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Abstract: The famous Black Scholes Option Pricing Model is a well-known option pricing model. Owing to some 

limitations it fails to perfectly detect the option price. In this study various regression and optimization techniques for 

predicting option price and analyzing various phenomena and properties with machine learning techniques for valuation and 

improving the accuracy of the option pricing model are used. The Proposed method is divided with different stages. Firstly, 

Principal Component Analysis (PCA) is used in order to identify the most influential inputs in the framework of the option 

pricing model and to reduce the dimensionality of our working data. Secondly, Support vector machine (SVM) and support 

vector regression (SVR) is used which is a very special type of learning algorithms characterized by the capacity of input 

variable as option price parameter and the use of the kernel functions. The combination of these two methods shows that SVM 

and PCA can perform better by consuming less time and memory. In this study, we investigate the estimation performance of 

option pricing model with SVM and PCA. A brief analysis of the accuracy of the approach also provided. The training of SVM 

and normalization of PCA is computed by MATLAB and it leads towards a new way for predicting option price perfectly if the 

formulation will be simulated using enough data. 

Keywords: Support Vector Regression, Gaussian Process, Financial Data Modeling and Forecasting, Option Price,  

Principal Component Analysis 

 

1. Introduction 

Now a day one of the most important topics in finance is 

the valuation of option pricing. Option price accuracy yet 

difficult task in computational financial world. It follows a 

complex pattern and a stochastic behavior in stock price. 

‘Option’ which is the right (not the obligation) to buy (call 

option) or sell (put option) the underlying asset at a particular 

price. Options can reduce the financial risk on the future 

events [12]. Since 1970 many methods were adopted for 

dealing this type of problem. The influential work in the field 

of option pricing is done by Black and Scholes (1973) with 

their formula for option pricing or more famously known as 

the Black-Scholes equation for Option Pricing [2]. It is 

difficult to justify certain assumptions for different 

parametric specification in the real-world data as there exists 

nonlinear relationship between option price and various 

variables. Therefore, in recent years, many researchers turned 

in to machine learning or nonparametric methods as they are 

capable to capture nonlinear relationship between input and 

output [2, 14].  

Two different approaches will be given in this study. The 

first approach is using Principal Component Analysis (PCA) 

was invented by Karl Pearson (1901). Principal Component 

Analysis is considered an experimental technique that can be 

used to gain a better understanding of the interrelationships 

between variables. Principal Component Analysis (PCA) can 

be consumed to test for normalcy. In this study the Principal 

Component Analysis (PCA) used to Normalize the original 

data to a simple data. 

The other approach is using Support Vector Machine 

(SVM). One of the objectives of financial methods is price of 

option evaluation. In this study, it is concentrated more on the 

Support Vector Machine, a pattern classification algorithm 

was developed by V. Vapnik (1992). Support Vector 

Regression (SVR) and Support Vector Machine are powerful 

methodology for approximating complex function. 

This study presents option pricing model that combines 
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PCA and SVM to predict option prices. In these approaches, 

the PCA serves as a state estimator and makes predictions 

based on the Black-Scholes formula. The residuals between 

the actual prices and the Black-Scholes model are fed into the 

SVM in the model, and the SVM is conducted to further 

reduce the prediction errors. Empirical results of this study 

established that the model of PCA and Support Vector 

Machine. The empirical results shown that the PCA can 

capture all of the patterns in the option prices, and the 

performance of the model can significantly reduce the option 

price errors. 

2. Related Work 

A large number of academic studies have examined the 

relative performance of options price in several countries, 

few of the studies are mentioned here. Hutchinson et al. [14] 

in 1994 used neural network for option pricing and compared 

its performance with Black Scholes model. The proposed 

model performed fairly well. M. Liu [22] in 1996, Yao et al. 

