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Abstract: We constructed a new Lanchester linear model for the Ardennes Campaign with three phases and Bracken’s tactical 

factor to obtain an improved goodness of fit with historical data. It indicates that the shift from defense to attack for the Blue force 

can be better described by adding a deadlock period. Our new model provides an improved explanation for the military operation 

research to calibrate a better fit between prediction and historical data. 
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1. Introduction 

The purpose of this study is not to show off the accuracy of 

the findings of this research team in terms of war casualty. 

Instead it is premised on respect for life because Karl Von 

Clausewitz [1] said in his book On War that war is act of 

collective violence. It is also an act of extreme used in 

absolute violence. The casualties of war calculated by 

scholars are just figures and signs; however, casualties of war 

on the battle field involve the loss of precious human life and 

also the attrition of national power. The number of war 

casualties on both sides, the winning and the losing, are 

either exaggerated or roughly estimated. In the evaluation of 

the history of war, cold weaponry in ancient times and hot 

weaponry in recent times, are both designed to eliminate 

human life, which is to destroy the enemy’s ability to use 

weapons. However it takes about six months to train a man to 

be a solider and it costs a big fortune to attain the necessary 

materials for war. Art of War by Sun Tzi [2] stated, when in a 

battle, even if you are winning, lengthening the time spent on 

the battle field will dull your forces and blunt your edge; if 

you besiege a citadel, your strength will be exhausted. If an 

army is dispatched in the field for a long time, your supplies 

will be depleted. In ancient China, Sun Tzi proposed “The 

Cautious War” which stated that military action is important to 

a nation—it is the ground of death and life, the path of survival 

and destruction, so it is imperative to examine it. He then 

continues to say that the one who figures out a path to victory 

even before stepping foot on the battle field is the one who has 

the most favorable strategic factors on his side. The one with 

the inability to prevail at headquarters before a battle is the 

one who has the least favorable strategic factors on his side. 

The one with more beneficial strategic factors in his favor will 

win for the one with fewer beneficial strategic factors in his 

favor loses. Observing the matter in this way, I can see who 

will win and who will lose. These arguments mean that the 

gap between the rivaling parties must be calculated first before 

making decisions on whether to use war as a means to settle 

conflicts. This in terms of the modern concepts and 

technology means to realize and aggregate the power of one’s 

own country and to use computer simulation and war gaming 

to calculate the various scenarios and results of war to be 

used as references for higher level decision makers. Many 

countries have the equipment to serve these purposes. These 

simulation systems combine the use of computers and 

research methodology.  Lanchester, a scholar with a 

background in engineering and machinery, saw the launch of 

the First World War in 1914. In 1916, during the height of 

World War I, Lanchester [3] devised a series of differential 

equations to demonstrate the power of relationships between 

opposing forces. Among these are what is now known as 

Lanchester's Linear Law (for ancient combat) and 

Lanchester's Square Law (for modern war). For nearly a 

century, many scholars, such as Engel [4], Deitchman [5], 

Samz [6], Taylor [7], Helmbold [8], Chu and Chen [9], Hung 
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et al. [10] continue to improve and apply Lanchester’s Law 

to assess battle casualties. Battle casualty assessment 

involves the calculation of the sum of square estimation 

between the historical data and the predicted value. Based on 

historical record, the aim of this research is to determine the 

attack and defensive attrition coefficient and tactical factor 

under the assumption that there are three phases for the 

Ardennes Campaign: the Red force attack, the deadlock 

period, and the Blue force attack. There are two shift points 

in our proposed Lanchester Linear model. Some of these 

simulation systems are controversial but still wildly used to 

examine Lanchester’s model. 

