             (27) 

At the third stage of the precipitation process, when the 

particles of the new phase are sufficiently large, the 

supersaturation is relatively low, new particles are not formed 

and the decisive role is played by the coalescence, which is 

accompanied by the dissolution of small-sized particles and 

the growth of large-sized particles. The condition providing 

for changeover to the coalescence stage is the ratio 

( ) ( )
( ) 1

cr

R t
u t

R t
= ≈ , where ( )crR t  is the critical radius of the 

precipitate. Under this condition, the precipitate is in 

equilibrium with the solution ( 0
dR

dt
= ). The precipitate 

grows at ( ) ( )crR t R t>  and dissolves at ( ) ( )crR t R t< . With 

time, the critical radius ( )crR t  increases and the number of 

particles per unit volume decreases ( n ) [20]. 

In the general case, the size distribution of precipitates has 

the following form: 

( ) ( )
( ) ( ),

cr

n t
f R t P u

R t
=  

( )
( )cr

R t
u

R t
=                                   (28) 

( )5

3
16 exp

2
, 2( )

2

0, 2

u
u

u
uP u

u

u

  ⋅  − − <=  −
 >

          (29) 

The average size of precipitates at the stage of the 

coalescence is proportional to the cube root of time [20]: 

( )33
0

4
( )

9
sr cr

D t
R t R t

β= +                     (30) 

where D  is the diffusion coefficient of impurity atoms; 

( )0N
kT

σβ Ω =  
 

; ( )0crR t  is the initial critical radius; σ  is 

the surface tension at the precipitate–solid solution interface; 

Ω - atomic volume. 

( ) ( )0

0

M t
n t

t
t

=                                (31) 

where 0t  is the initial critical time; ( )0M t  is the initial 

concentration of precipitates. 

The calculations were performed using the following 

parameters: [18]: pV = 4,302·10
-2

 nm
3
 (SiO2); pV = 2,04·10

-2
 

nm
3
 (SiС); σ = 310 erg/cm

2
 (SiO2); σ = 1000 erg/cm

2
 (SiС); 

µ = 6,41·10
10

 Pa; δ = 0,3; ε = 0,15; N  = 0.25 nm; 

),/1.3exp(9.1),/54.2exp(17.0 kTeVDkTeVD cO −=−=  

KeVk /106153.8 5−⋅= . 

The analysis was carried out under the assumption that 

precipitates grow at a fixed number of nucleation centers 

according to the diffusion mechanism of growth. The model 

corresponds to the precipitation uniform in the volume. 

3.2. Algorithm for Formation of Microvoids and 

Dislocation Loops 

The nucleation of microvoids and dislocation loops begins 

at specific temperatures (in the temperature range 

1423…1173 К), while precipitates are already formed and 

participate in competing processes of the growth of particular 

precipitates and dissolution of the other precipitates [1]. 

3.2.1. Algorithm for the Formation of Microvoids 

The model describing the defect dynamics in a crystal 

involves the kinetics of Frenkel reactions, nucleation of point 

defects, growth of clusters, and point defect balance [21]. 

The mutual annihilation and the formation of pairs of point 

defects over the entire volume of the crystal are considered in 

the kinetics of Frenkel reactions. A series of bimolecular 

reactions is considered in the section of nucleation of point 

defects. The motion of complexes of point defects in the 

direction from the melt–crystal interface is considered in the 

section of cluster growth. 

, ,

*
, , , ,

0

( )

4 ( ) ( , , ) ( , ) ( , )

i
i

i i
g IV i v i e v e

t

i i i e cl i cl i cl i i

C
D

C Cz
V k C C C C

t z z

D C C R z t J d J z t mπ τ ξ τ τ

∂ ∂  ∂ ∂∂ = − − − −
∂ ∂ ∂

− − −∫

 (32) 
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*
, , , ,

0

( )

4 ( ) ( , , ) ( , ) ( , )

vi
vi

v vi
g IV i v i e v e

t

v vi v e cl v cl v cl v v

C
D

C Cz
V k C C C C

t z z

D C C R z t J d J z t mπ τ ξ τ τ

∂ ∂  ∂ ∂∂ = − − − −
∂ ∂ ∂

− − −∫

 (33) 

Here, ,cl jJ  is the concentration of critical clusters; a∗  is 

the number of monomers; clR  is the radius of a critical 

cluster; b is distance from the crystallization front, ( , )J ξ τ  is 

the rate of cluster formation; IVk  is the recombination factor; 

c is the time of cluster formation; 

t

gz V d

τ

ξ τ ′= − ∫ , where τ ′  

is the time between the instants of time t and τ. 