[31] in 2000 and Andreou [1] in 2008 successfully applied 

neural network in option pricing. Saxena [26] studied 

European-style CNX Nifty Options traded at National Stock 

Exchange of India. He combined the BS model and Artificial 

Neural Networks (ANNs), for option pricing and concluded 

that hybrid model can improve the pricing performance of 

options under all market conditions and Mitra [23] in 2012 

studied Nifty Options in India and forecasted it using neural 

network. Lajbcygier et al. [19] improved the Hybrid Neural 

Network using bootstrap methods to reduce bias in existing 

model. 

There are so many researches, in which Support Vector 

Regression has been successfully used as option pricing tool. 

In my previous work Support Vector Regression and multiple 

kernel Support Vector Regression has been successfully used 

for nifty index option pricing. M. M. Pires et al [24] 

compared the performance of a Multi-Layer Perceptron 

neural network and a Support Vector Regression in pricing 

American styled options. It was concluded that a Support 

Vector Regression approach provided promising results than 

that found with Multi-Layer Perceptron. S. C. Huang et al. 

[13] combined the unscented Kalman filters (UKFs) and 

Support Vector Regression (SVR) to predicting option prices. 

The difference between the market option prices and the 

Black-Scholes option price is taken input to SVR for 

reducing the prediction errors. The performance of the new 

hybrid model is better than pure SVR models or UKFs 

models in option pricing. P. Wang et al. [30] used Support 

Vector Regression (SVR) integrated with stochastic volatility 

models for forecasting of currency option pricing. The results 

reveal that integrated model performed better than traditional 

approaches such as Garman-Kohlhagen Formula (GK) model 

and ANN Option pricing model. Panayiotis C. Andreou et.al. 

[1] used Support Vector Regression and Least Squares 

Support Vector Regression for pricing S&P 500 index call 

options with Deterministic Volatility Functions approach and 

compared results with the traditional Black Scholes model. 

He obtained promising results for the both SVR models. L. 

Xun, et al. [21] gave some modifications on three parametric 

methods, the binomial tree method, the finite difference 

method and the Monte Carlo method, to forecast the option 

prices and further refined the forecast results by 

nonparametric methods ANN and SVR by decreasing the 

nonlinear errors. He found that, compared with the standard 

and improved parametric option price forecasting methods, 

the ANN and SVR have higher forecasting accuracy. 

ChihMing Hsu et al. [13] compared the price of Taiwan 

Stock Exchange Capitalization Weighted Stock Index 

Options (TAIEX Options) by three approaches i.e. Black-

Scholes (BS) model, Genetic Programming (GP) and Support 

Vector Regression (SVR) with all basic factors in the B-S 

model and the other factors in GP and SVR model. They 

concluded that, both GP and SVR forecasting models gave 

more promising results than Black-Scholes model.  

For further improving forecasting performance in option 

pricing, multiple kernel Support Vector Regression with 

SMO algorithm is applied. There are many kernel methods 

which have been applied in various applications, Multiple 

Kernel Learning is one of them, where kernels are combined 

in linear or nonlinear ways for maximizing a generalized 

performance. This approach learns both Lagrange’s 

multipliers and kernel weights in a single optimization 

Lanckriet et al. [20]. In the area of kernel learning F. R. Bach 

et al. [3] considered combinations of kernel matrices in MKL 

based on sequential minimization optimization with 

smoothed version of the given problem.  

In this paper the Principal component analysis (PCA) is 

used to normalized the data, Support vector machine (SVM) 

and SVR with various kernel are applying to predict the 

option price. The paper is structured as follows. First 

introduce the theoretical analysis of Black-Scholes, Principal 

Component analysis (PCA), Support vector machine (SVM) 

and Support vector regression (SVR). In second, this report 

discusses about the data structure and algorithm on each type 

of option pricing dataset. Then result and discussion with 

scope and limitations is described and Conclusion is 

presented in last section. 