Bracken [11] cited the record from the Data Memory 

Systems, Inc. [12] to provide historical data for the famous 

World War II Ardennes Campaign; from December 15, 1944 

to January 16, 1945 daily information on the two-side battle 

casualty and equipment loses report. Bracken [11] used the 

sum of squared errors for a generalizing Lanchester model to 

fit the Ardennes Campaign data. He considered the exponents 

in the generalized Lanchester model as parameters. To 

evaluate the minimum sums of squared errors, he utilized a 

grid of parameters to derive a numerical estimation. Chen 

and Chu [9] used the Lanchester Linear Law to fit the 

Ardennes Campaign. They treated the shift time, accounting 

for the shift time between defense and attack, as a new 

variable. Hung et al. [10] adopted Lanchester Square Law to 

fit the Ardennes Campaign. They continued using the shift 

time variable to improve findings of Bracken [11] and Chen 

& Chu [9]. Time is always a critical factor for all levels of 

war. In this study, we consider the shift time between attack 

to deadlock as a new variable, the shift time between 

deadlock to defense as the other variable and use 

Lanchester’s Linear Law with Bracken’s tactical factor to fit 

the Ardennes Campaign. At the end of the Ardennes 

Campaign, the blue force had the superior air force. After 

December 25, 1944, the sky was clear so the Ardennes 

Campaign was dominated by the Blue force with their 

dominating air force advantage. The historical data on 

December 15, 1944 on the Red force is insufficient. Hence, 

we only consider the Ardennes Campaign for December 16, 

1944 to December 25, 1944. Recently, there is a paper, Yang 

et al. [13] is partitioned the 10-day period of Ardennes 

Campaign also into three phases with Lanchester square law 

to study the historical data with their estimated casualty. 

We divide this ten-day battle into three parts: (a) the first 

phase, Germans attacked and Allies defended; (b) the second 

phase, both sides attacked and defended, that is the deadlock 

period; and (c) the third phase, only Allies forces attacked 

and Germans defended. We consider the sum of squared 

errors between the actual and estimated attritions as our 

objective function. In the following section, we give the 

notation in this paper. Then, we describe Lanchester models, 

dealing with mathematical derivation, and prove some 

important theorems. In Section 4, we present the historical 

data from the Ardennes Campaign, compared with Chen and 

Chu [9] and Hung et al. [10], where we demonstrate that our 

optimal solution is closest to actual historical data. Finally, in 

the discussion we draw some conclusions. 

2. Notation 

We define the following notation: 

B = The Blue (i.e., Allies) combat forces, including tanks, 

armored personnel carriers, artillery and personnel. The 

Allies include a British Corps as well as the U. S. forces. 
•
B = The actual loss of Blue (Allies) combat forces. 

R = The Red (i.e., German) combat forces, including tanks, 

armored personnel carriers, artillery and personnel. 
•
R = The actual loss of Red (German) combat forces. 

a = The Allies (Blue) attrition rate without Bracken’s 

tactical factor. 

b = the German (Red) attrition rate without Bracken’s 

tactical factor. 

d or
d

1
 = Bracken's tactical factor. 

=j  The last day on which the Germans attacked. 

=k  The first day on which the Allies attacked. 

SSE = Sum of squared errors. 

3. Mathematical Formulation 

We consider the derivation of the traditional Lanchester’s 

Linear Law. 

BR
dt

dB
 α−= ,                   (1) 

BR
dt

dR
 β−= .                   (2) 

where α and β are defined as the attrition rate coefficients. It 

is believed that the attrition rate will be proportional to the 

reciprocal of the expected time to destroy enemy targets. The 

original Linear Law determines the full force of both sides 

operating at the same level of destruction. This rule governs 

the situation in general, but it is not applicable to some 

combat situations. Therefore, the tactical factor should be 

considered in these models for a more practical estimation. 

