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Abstract: In this work we investigate the use of wavelet-based numerical homogenization for the solution of various closed 

form ordinary and partial differential equations, with increasing levels of complexity. In particular, we investigate exact and 

homogenized (scaled) solutions of the one dimensional Elliptic equation, the two-dimensional Laplace equation, and the two-

dimensional Helmholtz equation. For the exact solutions, we utilize a standard Finite Difference approach with Gaussian 

elimination, while for the homogenized solutions, we applied the wavelet-based numerical homogenization method 

(incorporating the Haar wavelet basis), and the Schur complement) to arrive at progressive coarse scale solutions. The findings 

from this work showed that the use of the wavelet-based numerical homogenization with various closed form, linear matrix 

equations of the type: �� = � affords homogenized scale dependent solutions that can be used to complement multi-resolution 

analysis, and second, the use of the Schur complement obviates the need to have an a priori exact solution, while the 

possession of the latter offers the use of simple projection operations. 
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1. Introduction 

Applications requiring multiscale characterization are 

becoming increasingly more numerous. This has been 

motivated by several inter-related factors, including, but not 

limited to; increased performance of enabling technologies 

(i.e., high performance computing capabilities), the 

confluence of increasingly more scale dependent fields of 

research, and requirements associated with making 

macroscale decisions based on nano or micro scale 

performance criteria. 

In some instances one may be interested in finding coarse 

scale features independent of the finer scales. In such cases, 

the fine scale features may deemed of lesser importance, or 

may be computationally prohibitive. In other cases, the fine 

scales may not be ignored; they may contribute to the coarse 

scale solution. 

Existing methods of multiscale modeling and simulation 

include: Fourier analysis [1], multigrid methods [2, 3], 

domain decomposition methods [4, 5], fast multipole 

methods [6], adaptive mesh refinement methods [7], wavelet-

based methods [8], homogenization methods [9-13], quasi-

continuum methods [14, 15], and others. Of these, wavelet-

based methods, particularly those incorporating Multi-

Resolution Analysis (MRA), have received special attention 

recently, mainly due to their inherent capacity to 

simultaneously represent multidimensional data as functions 

of both time and scale. 

Conceived originally by Meyer [16] and Mallat [17] and 

founded on the principle of orthonormal, compactly 

supported wavelet bases functions; MRA is a rapidly 

developing field supporting an increasing number of 

scientific disciplines, including applied mathematics and 

signal analysis. One of the first successful applications of 

wavelet-based MRA was conducted by Basdevant et al. [18], 

in which continuous and discrete wavelet transforms and 

orthonormal wavelet decompositions were used to analyze 

coherent vortices in two-dimensional turbulent flows and the 

manner in which they contribute to the energy distribution. 

Their findings indicated that the wavelet coefficients, along 

with local spectra and local enstrophy fluxes were powerful 

tools that could be used to separate the different dynamical 

behaviors attributable to the various scales of the flow. 

Complementary to wavelet-based multi-resolution theory, 

and founded on the same underlying theoretical principles, 

wavelet-based numerical homogenization has also shown 
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unique potential, particularly among applications involving 

scale dependent solutions of various closed form, linear 

matrix equations; i.e., those encountered within Finite 

Element, Finite Difference or Finite Volume formulations. 

In this paper we intend to augment the existing numerical 

homogenization research portfolio [9-13], and investigate the 

use of wavelet-based numerical homogenization for the 

solution of various closed form ordinary and partial 

differential equations, with increasing levels of complexity. 

In particular, we will investigate exact and homogenized 

(scaled) solutions of the one dimensional Elliptic equation, 

and the two-dimensional Laplace and Helmholtz equations. 

2. Method 

Although the theory and background ascribed to wavelet-

based multiresolution analysis and numerical 

homogenization has been well described in other works [9-

13], in this section, for purposes of completeness, we will 

provide an overview of each process. 