3. Related Literature Reviews 

This section provides related topics that were used to 

create the proposed system. Black- Scholes Model (BS), 

Principal component analysis (PCA), Support vector machine 

(SVM) and Support vector regression (SVR) are explained in 

short. 

3.1. Black-Scholes Option Pricing Model 

The Black-Scholes Model describes the behavior of 

options on assets that follow a Geometric Brownian Motion 

that satisfies the following stochastic differential equation 

. .dS S dt S dXµ σ= + , or 
dS

dt dX
S

µ σ= +  
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Where, µ =  drift rate: The mean change per unit time for a 

stochastic process is known as the drift rate, σ =  standard 

deviation: The variance per unit time is known as the 

variance rate, X =  standard Brownian motion, S =  Current 

stock price, t =  unit time 

The variable µ  is the stock’s expected rate of return. The 

variable σ is the volatility of the stock price. The variable 
2σ  

is referred to as its variance rate. The model in the above 

equation represents the stock price process in the real world. In 

a risk-neutral world, µ equals the risk-free rate r . This model 

is often referred to as the geometric Brownian motion 

assumption in Black-Scholes, which looks like geometric 

growth driven by a drifting Brownian motion. In this paper, 

beside these parameter it also use the parameter Rho ( ρ ), 

Gamma ( Γ), Vega ( Λ ) to predict the option price of a data set. 

3.2. Principal Component Analysis (PCA) 

One of the main problems in statistics is the problem of 

picturing data that has many variables. But when there are 

more than three variables, it is more complex to imagine their 

connections. In data sets there are many variables, groups of 

variables often change together. In many systems there are 

only a few such dynamic forces. But a plenty of planning 

enables us to measure dozens of system variables. This report 

can simplify the problem by substituting a group of variables 

with a single new variable. 

Principal component analysis (PCA) is a quantitatively 

challenging method for achieving this simplification. The 

method produces a new set of variables, called principal 

components. Each principal component is a linear 

combination of the original variables. Every principal 

component is orthogonal to each other. The principal 

components as a whole form an orthogonal basis for the area 

of the data. From the above discussion the full set of 

principal components is as large as the original set of 

variables. But it is common for the sum of the variances of 

the first few principal components to exceed 80% of the total 

variance of the original data. To use PCA, it needs to have 

the actual measured data that is to be analyzed. However, if it 

has shortage the actual data, but have the sample covariance 

or correlation matrix for the data. To reduce the dimension of 

our original data by PCA, the following methodology is use. 

 

Support vector machine (SVM) and Support vector 

regression (SVR). 

Support Vector Machine (SVM) is a classification and 

regression forecast tool that uses to maximize predictive 

accuracy while automatically avoiding over-fit to the data. It 

is a supervised learning algorithm which is also known as 

Support vector network. Vladimir N. Vapnik and Alexey Ya. 

Chervonenkis invented the original SVM algorithm in 1963. 

Depending on the nature of the data, such a separation might 

be linear or non-linear.  

Let us consider a linear classifier (or, hyperplane) 

( )
T

f x w bx= +  

where w represents weight vector, x  is the input feature 

vector and b  represents the position of the hyperplane. Here, 

(a) if the input vector is 2-dimensional, the linear equation 

will represent a straight line. 

(b) if the input vector is 3-dimensional, the linear equation 

will represent a plane. 

(c) if input vector more than 3-dimension, the linear 

equation will represent a hyperplane. 

The SVM algorithm is to find an optimal hyperplane for 

classification of two classes. Assume that the equation of 

hyperplane is 0
T

w bx + = . The distance between . 1w bx + = +
and . 1w bx + = − is the margin of this hyperplane. By applying 

the distance rule between two straight lines, we get the 

margin, 
2

m
w

=   

 

Figure 1. Maximum margin hyperplanes for SVM trained with samples with 

classes. 