Owing to the previous discussion, Bracken proposed a 

modification of the familiar Lanchesterian formulation when 

his tactical factor, d or 
d

1
, is introduced, giving a more 

accurate estimation of the historical data. Therefore, we 

assume that 

(1) When the Blue force defends and the Red force attacks, 

we take 

α = ad, β =
d

b
1

.               (3) 

(2) When the Blue force and the Red force both seize the 

initiative of attack, we take 
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α = a, β = b .                 (4) 

(3) When the Blue force attack and the Red force defend, 

we take 

α =
d

a
1

, β = bd.                (5) 

From historical records, we have learned that at the 

beginning of the first ten days of the Ardennes Campaign the 

Germans attacked, and at the end of the first ten days the 

Allies attacked. Hence, in the first phase, the Red force 

attacked and in the third phase, the Blue force attacked. 

During the middle phase of the campaign, both sides tried to 

control the initiative of attack, therefore in this mid-field 

stand off phase, neither side has the advantage (or 

disadvantage) of the tactical factors. Therefore, we assume 

that some day j is the last day that the Germans had the attack 

initiative, during the period from day 1+j  to day 1−k , 

neither side had the attack initiative, and on day k, the attack 

initiative shifted to the Allies. 

Our goal is to find the best fit a , b , d , j  and k , to 

minimize the sum of the squared errors between the actual 

and theoretical attrition. For 2 ≤ j< k ≤ 11, define the 

objective function ),,( dbaSSE kj
 as 
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Given j and k with 2 ≤ j< k ≤ 11, our procedure is to obtain the local critical points of ),,( dbaSSE kj
 under the 

restrictions 0< a, b and d. 

We now consider the partial derivatives of ),,( dbaSSE kj  to find the critical points of ),,( dbaSSE kj . 

First, we compute 
a
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Secondly, we solve the critical points of ),,( dbaSSE kj
. To simplify the notation and mnemonics, put 
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We know the value of ( )kjng ,,  depending on the value of j and (or) k. However, to simplify the expression, when we 

take a pair of j and k with 2 ≤ j< k ≤ 11, from the expression of ),,( dbaSSE kj , without causing ambiguous confusion, we 

will use ( )ng  to simplify ( )jng , , ( )kjng ,, , and ( )kng ,  when there is no confusion. We assume 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,  ,,,, yhxhwhvhuhygxgwgvgugyxwvu +=                    (11) 

where ( ) ( )6+= zgzh  for 31 ≤≤ z , ( ) ( )zgzh = , for 64 ≤≤ z , and ( ) ( )6−= zgzh  for 97 ≤≤ z . Moreover, 

we assume the following notation to simplify the expression: 

( ) ,  6,6,4,2,114 =θ  

( ) ( ) ( ) , 6,6,5,1,16,6,4,2,26,6,4,3,1213 −+=θ  

( ) ( ) ( ) , 1,2,5,6,6 6643236,5421212 −+= ,,,,,,,θ  

( ) ( ) ( ) ( ) ( ) , 6,6,6,1,126,5,5,1,126,6,4,3,326,5,4,2,226,5,4,3,1411 −−++=θ  

( ) ( ) ( ) ( )6,6,5,3,26,5,4,3,265,5,4,2,16,4,4,2,1210 +++=θ ( ) ( ) , 6,6,6,2,136,5,5,2,12 −−  

( ) ( ) ( ) ( ) ( )6,5,4,3,345,5,4,2,26,4,4,2,225,5,4,3,121,3,4,4,64 9 ++++=θ  

( ) ( ) ( ) ( ) ( ) ( ) , 6,6,6,2,26,6,6,3,126,6,5,1,145,5,5,1,16,5,4,1,126,6,5,3,3 −−−−−+  

