

International Journal of Discrete Mathematics
2017; 2(3): 100-106

http://www.sciencepublishinggroup.com/j/dmath

doi: 10.11648/j.dmath.20170203.17

 Conference Paper

Effective Approach for Code Coverage Using Monte Carlo
Techniques in Test Case Selection

Varun Jasuja
1
, Rajesh Kumar Singh

2

1Computer Science and Engineering, Guru Nanak Institute of Technology, Ambala, India
2Computer Science Application, SUS Institute of Computer, Tangori, India

Email address:

varunjasuja19@gmail.com (V. Jasuja), rajeshkripal@gmail.com (R. K. Singh)

To cite this article:
Varun Jasuja, Rajesh Kumar Singh. Effective Approach for Code Coverage Using Monte Carlo Techniques in Test Case Selection.

International Journal of Discrete Mathematics. Vol. 2, No. 3, 2017, pp. 100-106. doi: 10.11648/j.dmath.20170203.17

Received: February 20, 2017; Accepted: March 13, 2017; Published: March 29, 2017

Abstract: Source code analysis alludes to the profound examination of source code and/or gathered form of code with a

specific end goal to help discover the imperfections as far as security, comprehensibility, understanding and related parameters.

In a perfect world, such systems consequently discover the defects with such a high level of certainty that what's found is surely

a blemish. Notwithstanding, this is past the best in class for some sorts of utilization security defects. In this manner, such devices

much of the time serve as helps for an examiner to help them focus in on security pertinent segments of code so they can discover

blemishes all the more productively, instead of a device that just consequently discovers imperfections. Code Coverage is a

measure used to portray the extent to which the source code of a system is tried by a specific test suite. A project with high code

scope has been all the more completely tried and has a lower shot of containing software bugs than a system with low code scope.

A wide range of measurements can be utilized to ascertain code scope; the absolute most fundamental are the percent of system

subroutines and the percent of project articulations called amid execution of the test suite. This research work focus on the quality

of source code using code coverage and analysis techniques. In the proposed research work, an effective model based approach

shall be developed and implemented to improve the performance of code in terms of overall code coverage time, code

complexity and related metrics.

Keywords: Code Coverage, Software Testing, Automated Test Case Generation

1. Introduction

The software metrics review is organized in two ages:

before 1991, where the main focus was on metrics based on

the complexity of the code and after 1992, where the main

focus was on metrics based on the concepts of Object Oriented

(OO) systems. There is no formal concept to source code

quality. According to [1], there are two ways to source code

quality: technical and conceptual definition. The technical

definition is related to many source code programming style

guides, which stress readability and some language-specific

conventions are aimed at the maintenance of the software

source code, which involves debugging and updating.

Therefore, the conceptual definition is related to the logical

structuring of the code into manageable sections and some

quality attributes like: readability, maintenance, testing,

portability, complexity and others.

This work will evaluate the state-of-the-art in software

metrics related to source code, which the main goal is to

analyze the existents software metrics and verifies the

evolution of this area and why some metrics couldn’t survive.

Thus, it can be understood how the source code quality

evaluates throughout of the years. However, this work does

not cover other software metrics related to performance [2],

productivity [3], among others [4] [5] [6].

Quality is a phenomenon which involves a number of

variables that depend on human behavior and cannot be

controlled easily. The metrics approaches might measure and

quantify this kind of variables. Some definitions for software

metrics can be found on the literature [7] [8] [9]. In agreement

with Daskalantonakis in [9] it is found the best motivation to

measures, it is finding a numerical value for some software

 International Journal of Discrete Mathematics 2017; 2(3): 100-106 101

product attributes or software process attributes. Then, those

values can be compared against each other and with standards

applicable in an organization. Through these data could be

draw conclusions about quality of the product or quality of the

software process used.

In the recent literature, a large number of measures have

appeared for capturing software attributes in a quantitative

way. However, few measures have survived and are really

used on the industry. A number of problems are responsible

for the metrics failure, some of them are identified in [10] [11].

We select some of these problems to analyze the set of metrics

presented on this survey. The main problems are:

a) Metrics automation

b) Metrics Validation

Some work in developing tools for metrics extraction is

identified. It happens because a large number of metrics is

developed, but they don’t have a clear definition. Normally a

code metric is defined in a large context and it is validated

only for a few set of programmer languages.

There are a number of problems related to theoretical and

empirical validity of many measures [10] [11] [18], the most

relevant of which are summarized next.

a) Measurement goal, sometimes measurers aren’t defined

in an explicit and well-defined context

b) Experimental hypothesis, sometimes the measure

doesn’t have a explicit experimental hypothesis, e.g.

what do you expect to learn from the analysis?

c) Environment or context, the measure sometimes can be

applied in an inappropriate context

d) Theoretical Validation, a reasonable theoretical

validation of the measure is often not possible because

the metrics attributes aren’t well defined.

e) Empirical validation, a large number of measures have

never been subject to an empirical validation.