For non-linear classifier SVM use kernel function to 

separate the data points. Obtain a nonlinear SVM regression 

model by replacing the dot product 1 2.T
x x  with a nonlinear 

kernel function 
1 2 1 2

( , ) ( ), ( )K x x x xϕ ϕ=< >  where, ( )xϕ  is a 

transformation that maps x  to a high-dimensional space. 

Popular kernel functions are  

a Linear kernel function: ( , )
j k j k

T
K x x x x=  

b Gaussian kernel function: 
2

( , ) exp( )
j k j k

K x x x x= − −  

c Polynomial kernel function: ( , ) (1 )
T q

K x x x xj jk k= +  

where ix  and jx  are support vector where support vector is 

the input vectors that just touch the boundary of the margin. 
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Simply, support vectors are the data points that lie closest to 

the decision surface (or hyperplane). 

4. Data Structure and Methodology 

Financial data offer an excellent source of difficult and 

challenging problems to the computing community. Many 

applications, time series prediction to stock selection have 

been attempted. Hutchinson et. al. (1994) and Niranjan 

(1996), focused on the widely used Black-Scholes formula 

may be obtained with neural networks, while the latter 

looked at the non-stationary aspects of the problem. De 

Freitas et. al. extends this work by incorporating noise 

estimation and powerful sampling algorithms. In this section, 

it will present some useful discussion. Firstly, it discusses the 

data structure and source of the data. Then discussion about 

the relationship between predictor and response of the data. 

The next section will discuss the accuracy of the given data 

using SVM and PCA method. Finally, it will observe the 

accuracy of the predicted option prices. 

We collect the data from the spy option of yahoo finance 

2015. From this data, we will calculate the accuracy of the 

option price. In the original data, we modified some of the 

dimensions of the variable.  

Table 1. Option price data of market value. 

Sl. Stock Price Strike Price High/ Low Volatility Rho ( ) Vega ( ) Gamma ( ) Price (Call/Put) 

1 120 81.73 82 2.19269 0.991285 5.1036e-04 0.0129421 87.16 

2 125 76.73 77 2.03674 0.990642 5.8478e-04 0.0134759 82.16 

3 130 71.73 72 1.88632 0.989927 6.7335e-04 0.014008 77.17 

4 135 66.73 67 1.74092 0.989126 7.7989e-04 0.0145382 72.17 

5 140 61.73 62 1.60007 0.988221 9.0964e-04 0.0150662 67.17 

6 145 56.73 57 1.46332 0.987185 0.00106995 0.0155912 62.18 

.... ...... ....... ....... ........ ........ ......... .......... ....... 
4742 265 0 0 0.11382 0 0 0 0 

 

4.1. First Approach 

Firstly, this paper evaluated and tested the relationship 

between input variables and output variables by using a simple 

quadratic polynomial regression after standardizing the data by 

its mean and standard deviation and by transforming the data 

with the bi-square weighting scheme. This paper calculated 

various measurements which are discussed below. 

4.1.1. What is R-Squared 

R-squared is a statistical measure of how close the data are 

to the fitted regression line. It is also known as the coefficient 

of determination, or the coefficient of multiple determination 

for multiple regression. The definition of R-squared is fairly 

a straight-forward; it is the percentage of the response 

variable variation that is explained by a linear model, or 

a R-squared = Explained variation / Total variation 

b R-squared is always between 0 and 100%: 

c 0% indicates that the model explains none of the 

variability of the response data around its mean. 

d 100% indicates that the model explains all the 

variability of the response data around its mean. 

In general, the higher the R-squared, the better the model fits 

data. The adjusted R-squared compares the explanatory power of 

regression models that contain different numbers of predictors. 

The adjusted R-squared is a modified version of R-squared that 

has been adjusted for the number of predictors in the model. The 

adjusted R-squared increases only if the new term improves the 

model more than would be expected by chance. It decreases when 

a predictor improves the model by less than expected by chance. 

The adjusted R-squared can be negative, but it’s usually not. It is 

always lower than the R-squared. 