( ) ( ) ( ) ( ) ( )6,5,4,2,122,3,5,5,62 2,3,4,5,532,3,4,4,665,4,4,2,128 −+++=θ  

( ) ( ) ( ) , 6,6,6,3,26,6,5,2,165,5,5,2,1 −−−  

( ) ( ) ( ) ( ) ( )6,5,5,3,325,5,4,3,326,4,4,3,345,4,4,2,221,3,4,4,54 7 ++++=θ  

( ) ( ) ( ) ( ) ( ) , 6,6,5,2,226,6,5,3,146,6,4,1,146,5,5,1,125,5,4,1,12 −−−−−  

( ) ( ) ( ) ( ) ( )5,5,4,2,125,5,5,3,26,5,4,3,225,4,4,3,261,2,4,4,4 6 −+++=θ  

( ) ( ) ( ) , 6,6,5,3,226,5,5,2,136,6,4,2,16 −−−  

( ) ( ) ( ) ( ) ( )5,5,5,3,36,5,4,3,325,4,4,3,344,4,4,2,21,3,4,4,42 5 ++++=θ  

( ) ( ) ( ) ( ) ( )6,6,4,2,226,5,5,3,126,6,4,3,146,5,4,1,14,5,4,4,1,1 −−−−− ( ) , 6,5,5,2,2−  

( ) ( ) ( ) ( ) ( )6,6,4,3,22,6,5,4,2,165,4,4,2,15,5,4,3,222,3,4,4,43 4 −−−+=θ ( ) , 6,5,5,3,2−  

( ) ( ) ( ) ( ) ( ) , 6,5,4,2,226,5,4,3,146,4,4,1,125,5,4,3,323,3,4,4,42 3 −−−+=θ  

( ) ( ) ( ) , 6,5,4,3,226,4,4,2,132,3,4,4,5, 2 −−=θ  

( ) ( ) ( ) , 6,4,4,2,26,4,4,3,123,3,4,4,5 1 −−=θ  

( ). 2,3,4,4,6 0 −=θ                                        (12) 
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By equations (7), (8) and (9), with notation of ( )kjng ,, , we know that 
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If we substitute the expressions for a and b from equations (13) and (14) into equation (15), then we get an equation in d 

only. This equation can be derived as: 

. 0
14

0

i =∑
=

i

i

dθ                                           (16) 

We summarize our findings in the next theorem. 

Theorem 1. Given j and k, there exist local critical points for ),,( dbaSSE kj
 such that a, b and d satisfy the following 

equations: 
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We now consider the positive roots of equation (16). Let 

=)(df i

i

d∑
=

14

0

iθ . From 014 >θ , we have that 

∞=
∞→

)(lim df
d

. On the other hand, we know that f (0) =θ 0< 

0. Since f (d) is a continuous function, we deduce that f (d) has 

positive roots. 

4. Numerical Example 

We will use the historical data of the Ardennes Campaign 

from December 16 to December 25, 1944 reported in 

Bracken’s Table 5 in our following table 1. 

Table 1. Data on combat forces and losses. 

Dates Blue forces Blue losses Red forces Red losses 

Dec. 15 558820 478 144 0 

Dec. 16 555482 2594 577446 2656 

Dec. 17 553625 3833 571923 4303 

Dec. 18 562661 3615 567134 3415 

Dec. 19 576795 4200 563255 3263 

Dec. 20 644252 3424 570018 3275 

Dec. 21 665764 1804 566877 3799 

Dec. 22 681412 2350 578629 2866 

Dec. 23 683076 2698 576223 4518 

Dec. 24 698910 2858 580074 6985 

Dec. 25 715159 2177 570005 5638 

Owing to the fact that the historical data of the Red force 

is insufficient, researchers overlooked the first day’s 

(December 15) data. According to possible mode shifts from 

Red force attack to the deadlock period, and then Red force 

defend, we partition the 10-day data (from December 16, 

1944 to December 25, 1944) into three periods, [ ]j,2 , 

[ ]1,1 −+ kj , and [ ]11,k . For a given pair of j  and k  with 2 

≤ j< k ≤ 11, using Theorem 1, with the help of Mathcad 14, 

only one positive solution is found from the equation 

0
14

0

i =∑
=

i

i

dθ . However, the uniqueness of the positive root is 

not guaranteed to be the case for other data sets. Hence, we 

examined each data set. The results are presented in Table 2. 