This set of problems about validation will be used on our

analysis. In next section we will be presented a survey about

software metrics.

2. Problem Formulation

The main objectives of this research are

1. To implement the existing algorithm that is having the

classical approach with haphazard manner of operands

and comments

2. We will calculate the execution time and complexity of

the existing algorithm in the base paper

3. To propose a new algorithm that will be better than in the

base paper in terms of code coverage and overall

integrity of the software code.

4. Multi Layered investigation of code coverage will be

applied in the proposed

5. Execution time shall be measured for the proposed

approach

6. Comparison of existing and proposed in terms of

execution time and overall cost of the implementation

At the end, the whole research work is concluded with some

future research work.

3. Proposed Work

a) To design an effective and improved model for code

coverage including comments density analysis,

variables and operands used.

b) To design and implement the effective model for code

investigation using Monte Carlo Simulation Techniques

c) The proposed work will deliver the optimized rules and

solutions so that the proportional aspects of operands,

constants and comments can be used in the source code.

d) Comparison shall be done on multiple parameters in

Existing and Proposed Approach

e) In the classical or base work, there is no the limitation of

the implementation of the comments density and

investigation.

f) In our proposed work, the proportional investigation of

the comments density shall be implemented.

Figure 1. Flow of the Work.

102 Varun Jasuja and Rajesh Kumar Singh: Effective Approach for Code Coverage Using Monte Carlo

Techniques in Test Case Selection

4. Implementation Scenario

We have developed a web based simulator that read a source code. After reading the code, the software analyzes the lines of

code based on various factors and parameters specified in the Code Metrics.

Figure 2. Implementation Scenario of Code Coverage.

Table 1. Code Coverage Time of the Current Simulation Attempt.

Filename LOC Comments
Words in

Comments

Total

Words
Comments Density

Executable

LOC
Time

graph. php 57 4 14 161 8.695652173913 29 0.0052249431610107

comments. php 41 13 61 125 48.8 9 0.020942211151123

a. cpp 9 1 5 20 25 3 0.0047919750213623

a. cpp 9 1 5 20 25 3 0.004608154296875

a. cpp 9 1 5 20 25 3 0.0029840469360352

a. cpp 9 1 5 20 25 3 0.0032799243927002

a. cpp 9 1 5 20 25 3 0.0047969818115234

wp-login. php 961 248 1079 4413 24.450487196918 278 0.53639197349548

wp-comments-post. php 167 58 205 658 31.155015197568 47 0.093575954437256

index. php 98 5 71 284 25 27 0.017119884490967

data. php 18 0 0 29 0 6 0.0013720989227295

clusterpurchase. php 114 5 14 693 2.020202020202 53 0.044317007064819

jpgraph_error. php 157 52 182 459 39.651416122004 52 0.54635000228882

jpgraph_error. php 157 52 182 459 39.651416122004 52 0.60382008552551

Figure 3. Graph of Simulation Attempt with Code Coverage Time.

 International Journal of Discrete Mathematics 2017; 2(3): 100-106 103

Figure 4. Graph of Code Coverage Time for Lines of Code with Words in Comments.

Figure 5. Graph of Code Coverage Time with Pattern of LOC.

Figure 6. Graph of Code Coverage Time with Comments Density.

104 Varun Jasuja and Rajesh Kumar Singh: Effective Approach for Code Coverage Using Monte Carlo

Techniques in Test Case Selection

Figure 7. Graph of Code Coverage Time with respect to Words in Comments.

Figure 8. Graph of Code Coverage Time with respect to the Total Words in the Source Code.

Figure 9. Graph of Code Coverage Time with respect to the Executable Code.

 International Journal of Discrete Mathematics 2017; 2(3): 100-106 105

Table 2. Overall Code Coverage Report of all the Simulation Attempts.

Filename LOC Comments
Words in

Comments

Total

Words

Comments

Density

Executable

LOC
Time

comments. php 41 13 61 125 48.8 9 0.020942211151123

a. cpp 9 1 5 20 25 3 0.0047919750213623

a. cpp 9 1 5 20 25 3 0.004608154296875

a. cpp 9 1 5 20 25 3 0.0029840469360352

a. cpp 9 1 5 20 25 3 0.0032799243927002

a. cpp 9 1 5 20 25 3 0.0047969818115234

wp-login. php 961 248 1079 4413 24.450487196918 278 0.53639197349548

wp-comments-post. php 167 58 205 658 31.155015197568 47 0.093575954437256

index. php 98 5 71 284 25 27 0.017119884490967

data. php 18 0 0 29 0 6 0.0013720989227295

clusterpurchase. php 114 5 14 693 2.020202020202 53 0.044317007064819

jpgraph_error. php 157 52 182 459 39.651416122004 52 0.54635000228882

jpgraph_error. php 157 52 182 459 39.651416122004 52 0.60382008552551

5. Conclusion and Scope of Future Work

We have executed different types of source code of C++ and

Java to test and measure the complexity parameters. The

execution time of the proposed and classical approach is

measured so that the empirical comparison can be done.