In Eqs. (32) and (33), the variations in the point defect 
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concentrations are due to their diffusion (first term), 

convection (second term), Frenkel reactions (third term), 

their consumption for the existing clusters (fourth term), and 

the formation of new clusters (fifth term). The rate of 

consumption of point defects for the formation of new 

clusters is negligible and, subsequently, can be ignored [21]. 

The diffusionlimited growth rates of clusters (for any b 

and � ) formed at the corresponding quantities d  and c  are 

described by the equations: 

2 2
, ,

,
,

( , , ) ( , , )2
( )

cl i cl ii
i i e g

i cl

R z t R z tD
C C V

t z

τ τ
ψ

∂ ∂
= − −

∂ ∂
      (34) 

2 2
, ,

,
,

( , , ) ( , , )2
( )

cl v cl vv
v v e g

v cl

R z t R z tD
C C V

t z

τ τ
ψ

∂ ∂
= − −

∂ ∂
      (35) 

where ψ  is the density of monomers in the cluster. 

The equations for the nucleation rates are represented in 

the form: 

*( / )* * 1/2
, ,

,

( , ) [4 ( ) ] ln (12 ) [ ]iv bF k Ti
cl i cl i i i i b i b site

i e

C
J z t R m D C k T F k T e

C
π π ρ − 

=   
 

                                         (36) 

*( / )* * 1/2
, ,

,

( , ) [4 ( ) ] ln (12 ) [ ]v bF k Tvi
cl v cl v v vi v b v b site

v e

C
J z t R m D C k T F k T e

C
π π ρ − 

=   
 

                                      (37) 

where e∗ is the maximum change in the free energy. 

The initial length or height of the crystal is taken to be 0. 

For the crystal with a finite length ℎ , the equilibrium 

conditions are assumed to be dominant over the entire 

surface, including the crystal–melt interface: 

( 0) 0h t = =                                     (38) 

,( 0, )i i eC z t C= =                                 (39) 

,( 0, )v v eC z t C= =                                 (40) 

,( , )i i eC z h t C= =                                 (41) 

,( , )v v eC z h t C= =                                 (42) 

The initial size of the steady state critical cluster is 

negligible as compared to the microdefect size. 

Consequently, the initial size of the stable cluster 

insignificantly affects its final size. The initial size of the 

stable cluster (nucleus) is calculated from the number of 

monomers in the critical cluster: 

1/3
*

,
,

3
( , )

4

i
cl i

i cl

m
R ξ τ

π ψ
 

=   
 

                        (43) 

1/3
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,
,

3
( , )

4

v
cl v

vi cl

m
R ξ τ

π ψ
 

=   
 

                        (44) 

Equations (32)-(42) together with the energy balance of 

the hot zone control and determine the quantitative dynamics 

of point defects. In semiconductor industry, the crystal 

quality has been frequently determined from the total 

concentration or total density and represented by the average 

size of existing clusters. The total density of clusters is 

calculated by summation of clusters of different sizes in the 

current state: 

, ,

0

( , )

t

cl i cl iN J dξ τ τ= ∫                          (45) 

, ,

0

( , )

t

cl v cl vN J dξ τ τ= ∫                        (46) 

The average cluster radius is defined as 

1/3

3
, ,

0
, ,

,

0

( , , ) ( , )
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cl i cl i
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J d
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 
 

=  
 
 
 
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∫

∫
             (47) 
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,
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t

cl v cl v
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cl v

R z t J d

R

J d

τ ξ τ τ

ξ τ τ

 
 
 

=  
 
 
 
 

∫

∫
            (48) 

where avg stands for the average volume. 

The model of point defect dynamics under consideration is 

onedimensional in nature, and, hence, the influence of the 

radial diffusion that is dominant in the vicinity of the surface 

of the crystal is disregarded. Therefore, the model can be 

applied to an axial distribution of defects in the crystal for 

fixed radial positions far from the surface. 

The system of equations is solved using the exact space–

time discretization. The algorithm involves the solution to the 

equation 
dh

V
dt

=  for the crystal growth rate with the 

simultaneous solution to Eqs. (32)–(34) with the boundary 

and initial conditions (37)–(41). The size distribution is 

determined from the solution to Eqs. (33) and (34) for the 

corresponding type of grown-in microdefects/. The 
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recombination factor in the calculation was taken to be 

0IVk = . 