2.1. Wavelet-based Multiresolution Analysis 

In this section, the filtering procedure for splitting a 

function into high and low scale components is provided. In 

this context, two related functions are defined, namely; the 

scaling function �(x), comprising the low-pass, “smoothing” 

filtering operation, and the wavelet function ���	, providing 

detailed, high-pass support. By definition, a multiresolution 

analysis may be characterized by a nested sequence of closed 

subspaces 
��
�∈� , each identifiable by a given scaling 

parameter, r, and with the following properties: … ⊂ ��� ⊂ �� ⊂ �� ⊂ ⋯ ⊂ ����	                     (1) ⋃ ����∈������������ = ����	                              (2) ⋂ ���∈� = 
0
                                  (3) 

Further, each subspace �� , is spanned by a unique set of 

scaling functions ���,���	, ∀ , ! ∈ �", such that: 

�� = ���,���		|	��,���	 = 2�/���2�� ' !	".         (4) 

Where s is defined as the shift or translation parameter. 

A mutually orthogonal complement of ��  in ��)�  is 

denoted by a subspace *�, such that: ��)� = �� ⊕*� , ∀ ∈ �	                      (5) 

where ⊕ is the direct summation. Nearly identical to �� , the 

subspace *� is spanned by a set of orthogonal basis functions 

of the form: *, = ��,,-��		|	�,,-��	 = 2,/���2,� ' .	"          (6) 

Where the wavelet function, ���	  is translationally 

orthogonal to the scaling function. Using Eqs. (2) and (8), we 

have: 

	*�	�∈�⊕ = ����	                            (7) 

It follows that: 

�� = �� ⊕/ ' 0 ' 1⊕! = 0 *2)�3 ,  4 0               (8) 

The functions ��,� in Equation 4 generate an �� orthogonal 

basis that is orthogonal under translation. We note that for a 

fixed r, ��,�  spans the entire ����	 function space and thus 

any function, f can be approximated from the ��,�- basis: 5�6 = ∑ 8�9�:�9 ��,�                             (9) 

Where 5�  is the operator projecting f onto the subspace ��  

spanned by ��,� . For example, the scaling function, ��,���	 = ���	,	can be written as: 

���	 = ∑ ;<�=	√2��2� ' =	9?:�9             (10) 

Where ;<�=	 is the scaling function coefficient associated 

with each shift parameter n. Similarly, the the wavelet 

function, ��,���	 = ���	 may be expressed as: 

���	 = ∑ ;@�=	√2��2� ' =	9?:�9            (11) 

Now any function, 6��	 ∈ ����	 , can be written as a 

combination of the scaling and wavelet functions: 6��	 = ∑ A�B,���B,���	 C9�:�9 ∑ 	D�,���,���		9�:�B      (12) 

Scaling and wavelet functions obtained from the Haar 

function are illustrated in Figure 1. 

 

Figure 1. Haar scaling and wavelet function, ��,���	 , and ��,���	 , 

respectively. 

The wavelet transformation allows for operations at 

different scales: E�: ��)� → �� 	⨁	*�                            (13) 

where E�  is an orthogonal operator which maps the basis 
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���)�,�" onto ���,�, ��,�". 
The ����	 projection of ��  and *� by the operators 5�  and I�  are defined as: 5�:	��)� → ��                                (14) I�:	��)� → *�  

Using the Haar basis, the discrete form of operators 5�  and I�  may be expressed as: 

5� = �√� J
1 1 0 0 ⋯ 0 00 0 1 1 ⋯ 0 0⋮ ⋮ ⋮ ⋮ ⋯ ⋮ ⋮0 0 0 0 ⋯ 1 1L�MNOP�M

        (15) 

I� = �√� J
1 '1 0 0 ⋯ 0 00 0 1 '1 ⋯ 0 0⋮ ⋮ ⋮ ⋮ ⋯ ⋮ ⋮0 0 0 0 ⋯ 1 '1L�MNOP�M

     (16) 

2.2. Wavelet-based Numerical Homogenization 

The wavelet-based numerical homogenization method for 

linear problems was developed by Brewster and Beylkin [9], 

and begins with a linear matrix equation of the form typical 

of discretized boundary value problems, shown as: QR = S                                     (17) 

where L is a bounded linear matrix operator, and U is the 

solution vector of unknowns. Specifically, acting within the 

subspace ��)�, we have: 