4.1.2. How to Increase R-squared and Adjusted R-squared 

Since our data is a bit noisy and not scaled for training a 

machine learning model. It had seen that data is unable to fit a 

3
rd

 degree polynomial model. So, it’s necessary to normalize 

our dataset. From above discussion, the value of data is not 

suitable and there is a very weak relationship among them, so 

there are a few options for removing this limitation.  

a Removing residuals 

b Removing Outliers 

c Normalizing and Scaling Data so that it can fit a model 

An alternative weighting scheme is to weight the residuals 

using a bi-square. This stage, first compute the residuals from 

the unweighted fit and then apply the following weight function: 

( )
2

2

( ) 1

6

X
W X

M

= −
 
 
 

 

where, M  is the median absolute deviation of the residuals. 

The weight is set to 0 if the absolute value of the residual is 

greater than 6M . This method provides an effective 

alternative to deleting specific points. Extreme outliers are 

deleted, but mild outliers are reweighted rather than deleted 

altogether. The values of R-squared and Adjusted R-squared 

after applying this method are: 

4.2. Second Approach 

Table 2. Option price vs parameter with Regression. 

Data Description R Squared Adjusted R Squared 

Ask price Vs Price 0.387371753 0.38698385 

Bid price Vs Price 0.392074849 0.391689924 

Delta vs Price 0.231357145 0.230870456 

Implied Volatility Vs Price 0.08705332 0.086475262 

Risk-Free interest rate Vs Price 0.014252846 0.012795256 

Strike Price vs Price 0.081934017 0.081352717 

Vega Vs Price 0.022020475 0.020574371 

ρ Λ Γ
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4.2.1. Evaluating the Model Using SVM and PCA 

In the market price data, this paper takes the seven-input 

variable. But the Table 1, we see that there are 4742 rows of 

data with respect to these seven input Variables. The 

Required Input and the output Variables are:  

Stock 

Price 

Strike 

Price 

High/ 

Low 

Volatili

ty 

Rho 

( ) 
Vega 

( ) 

Gamma 

( ) 
Price 

(Call/ Put) 

But in the above data table, the 4742 rows and eight 

columns are difficult to run the data into any program. So, we 

use the PCA to normalize the data. By using the PCA the 

normalization of the seven column is transformed into two 

columns. By this time the 4742 rows and the two columns are 

eligible to run the programmer for valuation of the option 

price. The required two input variables able to explain 68.6% 

and 33.3% of Variance of the total data are: 

Var Name 1 Var Name 2 

Feasibility gap obtained by SMO is a nonnegative scalar. If 

Gap Tolerance is 0, then SVM does not use this parameter to 

check convergence. The reason behind the convergence is 

Feasibility gap in our case. The Feasibility gap found after 

converging is mentioned the Table 2 Here we have 

experimented three different types of kernels for evaluating the 

actual phenomena and explaining the behavior of the data. After 

testing the SVM model with Quadratic Kernel with 4 Principle 

Component, we have experimented the same data with 

a Quadratic Kernel with 2 Principle Component 

b Gaussian Kernel and 2 Principle Component 

c Gaussian Kernel and 2 Principle Component (Highly 

Optimized)  

Now the performance of a Support Vector Regression 

Model can be measured with its parameters and number of 

Support Vector points. We have summarized all together 

below:  

Table 2. Measurement of SVR with the various kernel. 

SVR with Various 

Kernel 

Measurements 

Quadratic Kernel with 2 

Principle Components 

Gaussian Kernel and 2 Principle 

Components 

Gaussian Kernel and 2 Principle 

Components (Highly Optimized) 

Support Vector Points 4386 2354 4656 

Epsilon (ε ) 0.002 0.2 0.002 

Iterations 142001 1665 3527 

Bias 18.03 -18.60 13.60 

Box Constraints  40 40 80 

Delta Gradient 1.99 0.28 0.28 

RMSE 19.59 21.18 18.43 

R-Squared  0.25 0.27 0.36 

Gap 9.1913e-04 4.004e-04 8.242e-04 

 

5. Discussion 

 

Figure 2. Identified Pattern by SVR with Quadratic Kernel Where Epsilon 

( ε ) = 0.002. 