An analysis of the experimental and calculated data within 

microvoid formation in accordance with the diffusion model 

of the formation of grown-in microdefects revealed the 

following reasons for the occurrence of microvoids in 

dislocation-free Si single crystals [22]: 

(i) a sharp decrease in the concentration of background 

impurity that was not associated into impurity 

agglomerates (formed in the cooling range of 

1685…1423K); 

(ii) a large (over 80 mm) crystal diameter (in this case 

vacancies fail to drain from the central part of the 

crystal to the lateral surface); 

(iii) crystals of large diameter generally contain a ring of 

D-microdefects which forms due to the emergence of 

the (111) face on the crystallization front and which 

depletes the region inside with impurity atoms. 

3.2.2. Algorithm for the Formation of Dislocation Loops 

We calculated the formation of microvoids and dislocation 

loops according to rigorous approximation for the point 

defect dynamics model subject to no recombination of 

intrinsic point defects at high temperatures [23]. It was 

proved that the process of microvoid formation has a 

homogeneous nature. However, the formation of dislocation 

loops is determined, mainly, by the deformation mechanism. 

This conclusion was made on the basis of a three order of 

magnitude discrepancy between the experimentally observed 

concentration of interstitial dislocation loops and their 

estimated value. [23]. Precipitates originate from elastic 

interaction between point defects. They are, initially, present 

in coherent, elastic and deformable state, when lattice 

distortions close to the precipitate-matrix boundary are not 

large, and one atom of the precipitate corresponds to one 

atom of the matrix [16]. Elastic deformations and any 

mechanical stress connected with them cause a transfer of 

excessive (deficient) substance from the precipitate or vice 

versa. Storage of elastic strain energy during the precipitate 

growth results in a loss of coherence by matrix. [24]. This 

leads to structural relaxation of precipitates. Structural 

relaxation of precipitates causes the formation of dislocation 

loops. 

In the volume of silicon the precipitate produces a stress 

field caused by mismatch between the lattice parameters of 

precipitate ( )1a  and surrounding matrix ( )2a  [25]. Then, the 

intrinsic deformation of the precipitate is defined as 

described bellow 

1 2

1

a a

a
ε −

=                                 (49) 

Let us consider the easiest model of a spherical precipitate 

with equiaxial intrinsic deformation, i.e. 

( ), 0 ; , , , ,ii ij i j i j x y zε ε ε∗ ∗= = ≠ = . Elastic strain energy of a 

spheroidal defect rises according to the cube law as the 

precipitate radius ( )prR  increases [25]: 

( )
2 332

45 1
pr prE J R

π ε
υ

⋅= ⋅ ⋅ ⋅
⋅ − ,                   (50) 

where J  is the shear modulus; υ  is the Poisson's ratio. 

Starting from a certain critical value of the critR  radius, the 

elastic strain energy mechanism begins to work. This 

mechanism results in the formation of a prismatic interstitial 

dislocation loop. The energy criterion for such mechanism is 

the initial finalE E≥  condition, where ,initial finalE E  is 

constitute elastic energy of the system with precipitate before 

and after relaxation. 

In respect of a spherical precipitate with equiaxial intrinsic 

deformation, the calculation of elastic fields of the precipitate 

is substantially simplified. Let us assume that the intrinsic 

elastic strain energy of the precipitate before and after the 

formation of a dislocation loop of mismatch remains constant 
initial final
pr prE E= . Then, a nucleation criterion for mismatch 

loop can be presented as 0 D prDE E≥ +  condition, where 

DE  is energy of a dislocation loop of mismatch; prDE  is 

energy of precipitate-dislocation loop interaction. 

For the purpose of assessment let us assume that a 

dislocation loop of mismatch has equatorial location on the 

spheroidal precipitate D prR R= , and intrinsic energy of a 

prismatic loop is equal [26] 

( )
2

4
ln 2

2 1

D
loop

J b R d
E

fυ
 ⋅ ⋅ ⋅= ⋅ − ⋅ −  

,                    (51) 

where d  is loop diameter; f  is the radius of the core loop; 

b  is the magnitude of the Burgers vector. 

A critical value of the precipitate radius corresponds to a 

value at which the loop is formed on the precipitate [27] 

( )
1.083

ln
8 1

crit
crit

Rb
R

b

α
π ν ε

 =  +  
,                  (52) 

where α  is a constant contribution of the dislocation core. 