Q�)�R�)� = S�)�                              (18) 

Where the operator ��)�  acts on the space ��)�  at a 

resolution of r+1, and is composed of the set of basis 

functions spanning ��)� . Using the aforementioned scaling 

subspace decomposition: ��)� = �� ⊕*�                                (19) 

And using the previously defined discrete projecting 

operators 5�  and I� , the fine and coarse scale components of R�)� can be extracted as follows: 

E� = TI�5� U                                (20) 

E�R�)� = E���)�V = W��)�X��)�V Y                  (21) 

��)�V = 5�R�)�, ��)�V ∈ �� , R�)� ∈ 	��)�	           (22) ��)�X = I�R�)�, ��)�X ∈ *�	                  (23) 

Where the function R�)�  is split into a low scale 

component ��)�V  as a projection onto �� , and a high-scale 

component ��)�X  as a projection onto *� . Here E�  is the 

wavelet transformation operator, and the superscripts h and l 

denote the high and low-scale components, respectively. 

Performing the transformation from Equation 20, we have: 

�E���)�E�Z	�E���)�	 = T��� ������ ���U�)� W��)�X��)�V Y = E���)� = W��)�X��)�V Y                                     (24) 

Where: 

W��)�X��)�V Y = TI���)�5���)� U                         (25) 

Here ��)�X  and ��)�V  denote the high and low-scale 

components of ��)� , respectively, and E,  is an orthogonal 

transformation, i.e., E�ZE� = [ . The low-scale component ��)�V  is obtained from the Schur complement [19] of ��� in 

Equation 24 to yield: ���� ' �����������	�)���)�V = ��)�V ' ����������)�X       (26) ����)�	�����)�V ' ����������)�X 	                   (27) 

Where the Schur complement is defined as: ���)� = ���� ' �����������	�)�                   (28) 

Here ���)� is the coarse scale operator. The solution ��)�V  

of the reduced equation may be found simply from the 

projection of 5�  onto ��)� . The Schur complement in 

Equation 26 acts on the coarser subspace �� ⊂ ��)�. In the 

case when only the coarse-scale component is desired, it is 

sufficient to solve Equation 26. 

To summarize, multiresolution wavelet-based numerical 

homogenization is performed by first solving for the solution 

at the finest scale. Thereafter, the low and high-scale 

components at the subsequent level of coarseness can be 

calculated from Equations 22 and 23. We may apply this 

projection recursively to produce the solution on ���? for any 

desired level of coarseness. The recursive process is shown in 

Figure 2. 

 

Figure 2. Schematic illustrating the recursive homogenization procedure. 

3. Results 

In this section, we apply the wavelet-based numerical 

homogenization method to various closed form ordinary and 
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partial differential equations, with the aim of achieving scale 

dependent solutions utilizing the aforementioned wavelet-

based multi-resolution approach. In particular, we investigate 

exact and homogenized (scaled) solutions of equations with 

increasing levels of complexity, including; the one 

dimensional Elliptic equation, and the two-dimensional 

Laplace and Helmholtz equations. In each case, unless 

specified otherwise, the fine scale “exact” solutions are 

computed using the finite difference method. 

As a first case, we consider the one-dimensional Elliptical 

equation, with appropriate boundary conditions: 

\\] ^_��	 \`�]	\] a = 0, � ∈ b0, 5d                  (29) 

With e f�0	 = 0fg�5	 = 4.0                            (30) 

Where A(x) various as: _��	 = |_ij]sin	�0.3�/2o	| , 

(_ij] = 69.0r9	 as shown in Figure 3. 

 

Figure 3. _��	 = |_ij]!0=	�0.3�/2o	|. 
The discretized solutions pertaining to the finite difference 

solution included a spatial increment (∆� ) equivalent to: �5.0 ' 0.0	/�2� ' 1	, with  = 8 (corresponding to the total 

number of scale decompositions). The finite difference 

“exact” solution was computed using second-order central 

differences and Gaussian elimination, while the subsequent 

“coarse” scale solutions were computed in accordance with 

the method described previously. 