Code coverage analysis is used to measure the quality of

software testing, usually using dynamic execution flow

analysis. There are many different types of code coverage

analysis, some very basic and others that are very rigorous and

complicated to perform without advanced tool support. The

proposed work can be integrated with genetic algorithm or ant

colony optimization for further improvements and

enhancements in the optimization task.

As the domain of software testing is much diversified, there

is lots of scope of research for the scholars and practitioners.

In Code Based Software Testing, the following research areas

can be worked out by the research scholars -

a) Component Based Code Investigation

b) Security and Privacy Issues in Code Modules

c) Cross Platform Compatibility and Efficiency Issues

d) Functional Aspects and Scenarios

e) Analysis of Comments Density

f) Analysis of Operands and relative performance on

overall code

g) Halstead Metrics Analysis

To improve the base work done in the existing algorithm

having the classical approach with haphazard manner of

operands and comments, we will calculate the execution time

and complexity of the existing algorithm in the base paper. At

the end, the whole research work will be concluded with some

future research work. To design an effective and improved

model for code coverage including comments density analysis,

variables and operands used. To design and implement the

effective model for code investigation using Monte Carlo

Simulation Techniques, the proposed work will deliver the

optimized rules and solutions so that the proportional aspects

of operands, constants and comments can be used in the

source code. Comparison shall be done on multiple

parameters in Existing and Proposed Approach.

For future work, this work plan to extend my study in the

following directions:

a) The metaheuristic based implementation can be

performed that includes ant colony optimization, honey

bee algorithm, simulated annealing and many other

others. Such algorithmic approach should provide better

results when we move towards metaheuristics.

b) This research work mainly discusses Halstead software

complexity metrics for specific programming languages.

c) We can also plan to extend this algorithm for the

processing of heterogeneous programming paradigms.

References

[1] D. Spinellis, “Code Quality: The Open Source Perspective”,
Addison-Wesley, Boston - MA, 2003.

[2] B. N. Corwin, R. L. Braddock, "Operational performance
metrics in a distributed system", Symposium on Applied
Computing, Missouri - USA, 1992, pp. 867-872.

[3] R. Numbers, "Building Productivity Through Measurement",
Software Testing and Quality Engineering Magazine, vol 1,
1999, pp. 42-47.

[4] IFPUG - International Function Point Users Group, online, last
update: 03/2008, available: http://www.ifpug.org/.

[5] B. Boehm, “Cost Models for Future Software Life Cycle
Processes: COCOMO 2.0”, U.S. Center for Software
Engineering, Amsterdam, 1995, pp. 57-94.

[6] N. E. Fenton, M. Neil, “Software Metrics: Roadmap”,
International Conference on Software Engineering, Limerick -
Ireland, 2000, pp. 357–370.

[7] M. K. Daskalantonakis, “A Pratical View of Software
Measurement and Implementation Experiences Within
Motorola”, IEEE Transactions on Software Engineering, vol 18,
1992, pp. 998–1010.

[8] R. S. Pressman, "Software engineering a practitioner's approach",
4th. ed, McGraw-Hill, New York - USA, 1997, pp. 852.

[9] I. Sommerville, “Engenharia de Software”, Addison-Wesley, 6°
Edição, São Paulo – SP, 2004.

[10] D. C. Ince, M. J. Sheppard, "System design metrics: a review
and perspective", Second IEE/BCS Conference, Liverpool -
UK, 1988, pp. 23-27.

106 Varun Jasuja and Rajesh Kumar Singh: Effective Approach for Code Coverage Using Monte Carlo

Techniques in Test Case Selection

[11] L. C. Briand, S. Morasca, V. R. Basili, “An Operational Process
for Goal-Driven Definition of Measures”, Software
Engineering - IEEE Transactions, vol 28, 2002, pp. 1106-1125.

[12] Refactorit tool, online, last update: 01/2008, available:
http://www.aqris.com/display/ap/RefactorIt.

[13] O. Burn, CheckStyle, online, last update: 12/2007, available:
http://eclipse-cs.sourceforge.net/index.shtml.

[14] M. G. Bocco, M. Piattini, C. Calero, "A Survey of Metrics for
UML Class Diagrams", Journal of Object Technology 4, 2005,
pp. 59-92.

[15] J Depend tool, online, last update: 03/2006, available:
http://www.clarkware.com/software/JDepend.html.

[16] Metrics Eclipse Plugin, online, last update: 07/2005, available:
http://sourceforge.net/projects/metrics.

[17] Coverlipse tool, online, last update: 07/2006, available:
http://coverlipse.sourceforge.net/index.php.

[18] J Hawk Eclipse Plugin, online, last update: 03/2007, available:
http://www.virtualmachinery.com/jhawkprod.htm
International Journal of Computing and Corporate Research, 3
(4).