Figure 2 shows that the prediction of pattern with real 

option price. This figure, shows that the real option price and 

the predicted pattern is far away. These blue points refer to 

the real option price and the red points refer to predicted 

patterns. In this figure, the value of R-Squared is 0.25. So, 

the quadratic kernel with Predicted price and real option 

price is covered by these patterns. 

Figure 3 shows that the prediction of pattern with real 

option price with Gaussian kernel. This figure, shows that the 

real option price and the predicted pattern is nearly close to 

each other comparing with Quadratic kernel pattern. These 

blue points refer to the real option price and the red points 

refer to predicted patterns. In this figure, the value of R-

Squared is 0.27.  

 

Figure 3. Identified Pattern by SVR with Less Optimized Gaussian Kernel 

Where Epsilon ( ε ) = 0.2. 

Figure 4 shows that the prediction of pattern with real 

ρ Λ Γ
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option price. This figure, shows that the real option price and 

the predicted pattern is nearly close to each other comparing 

with the Quadratic kernel and Gaussian kernel pattern. These 

blue points refer to the real option price and the red points 

refer to predicted patterns. So, the Gaussian kernel (with 

highly optimized) with Predicted price and real option price 

is maximally covered by these patterns. 

 
Figure 4. Identified Pattern by SVR with Highly Optimized Gaussian Kernel 

Where Epsilon ( ε ) = 0.002. 

Figure 5 shows that the response of the pattern with the 

record number. This figure, shows that the actual option price 

and the predicted option price by SVR with the Quadratic 

kernel. These blue points refer to the predicted option price 

and the red points refer to the actual option price. This figure, 

shows that with Quadratic kernel the actual option price and 

the predicted option price maximally covered. 

 
Figure 5. Response Plot of Quadratic SVR. 

 
Figure 6. Logarithmic Response Plot of Quadratic SVR. 

 
Figure 7. Response Plot of Gaussian SVR. 

Figure 7 shows the response of the pattern with the record 

number. This figure, shows that the actual option price and 

the predicted option price by SVR with the Gaussian kernel. 

These blue points refer to the predicted option price and the 

red points refers to the actual option price. This figure, shows 

that with Gaussian kernel the actual option price and the 

predicted option price mostly covered. For this pattern the 

number if iteration is 1665. 

 
Figure 8. Logarithmic Response Plot of Gaussian SVR. 
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Figure 9. Response Plot of Gaussian SVR (Highly Optimized). 

Figure 9 shows that the response of the pattern with the 

record number. This figure, shows that the actual option price 

and the predicted option price by SVR with Gaussian kernel 

(Highly Optimized). These blue points refer to the predicted 

option price and the red points refers to the actual option 

price. This figure, shows that with Gaussian kernel (Highly 

Optimized) the actual option price and the predicted option 

price are maximumly covered comparing with the Quadratic 

and Gaussian kernel. Here the number of iterations is 3527. 

The bias also positive. So, the Gaussian kernel (Highly 

Optimized) best kernel among the above three kernels. 

 
Figure 10. Logarithmic Response Plot of Gaussian SVR (Highly Optimized). 

 
Figure 11. Support vector of SVR with Quadratic Kernel. 

 
Figure 12. Logarithmic Support vector of SVR with Quadratic Kernel. 

Figure 11 shows the price of the pattern with record the 

number. This figure, shows that the actual data points and the 

support vector points by SVR with the Quadratic kernel. 

These blue points refer to the actual data points and the red 

points refers to the support vector points. This figure, shows 

that with Quadratic kernel the support vector can capture 

4386 points. Where the box constraint is 40.  