 

Figure 4. Comparisons of exact versus homogenized solutions of the one-

dimensional elliptical equation. 

Figure 4 shows the results from the finite difference 

“Exact” solution as well as the homogenized solutions 

ranging from the finest scale (“L8”) to the coarsest scale 

(“L2). As indicated, at successively larger scales, (i.e., “L4” 

and “L2”) the amplitude of the periodic oscillations (resulting 

from the variable A(x)) becomes progressively diminished. 

Clearly the first scale decomposition (“L8”) shows close 

agreement with the exact solution, and thus demonstrates the 

remarkable capacity of the method to approximate fine level 

details, if desired. 

As a second case, we consider the two-dimensional 

Laplace equation: u�f��, v	 = 0, � ∈ b0, 1d; 	v ∈ b0,1d                 (31) 

With xy
z	f�0, v	 = 2.0	f�1, v	 = 2.0	f��, 0	 = 1.0	f��, 1	 = 1.0                             (32) 

The finite difference “exact” solutions were uniformly 

discretized such that: ∆� = ∆v = ����M)�	��	  (with = 4 ). 

Similar to the previous case, second-order central differences 

and Gaussian elimination were utilized. The results (scaled 

by fij]	  corresponding to the “exact” case and three 

subsequent (progressively coarsening) homogenization levels 

(L4, L3, and L2) are shown in Figure 5. 
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Figure 5. Comparisons of exact versus homogenized solutions (over four decomposition levels) for the two-dimensional Laplace equation. 

For the L4 homogenized decomposition level, solutions from both the projection operator, 5{, acting on the exact solution 

vector R, as well as computations performed strictly from a knowledge of the linear matrix L and using the Schur complement 

[19] are shown in Figure 6. As indicated the two methods show equivalent results. 

 

Figure 6. Comparisons of projected solution versus Schur complement (at decomposition level four) for the two-dimensional Laplace equation. 

In the final case, we consider the two-dimensional Helmholtz equation: u�f��, v	 C |�f��, v	 = 0, � ∈ b0, 1d; 	v ∈ b0,1d                                                           (33) 

With xy
z	f�0, v	 = 2.0	f�1, v	 = 2.0	f��, 0	 = 1.0	f��, 1	 = 1.0                                                                                      (34) 

Here, | = 10o, and the simulation domain was discretized in the same manner as the previous case, namely; ∆� = ∆v =����M)�	��	 (with = 4). The homogenization results are shown in Figure 7. 
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Figure 7. Comparisons of exact versus homogenized solutions (over four decomposition levels) for the two-dimensional Helmholtz equation. 

Finally, and similar to the previous case, we found equivalent solutions between projected and Schur complement solutions, 

as indicated in Figure 8. 

 

Figure 8. Comparisons of projected solution versus Schur complement (at decomposition level four) for the two-dimensional Helmholtz equation. 
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4. Conclusions 

In this work we have investigated the use of wavelet-based 

numerical homogenization for the solution of various closed 

form ordinary and partial differential equations, with 

increasing levels of complexity. In particular, we have 

investigated exact and homogenized (scaled) solutions of the 

one dimensional Elliptic equation, the two-dimensional 

Laplace equation, and the two-dimensional Helmholtz 

equation. For the exact solutions, we utilized a standard 

Finite Difference approach with Gaussian elimination, while 

for the homogenized solutions, we applied the wavelet-based 

numerical homogenization method (incorporating the Haar 

wavelet basis), and the Schur complement) to arrive at 

progressive coarse scale solutions. The findings from this 

work provide for the following observations: 

1) The use of the wavelet-based numerical 

homogenization with various closed form, linear matrix 

equations of the type: �� = � , affords homogenized 

scale dependent solutions that can be used to 

complement multi-resolution analysis. 

2) The use of the Schur complement obviates the need to 

have an a priori exact solution, while the possession of 

the latter offers the use of simple projection operations. 

Potential future efforts aligned with this study will focus 

on the utilization of this method for problems in higher 

dimensions (including temporal dependence), and investigate 

the use of various other wavelet basis functions. 
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