
 
International Journal of Discrete Mathematics 
2016; 1(1): 20-29 
http://www.sciencepublishinggroup.com/j/dmath 
doi: 10.11648/j.dmath.20160101.14  

 

An Analytic Approach to Weakly-Singular Integro-Dynamic 
Equation on Time Scales 

Adil Mısır 

Department of Mathematics, Faculty of Science, Gazi University, Teknikokullar, Turkey 

Email address: 
adilm@gazi.edu.tr 

To cite this article: 
Adil Mısır. An Analytic Approach to Weakly-Singular Integro-Dynamic Equation on Time Scales. International Journal of Discrete 

Mathematics. Vol. 1, No. 1, 2016, pp. 20-29. doi: 10.11648/j.dmath.20160101.14 

Received: December 12, 2016; Accepted: December 22, 2016; Published: January 16, 2017 

 

Abstract: In this paper, we present a new and simple approach to resolve linear and nonlinear weakly-singular Volterra 
integro-dynamic equations of first and second order on any time scales. In order to eliminate the singularity of the equation, nabla 
derivative is used and then transforming the given first-order integro-dynamic equations onto an first-order dynamic equations on 
time scales. The validity of the method is illustrated with some examples. 
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1. Introduction 

Linear and nonlinear Volterra integro-differential equations 
play an important role in mathematical modeling of many 
physical, chemical and biological phenomena in which it is 
necessary to take into account the effect of past history. 
Particularly in such field as heat transfer, nuclear reactor 
dynamics, dynamics of linear viscoelastic materials with long 
memory and thermoelectricity, optics, electromagnetics, 
electrodynamics, chemistry, electrochemistry, fluid flow, 
chemical reaction, population dynamics, statical physics, 
inverse scattering problems and many other practical 
applications. 

During the last decades the researchers are considered the 
two of the most important types of mathematical equations 
that have been used to mathematically describe various 
dynamic procedure. One of them is differential and integral 
equations and the other is difference and summation equations, 
which model phenomena respectively: in continuous time; or 
discrete time. The researchers have used either differential and 
integral equations or difference and summation equations- but 
not a combination equations of the two areas to describe 
dynamic models. 

Recently, it is now becaming apperent that certain 
phenomena do not involve only continuous aspect or only 
discrete aspects. Rather, they feature elements of both the 
continuous and discrete . These type of mixed processes can 
be seen, for example, in population dynamics where 

non-coincident generations [14] occurs. Additionaly, neither 
difference nor differential equations give a appropriate 
description of most population growth [9]. 

Some problems of mathematical physics are described in 
terms of nth-order linear and nonlinear Volterra 
integro-differential equation of the form 

( ) ( )( ) ( ) ( ) ( ) , ,,=
0

btadytKtftytu m

t

a

i
n

i

i ≤≤+ ∫∑
=

τττ  (1) 

where 1,≥m ( )ty is the unknown function and ( )stK ,  is the 
kernel of integral equations in [1, 17]. 

In continuous case equations of this form with degenerate, 
difference and symmetric kernels have been approached by 
different methods including piecewise polynomials [6], the 
spline collocations method [7], the homotopy perturbation 
method [16], Hear wavelets [10], the wavelet-Galerkin 
method [12], the Tau method [8], Taylor polynomials [11] , the 
sine-collocations method [19], and the combined Laplace 
transforms-adomain decomposition method [18] to determine 
exact and approximate solutions. But if Equ. (1) is 
weakly-singular Volterra integro-differential equations there 
is still no viable analytic approach for solving Equ. (1). 
Recently in [5] the authors are considered the approximate 
solutions of a class of first and second order weakly-singular 

form of Equ. (1) with kernel 
( )α

ts
stK

−
1

=),(  is singular as 

,st →  where 1<<0 α  and in [15] D. B. Pachpatte gives an 

approximate procedure for first order dynamic 
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integro-differential initial value problem. 
In discrete case to our knowledge there isn’t any analytic 

approaching method to the corresponding form of Equ. (1) 
with weakly singular kernel to discrete form and the time scale 
calculus is developed mainly to unify differential, difference 
and −q  calculus. Thus in this paper we are considered the 

first-order linear Volterra integro-dynamic equations in any 
time scales and we give an approaching method to the solution 
of the considered integro-dynamic equations with weakly 
singular kernel. 

2. Some Preliminaries 

The calculus of time scales was introduced by Aulbach and 
Hilger [2] in order to create a theory that can unify and extend 
discrete and continuos analysis. 