 

Figure 13. Support vector of SVR with Gaussian Kernel. 

 
Figure 14. Logarithmic Support vector of SVR with Gaussian Kernel. 
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Figure 13 shows that the price of the pattern with the 

record number. This figure, shows that the actual data points 

and the support vector points by SVR with Gaussian kernel. 

These blue points refer to the actual data points and the red 

points refer to the support vector points. This figure, shows 

that with Gaussian kernel the support vector can capture 

2354 points. Where the box constraint is 40. So that 

comparing with the Quadratic kernel, the Gaussian kernel 

can capture fewer vector points. 

 
Figure 15. Support vector of SVR with Highly Optimized Gaussian Kernel. 

Figure 15 shows that the price of the pattern with the 

record number. This figure, shows that the actual data points 

and the support vector points by SVR with Gaussian kernel 

(Highly Optimized). These blue points refer to the actual data 

points and the red points refer to the support vector points. 

This figure, shows that with Gaussian kernel (Highly 

Optimized) the support vector can capture 4656 points. 

Where the box constraint is 8. So that comparing with the 

Quadratic kernel and Gaussian kernel the Gaussian kernel 

(Highly Optimized) can capture the most vector points. 

 
Figure 16. Logarithmic Support vector of SVR with Highly Optimized 

Gaussian Kernel. 

Now in the below, this section describes a table comparing 

with the Quadratic Kernel SVR, Gaussian Kernel SVR and 

Gaussian Kernel (Highly Optimized). In this table, we 

compute the actual option price and the predicted price with 

respect to the above three kernels. Among these three kernels 

the Gaussian kernel (Highly Optimized) the actual option 

price and the predicted option price is close. 

Table 4. Prediction of Data. 

Quadratic SVR Gaussian SVR (Highly Optimized) Gaussian SVR 

Actual Option Price Predicted Option Price Actual Option Price Predicted Option Price Actual Option Price Predicted Option Price 

7.00 6.00 7.57 7.80 48.23 34.13332 

5.99 5.57 8.40 7.37 40.25 31.72123 

6.36 5.20 7.10 6.94 29.99 29.83001 

5.83 4.83 6.61 6.53 39.94 29.35138 

5.43 4.47 5.98 6.12 35.3 28.94538 

5.00 4.16 5.57 5.72 38.15 28.44017 

4.74 3.80 5.17 5.32 34.44 27.89789 

4.02 3.45 4.82 4.97 36.05 27.38807 

3.73 3.12 4.40 4.57 33.4 26.99696 

3.20 2.80 4.00 4.20 35.25 26.5183 

2.80 2.47 3.64 3.82 33.65 25.95045 

2.75 2.20 3.32 3.47 33.23 25.57937 

2.12 1.91 2.95 3.12 29.7 24.6109 

1.85 1.64 2.58 2.79 28.4 22.20046 

1.50 1.39 2.37 2.47 23.55 19.97052 

1.30 1.17 2.01 2.17 20.1 17.84221 

1.03 0.97 1.75 1.87 17.73 15.57276 

0.80 0.78 1.53 1.61 15.85 13.47057 

0.60 0.62 1.26 1.36 12.72 11.59791 

0.46 0.49 1.03 1.13 11 10.01698 

 

We can see that the SVR with Gaussian kernel scores 

highest but its support vector points are minimum, And SVR 

with Quadratic Kernel and another Gaussian Kernel with 

different epsilon have more support vector points but the 

error and R-Squared are less than the middle one. From the 

above table we can reach the decision that: 

a Option prices follow the Gaussian process mostly but if 

we optimize any Gaussian SVR highly, the recognized 



 International Journal of Discrete Mathematics 2019; 4(1): 21-31 29 

 

pattern is as same as the Quadratic SVR.  