Table 2. Results of SSE, a, b and d. 

j k d a(×10 -9) b(×10 -9) SSE(×10 7) 

2 3 1.097086 8.542788 10.468961 2.06164292 

2 4 1.097296 8.511618 10.520138 2.05460342 

2 5 1.129678 8.631787 10.359330 1.98989544 

2 6 1.188005 8.834096 10.087462 1.83518260 

2 7 1.236984 8.841282 10.021649 1.65657893 

2 8 1.221370 8.552311 10.350499 1.71401651 

2 9 1.317110 8.385806 10.369163 1.42286353 

2 10 1.372509 8.137995 10.631470 1.35597322 

2 11 1.239622 7.967669 11.161626 1.87125273 

3 4 1.077435 8.366103 10.713062 2.06370649 

3 5 1.104195 8.457441 10.584353 2.00871760 

3 6 1.151872 8.605804 10.367735 1.87808736 

3 7 1.195616 8.610122 10.304362 1.72037947 

3 8 1.187710 8.390310 10.567650 1.76038750 

3 9 1.270852 8.219011 10.605636 1.50071820 

3 10 1.318382 7.990529 10.856561 1.44073694 
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j k d a(×10 -9) b(×10 -9) SSE(×10 7) 

3 11 1.204915 7.893680 11.288627 1.89298903 

4 5 1.103110 8.396941 10.652465 1.97668952 

4 6 1.142513 8.488651 10.503400 1.84834987 

4 7 1.180815 8.467154 10.471868 1.69323261 

4 8 1.178875 8.279121 10.700334 1.72082103 

4 9 1.254370 8.080368 10.779860 1.45936035 

4 10 1.300646 7.849971 11.040746 1.38671709 

4 11 1.213318 7.794026 11.416426 1.81725606 

5 6 1.151387 8.442557 10.531772 1.75326509 

5 7 1.187443 8.388897 10.535877 1.58354840 

5 8 1.190139 8.205717 10.759953 1.60009171 

5 9 1.264307 7.965411 10.884982 1.30502869 

5 10 1.314844 7.714423 11.176840 1.20050690 

5 11 1.251249 7.665454 11.566268 1.63754230 

6 7 1.175595 8.219687 10.743606 1.53257848 

6 8 1.182849 8.050400 10.950850 1.53214418 

6 9 1.251965 7.779983 11.131542 1.22234944 

6 10 1.303337 7.514273 11.457341 1.08980522 

6 11 1.261932 7.469769 11.831934 1.49437885 

7 8 1.145783 7.886248 11.220887 1.66282436 

7 9 1.204894 7.619137 11.442268 1.39966810 

7 10 1.249957 7.361174 11.776617 1.28182845 

7 11 1.216740 7.343181 12.055629 1.62191613 

8 9 1.204257 7.399924 11.723900 1.30664065 

8 10 1.254712 7.098237 12.135430 1.14492313 

8 11 1.241698 7.039773 12.483575 1.45379849 

9 10 1.235972 6.977475 12.394907 1.23192456 

9 11 1.230568 6.903854 12.753378 1.50635136 

10 11 1.143812 7,167910 12.448154 1.90011702 

In Table 2, the smallest sum square estimation is marked 

by bold face. 

For the linear law model, we compared our findings with 

previous results. In Bracken [11], the sum square estimation 

is 71063.1 ×  and in Chen and Chu [9], the sun square 

estimation is 71023.1 × . On the other hand, our sum square 

estimation is 71009.1 ×  such that our improvement is 

%9.43  and %4.11  to that of Bracken [11] and Chen and 

Chu [9], respectively. It reveals that our approach provides 

better goodness of fit. 

5. Conclusion 

We examined the historical date with Lanchester linear model 

with Bracken tactical factor to discover that the best explanation 

for the first ten days of battle for the Ardennes Campaign of the 

World War II. The managerial meaning for our findings is that 

the tactical factor is roughly estimated 3.1  to demonstrate that 

attacking is the better military operation policy. 
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