Definition 1. A time scale T , which inherits the standard 

topology on ,R  is an arbitrary nonempty closed subset of 

the real numbers. 
Example 1. The real numbers ,R  the integers ,Z  the 

natural numbers ,N  the non-negative integers ,0N  the −h

numbers { },:= ZZ ∈khkh  where 0>k  is a fixed real 

number, the −q  numbers { } { } { },0:=0= ∪∈∪ Zk
Z kqq k

q
 

where 1>q  is a fixed real number, [ ] [ ],4,71,3 ∪ and 

[ ] N∪−− 12,  are examples of time scales. 

In [2] Aulbach and Hilger introduced also dynamic 
equations on time scales in order to unify and extend the 
theory of ordinary differential equations, difference equations 
and quantum equations ( −h  difference and −q  difference 

equations based on −h  calculus and −q  calculus). For a 

general introduction to the calculus on time scales we refer the 
reader to the textbooks by Bohner and Peterson [3, 4]. Here 
we give only those notions and facts concerned to time scales 
which we need for our purpose in this paper. 

Any time scale T  is a complete metric spaces with the 

metric (distance) ( ) |=|, ststd −  for ., T∈st  Consequently, 

according to the well-known theory of general metric spaces, 
we have for T  the fundamental concepts such as open balls 
(intervals), neighborhood of points, open set, closed sets, and 
so on. Also we have for function RT →:f  the concept of 

the limit, continuity and properties of continuous functions on 
general complete metric spaces (note that, in particular, any 

function RZ →:f  is continuous at each point of Z ). In 

order to introduce and investigate the derivative for a function 
RT →:f ,  forward and backward operators play important 

roles. 

Definition 2. For T∈t  the forward jump operator σ  

and backward operator ρ  is defined by respectively as 

follows 

{ } ,sup=)(,sup>:inf)(by: T TT TT =≠∈=→ tiftttiftsst σσσ            (2) 

and 

( ) { } .inf=)(,inf<:sup=by: TTTTT =≠∈→ tiftttiftsst σρρ             (3) 

These jump operators enable us to classify the points { }t  of a time scale as right-dense, right-scattered, left-dense, and 

left-scattered depending on whether ,=)( ttσ  tt >)(σ , ,=)( ttρ  ,<)( ttρ  respectively, for any T∈t . If sup T < ∞  

and sup T  is left-scattered we let T { }.sup\= TT
κ  Otherwise, we let .= TT

κ
 Similarly if T  has a right-scattered 

minimum, we let { },min\= TTTκ  otherwise, we let .= TTκ  Finally, the graininess functions :,νµ  )0,∞→T  are 

defined by 

( ) ( ) . allfor = and )(:=)( T∈−− ttttttt ρνσµ                        (4) 

Example 2. If ,= RT  then ( ) ttt ==)( ρσ  and ( ) 0.==)( tt νµ  If ,= ZT h  then ,=)( htt +σ  ( ) htt −=ρ  

and ( ) .==)( htt νµ  If ,= qkT  then qtt =)(σ , ( ) tqt 1= −ρ , ( ) ,1=)( tqt −µ  and ( ) ( ) .1= 1 tqt −−ν  

Definition 3. For RT →:f  and κT∈t , we define the nabla derivative of f  at t , denoted ( )tf ∇ , to be number 

(provided it exists) with the property that given any 0>ε , there is a neighborhood U  of t  such that 

( )( ) ( ) ( ) ( )[ ] ( ) ststtfsftf −≤−−− ∇ ρερρ  

for all Us ∈ . 
The following theorems delineate several properties of the nabla derivative; they are found in [3, 4]. 

Theorem 1. Assume RT →:f  is a function and κT∈t . Then: 

(i) ) If f  is nabla differentiable at t , then f  is continuous at t . 
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(ii) If f  is continuous at t  and t  is left-scattered, then f  is nabla differentiable at t  with 

( ) ( ) ( )( )
( ) .=
t

tftf
tf

ν
ρ−∇

 

(iii) If t  is left-dense, then f  is nabla differentiable at t  iff the limit 

( ) ( )
st

sftf

ts −
−

→
lim  

exists as a finite number. In this case 

( ) ( ) ( )
.lim=

st

sftf
tf

ts −
−

→

∇  

(iv) If f  is nabla differential at t , then 

( ) ( ) ( ) ( ).= tfttftf ∇−νρ  

Theorem 2. Assume RT →:, gf  are nabla differential at κT∈t . Then: 

(i) The sum RT →+ :gf  is nabla differentiable at t  with ( ) ( ) ( ) ( ).= tgtftgf ∇∇∇ ++  

(ii) The product RT →:.gf  is nabla differentiable at t  with 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).== tgtftgtftgtftgtftfg ρρ ∇∇∇∇∇ ++  

(iii) If ( ) ( ) 0≠tgtg ρ ,	then g  is nabla differentiable at t  with 

( ) ( ) ( ) ( ) ( )
( ) ( ) .=

tgtg

tftgtgtf
t

g

f
ρ

∇∇∇
−









 