b The Quadratic SVM can predict option price sometimes 

more accurately than Gaussian SVR but R-Squared is 

low here that indicates more optimization is required 

for gaining better accuracy. But the SVR with the 

Quadratic kernel is able to predict those values more 

accurately. 

c If we decrease the value of epsilon, then support vector 

points increase highly and it indicates that the model 

with a smaller margin is highly optimized and able to 

explain a higher variance.  

d It’s possible to predict the option prices which is less 

than 50 with a high accuracy by using each and every 

model.  

e The larger value of Box Constraints allows us to predict 

relatively higher option prices but the accuracy gained 

it is not satisfactory.  

f The training time is very high in case if Quadratic SVR 

even after doing PCA.  

g Any SVR with Gaussian Kernel is capable to capture 

the pattern easily but with low accuracy for each data 

points but Quadratic SVR is able to capture the partial 

pattern with a high accuracy.  

h After optimizing the SVR with Gaussian Kernel, it 

performs like an SVR with Quadratic Kernel and in 

addition, it is able to predict higher option prices.  

Table 5. Performance of various SVR in option price. 

Models Data Points MSE RMSE 

Quadratic SVR 4742 0.371185 0.60925 

Gaussian SVR 4742 48.2966 6.949576 

Gaussian SVR (Highly Optimized) 4742 0.075305 0.274418 

6. Scopes and Limitations 

a A very small dataset is used here for doing this project 

which isn’t enough to capture the pattern of option price 

and predict them. But for the limited computational 

capacity, we were unable to work with a bigger dataset.  

b We didn’t filter the data which may bring significant 

change in this case.  

c We think that adding more input variables like the 

difference between two successive option prices can be 

included for tuning the model and for gaining better 

accuracy.  

d This paper's aim was to apply various mathematical 

techniques like Linear Programming, Control, 

Optimization and etc. than only learning pattern from 

the data. If it’s possible to access better research 

environment with highly configured machines, this 

work can be extended towards an automated software 

which can continuously predict option prices.  

7. Conclusion 

In this report, we study the use of Support Vector 

Machines (SVM) and Principal Component Analysis (PCA) 

to analyze the option price. The estimator is based on the 

Black-Scholes Model, which is captured by the SVR and 

PCA. Compared with another hybrid model based on SVR 

and PCA. In any case, PCA and SVR is a successful system 

to understand minimization. SVM is a promising type of tool 

for financial estimating. As demonstrated in the empirical 

analysis, SVM is superior to the other individual regression 

methods in analyzing option pricing. This is a clear message 

for financial estimator and traders, which can lead to a capital 

gain. However, each method has its own strengths and 

weaknesses. Thus, we propose a combining model by 

incorporating SVR with PCA. The weakness of one method 

can be balanced by the strengths of another by achieving a 

systematic effect. The combining model performs best 

among all the analyzing methods 

In this project we have presented a novel disintegration 

algorithm that can be used to train Support Vector Machines 

(SVM) on large data sets (4742 data points). But an 

implementation of the technique currently under 

development will be able to deal with much larger number of 

support vectors (say about 100,000) using less memory. We 

discuss the predicted option price with Quadratic Kernel, 

Gaussian Kernel and Gaussian Kernel (Highly optimized) 

with Support Vectors 4386, 2354 and 4656 respectively. The 

number of iterations among them is 142001,1665 and 3527 

respectively. There are several reasons for which we have 

been investigating the use of SVR. Among them, the fact that 

SVR with Gaussian Kernel (Highly Optimized) are very well 

founded from the mathematical point of view, being an 

approximate implementation of minimizing the error. The 

only hyper parameters of SVMs are the positive constant and 

the parameter associated to the kernel (in this case the degree 

of the polynomial is two). Since the expected value of the 

ratio between the actual option price and predicted option 

price, the total number of data points is an upper bound on 

the generalization error by using Gaussian Kernel (Highly 

Optimized). Finally, we were able to analyzing the option 

price model with the market price. 
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