Formula (52) is approximate and can be used only to 

determine the value of critR . critical radius. 

The dislocation loops with a radius of critR R>  become 

bigger in size at the coalescence stage, while small 

dislocation loops with a radius of critR R<  will dissolve [28, 

29]. The growth of dislocation loop in course of consequent 

as grown silicon crystal’ cooling occurs both due to the 

dissolution of small loops with the sizes less than critical, and 

the oversaturation of silicon self-interstitials. In this case, the 

crystal growth ratio is g
crit

a

V
C

G
< . When oversaturation of 

vacancies ( g
crit

a

V
C

G
> ) occurs, the interstitial dislocation 

loops start to dissolve. Increase in the radius of interstitial 
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dislocation loop can be defined by the formula depending on 

the crystal cooling time [29]: 

2( ) ( )critR t R j D t t= + ⋅ ⋅ ,                      (53) 

where ( )D t  is the diffusion coefficient of intrinsic interstitial 

silicon atoms; t  is the time cooling the crystal; j  is the 

proportionality factor. The crystal cooling time value is 

defined from the dependence: 
2

( ) m

m

T
T t

T U t
=

+ ⋅
, where mT  is 

the crystallization temperature (melting) of silicon; 

g aU V G= ⋅  is the cooling rate of the crystal. 

Let us assume that the formation of dislocation loops is 

defined only by deformation mechanism. Then, a 

concentration of dislocation loops during the crystal cooling 

shall be considered as the concentration function of 

precipitates. We have shown earlier that at the stage of 

growth and coalescence of precipitates their concentration is 

the function of the crystal cooling time [18]. Then, the loop 

concentration depends on the crystal cooling time [29]: 

2

( )
( )

1 ( ) 2 crit

M t
N t

D t t R
=

+ ⋅ ⋅
,                   (54) 

where ( )M t  is the concentration of precipitates. 

For all of calculations 
2

m

m g a

T
T

T V G t
=

+
, where mT  is the 

melting temperature; 1a = 0,768 nm (SiO2), 1a = 0,4359 nm 

(SiC), υ = 0,333, 
5

8,6153 10 /k eV K
−= ⋅ , 0,384b nm= , 2a  

= 0,5431 nm, f  = 0,96 nm, 
( )0.9

0.19497 exp
eV

D
kT

 
= ⋅ − 

  
 

сm
2
/s. The intrinsic deformations of precipitates defined 

through the mismatch parameters of silicon and precipitates 

lattices are 
2SiOε = 0,293, SiCε = -0,246. Elastic strain energy 

relaxation by precipitate results in occurrence of one or more 

dislocation loops [25]. The critical radiuses of precipitates 

which are energy favorable to the nucleation of dislocation 

loop shall be critR = 3,028 µm (SiO2) and critR = 3,402 µm 

(SiC). 

The process of interaction of intrinsic point defects with 

impurities begins near the crystallization front. It is decisive 

in the formation of the defect structure of highly perfect 

dislocation-free single crystals of silicon during their growth. 

During the cooling of the crystal, depending on the thermal 

growth conditions, the impurity atoms die to form 

precipitates. Conditions are created for exceeding the 

equilibrium values of the concentrations of intrinsic point 

defects. This process leads to the formation of microvoids or 

interstitial dislocation loops in different regions of the 

crystal. 

4. Unified Algorithm for the Formation 

of the Original Defect Structure 

A unified algorithm for the formation of defect structure is 

based on the diffusion model for the formation and 

transformation of grown-in microdefects. The diffusion 

model fully describes the kinetics of the diffusion decay of 

supersaturated solid solutions of point defects during the 

cooling of the crystal after growing. All parameters of 

precipitates, microvoids and dislocation loops are determined 

through thermal parameters of crystal growth. Determination 

of the type of defects and calculation of the formation of 

grown-in microdefects is performed depending on the value 

of crystal growth rate, temperature gradients and cooling rate 

of the crystal [3]. 