Example 3. If RT =  we have 
'

ff =∇ , the usual derivative, and if ZT =  we have the backward difference operator, 

( ) ( ) ( ) ( ).1:== −−∇∇ tftftftf  

Definition 4. A function RT →:f  is left-dense continuous (or ld-continuous) provided it is continuous at left-dense 

points in T  and its right-sided limits exists (finite) at right-dense points in .T  

Definition 5. Assume RT →:f  is a regulated function. A function ( )tF is called an antiderivative of f  provided 

( ) ( )tftF =∇  for all .κT∈t  In this case we define the nabla integral by 

( ) ( ) ( ).= aFbFttf

b

a

−∇∫  

We now state some definitions and at goal we will define a function , called nabla exponential function, which solves the 
general first order linear nabla-dynamic IVP. 

Definition 6. Let T be a time scale. We say that a function RT →:p is ν -regressive provided 

( ) ( ) 01 ≠− tptν .κT∈tallfor  

Define the ν -regressive class of functions on κT  to be 

{ }.regressiveandcontinuousldis::= −−→ νν pp RTR  

If νR∈p , then the first order linear dynamic equation 
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( )ytpy =∇                                       (5) 

called ν -regressive. In addition, if RT →:f  is ld-continuous, then the first order inhomogenous linear dynamic equation 

( ) ( )tfytpy +∇ =                                       (6) 

called ν -regressive. If νR∈qp, , then we define the circle plus and minus by 

( ) ( ) ( ) ( ) ( ),= ttqtptqtpqp νν −+⊕  

( ) ( )
( ) ( ) .

1
=

ttp

tp
tq

νν −
−�  

Definition 7. For 0,>h  let ( )






 ≤≤−∈

h
zIm

h
zh

ππ
:= CZ  and .

1
:=







 ≠∈

h
zzh CC  Define ν -cylinder 

transformation 
hhh ZC →:

�
ξ  by ( ) ( ),1

1
= zhLog

h
zh −−

�
ξ  where Log  is the principal Logarithm function. For 

0,=h  we define ( ) zz =0

�
ξ  for all CC =0∈z . If νR∈p , then we define the nabla exponential function by 

( ) ( ) ( )( )













∇∫ ττξ τν pste

t

s

p

��
exp=,                                (7) 

for ., T∈ts  

Theorem 3. Suppose (5) is ν -regressive and fix .0 T∈t  Then ( )00 ,ttey p

�  is the unique solution of the IVP 

( ) ( ) .=,= 00 ytyytpy∇                                         (8) 

Next theorem gives some properties of the nabla exponential function, can be found in [3, 4]. 

Theorem 4. Let νR∈qp, , and .,, T∈uts  Then 

(i) ( ) 1,0 ≡ste
�  and ( ) 1,, ≡tte p

�  

(ii) ( )( ) ( ) ( )( ) ( ),,1=, stetptste pp

��
νρ −  

(iii) 

( )
( ),,=

,

1
ste

ste

p

p

ν�
�

�

 

(iv) ( )
( )

( ),,=

,

1
=, tse

tse

ste p

p

p ν�
�

�

�
 

(v) ( ) ( ) ( ),,=,, stesueute ppp

���  

(vi) ( ) ( ) ( ),,=,, stesteste qpqp ν⊕
���
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(vii) 
( )

( )
( ),,=

,

,
ste

ste

ste
qp

q

p

ν�
�

�

�

 

(viii) 

( )

( )

( )
.

,

=

,

1

ste

tp

ste pp

ρ
��

−
















∇

 

Example 4. It is clear that ( ) ( )0
0 =,

tt
ette

−
α

�
, where α  is constant, for .= RT  Now let ZT h=  for 0.>h  Let 

να R∈  be a constant, i.e., .
1







−∈

h
Cα  Then 

( ) .allfor
1

1
=,

0

0 T∈








−

−

t
h

tte
h

tt

α
α

�  

Theorem 5. [3] Suppose (6) is ν -regressive. Let ,0 T∈t  and R∈0y . The unique solution of the IVP 

( ) ( ) ( ) 00 =,= ytytfytpy +∇                                   (9) 

is given by 

( ) ( ) ( )( ) ( ) .,,=

0

00 ∫ ∇+
t

t

pp fetteyty τττρτ
��

 

3. Solutions by Approximation Method 

We start this section with the recalling the concept of an approximate method for solving linear and nonlinear weakly-singular 
Volterra integro-dynamic equations as in [14]. This concept will help us to constract the approximation solution of first-order 
nonlinear weakly-singular Volterra integro-dynamic equations and second-order linear weakly-singular Volterra 
integro-dynamic equations on time scales, which will be given in subsection 3.1 and 3.2 respectively. 