Using a parabolic distribution of the axial temperature 

gradient, it is possible to calculate the defect structure at any 

point of the crystal. The parabolic radial distribution of the 

axial temperature gradient has the form 

�./0 = �� + .�h − ��}. /
jk

0' 

where �h is the axial temperature gradient at the crystal edge; 

jk is the crystal radius and / is the current coordinate in the 

range of 0…jk. The dependence of the critical growth rate 

on the crystal radius is plotted proceeding from the relation 
^mn_o.�0

p.�0 = q��
� . The condition 
^mn_o.�0

p.�0 = q��
�  in real crystals 

corresponds to a �-shaped distribution of D-microdefects in a 

plane parallel to the growth axis or an annular distribution of 

D-microdefects in a plane perpendicular to the growth 

direction [30]. It is accepted to relate the condition 
^mn_o.�0

p.�0 =
q��
� to the so-called oxidation-induced stacking fault (OSF) 

ring, which is observed in crystals after thermal treatments 

[1]. 

The algorithm of its application is based on the high-

temperature precipitation process, which determines the 

subsequent course of the formation of a defect structure of 

crystals (Figure 1). Experimental database (EDB) should 

contain all available experimental data on the crystal, for 

example, (i) data on the crystal structure, growth method, and 

thermal parameters of the crystal growth; (ii) data on the 

types of defects, their size and concentration, and 

temperatures of formation of defects; (iii) data on the 

physical model of defect formation; etc. The necessary data 

from 
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Figure 1. Algorithm for calculating the defect structure of semiconductor silicon. 

EDB are supplied to input module of the algorithm for the 

calculation of the defect structure in high-temperature 

precipitation model. 

Computation of precipitates is carried out within the 

framework of probabilistic and classical theories of 

nucleation, growth and coalescence of precipitates using 

analytical and approximate calculations. Parameters 

characterizing the processes of precipitation of oxygen and 

carbon are determined. Among them, for example, are the 

critical radii of precipitates, the size distribution of 

precipitates, the change in the average size of the precipitates 

during crystal cooling, and others. Accounting for other 

impurities is carried out in the form of carbon and oxygen 

components of the calculation. For example, the sum of the 

concentrations of impurities of carbon, boron, aluminum and 

hydrogen form the carbon component of the calculation. 

Similarly, the sum of the concentrations of impurities of 

oxygen, gallium, phosphorus, antimony, arsenic, germanium, 

nitrogen and iron form the oxygen component of the 

calculation. 

Next are the calculation and analysis of the formation of 

the secondary defect structure of crystals (for example, 

dislocation loops, microvoids, etc.). The results of 

calculations are compared with the EDB data. In the case of 

good agreement with the EDB data, the results of 

calculations can serve as the characteristics of the initial 

defect structure of crystal and used for the calculation and 

analysis of the defect structure of the crystal after different 

heat treatments. If a satisfactory agreement is not achieved, 

the calculations are repeated again until the results are 

obtained with a desired accuracy. In the process, the 

mathematical models and (or) experimental data from EDB 

can be refined. 

In the calculation of microvoids, a check is first made to 

determine the conditions for their formation. так как This is 

due to the fact that microvoids are not formed at a cooling 

rate of the crystal �����  ≥ 40 K/min [31] and in crystals with a 

diameter less than 70 mm [22]. Calculation of microvoids 

and dislocation loops makes it possible to determine for each 

of these types of defects such parameters as the critical 

radius, concentrations and sizes. 

The algorithm makes it possible to develop software for 

the analysis and calculation of the defect structure of silicon. 

The output of information can be done in tabular, graphical 

and animation forms. 

5. Conclusion 

Mathematical models of the formation of grown-in 

microdefects gave the equivalent of the object (the process of 

defect formation during crystal growth), which in 

mathematical form reflects its most important properties. 

Mathematical models are presented in a form convenient for 

the application of numerical methods. The computational 

algorithm does not distort the basic properties of the model 

and, therefore, of the original object. The adequacy of the 

developed package "mathematical model - algorithm" of the 
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original physical model is verified by carrying out 

computational experiments and their comparison with the 

results of physical studies. 

The advantage of calculating the formation and growth of 

precipitates, microvoids and dislocation loops is that the 

input and control parameters of the computational and 

graphical part are the growth parameters: the rate of crystal 

growth and the axial temperature gradient. The axial 

temperature gradient is chosen in a certain range of values 

depending on the diameter of the grown crystal. Of the three 

growth parameters, the two parameters are strictly defined 

(the diameter of the crystal and the rate of its growth), and 

the axial temperature gradient is specified in a certain range 

of values. 

In this paper, we proposed an algorithm for the calculation 

and analysis of a defect structure of crystals and presented 

the schematic diagram of this algorithm. Based on the 

schematic diagram, it is possible to develop a software 

product for analysis and calculation of a defect crystal 

structure. 
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