Consider the following first-order linear weakly-singular Volterra integro-dynamic equation 

( ) ( ) ( ) ( ) ( )
( )( ) 1,<<0andfor,= α

ρ α
ρ bta

ts

ssy
tftytpty

t

a
≤≤

−
∇++ ∫

∇
              (10) 

where ( )tp  and ( )tf  are given functions that at least ld-continuous on [ ] { }.:=, btatba ≤≤∈T
T

 Rewriting the 

integral part of Equ. (3.1) as 

( )
( )( )

( ) ( )( ) ( )( )
( )( ) s
ts

tytysy

ts

ssy t

a

t

a
∇

−
−+

−
∇

∫∫ αα ρ
ρρ

ρ
=                                (11) 

( )( ) ( )( )αρ
ρ

ts

s
ty

t

a −
∇

∫=
( ) ( )( )

( )( ) ( )( ) .1
sts

ts

tysyt

a
∇−

−
−+ −

∫
αρ

ρ
ρ  

Thus Equ. (10) can be written as 

( ) ( ) ( ) ( ) ( )( ) ( )( )α
ρ

ρ
ρ

ts

s
tytftytpty

t

a −
∇++ ∫

∇ =
( ) ( )( )

( )( ) ( )( ) sts
ts

tysyt

a
∇−

−
−+ −

∫
αρ

ρ
ρ 1

.         (12) 

If we use the fact ( ) ( ) ( )( )
( ) ,lim=
ts

tysy
ty

ts ρ
ρ

−
−

→

∇
 we can take the fraction 

( ) ( )( )
( )ts

tysy

ρ
ρ

−
−

 in the second integral of Equ. 
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(12) as approximately ( ).ty∇  Substituting the approximate relation into the right side of Equ. (10) we can get 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ).= thtytgtytftytpty ∇∇ +++ ρρ                         (13) 

Therefore, Equ. (10) can be approximated by the following first-order linear dynamic equation 

( ) ( ) ( ) ( ).= tFtytPty ρ+∇                         (14) 

Note that if RT =  than Equ. (14) becomes first-order linear differential equation ( ) ( ) ( ) ( )tFtytpty' =+  and the 

general solution may be readily written as ( )
( ) ( )

( )













+∫

∫
∫−

cdttFeety
dttPdttP

= . Moreover for RT =  we can calculate 

( )tg  and ( )th  as 

( ) ( )( ) ( )
( )

1
===

1

−
−

−−
∇ −

∫∫ αρ

α

αα
at

ts

ds

ts

s
tg

t

a

t

a
 and ( ) ( )( ) ( ) ( )

,
2

===
2

11

−
−−∇−

−
−−

∫∫ α
ρ

α
αα ta

dstsststh
t

a

t

a

 

which is coincide with the section 2.1 of [5]. 

For the points ( ) tt =ρ  we can calculate ( )tg  and ( )th  as 

( ) ( )( ) ( )α
δ

δαρ ts

s

ts

s
tg

t

a

t

a −
∇

−
∇ −

→∫ 0
lim==  and ( ) ( )( ) ( ) .lim== 1

0

1
stsststh

t

a

t

a
∇−∇− −−

→

−
∫

αδ

δ

αρ  

By the help of Theorem 5 we can write the solution of the Equ. (14) of the form 

( ) ( ) ( ) ( ) τττνν ∇+ ∫ Ftecatety P

t

a
P ,,= ��

�                           (15) 

under the initial condition ���� = � for ( ) tt <ρ  [3]. 

Theorem 6. [14]Let ( )tp  and ( )tf  are given functions as in Equ. (10) and )(tx  be the solution of Equ. (14) under the 

condition ( ) cax = . Then ( )tx  can be taken the approximate solution of Equ. (10)with the error 

( ) ( ) ( ) ( ) ( )
( )( ) ( )tf
ts

sase
atetpatectE

Pt

a
PP −

















−
∇−














+















∫

∇

α
ν

ρ

νν
ρ

,
,,=

�

��

�
��

 

( ) ( ) ( ) ( ) ( )
ρ

νν ττττττ













∇+














∇+ ∫∫

∇

FtetpFte P

t

a
P

t

a
,, ��

��
 

( ) ( )
( )( ) .
,

s
ts

Fse P

s

a
t

a
∇

−

∇
− ∫
∫ α

ν

ρ

τττ�

�

 

Remark 1. If we take ( ) 0=ax  and ( ) 0=tf  then the solution of Equ. (14) under the condition ( ) 0=ax  will be exact 

solution of Equ. (10). 

Example 5. Let ,
1

=)(
2t

tf  






 −−+−
−− ∑∑

−

=

−

=

12

11
9

1

1

1
=)(

t

as

t

as

st
st

tp  and 
2

1
=α . Then for 5=a  we get 

,
9

1
=)(,1=)(,

1

1
=)(

1

5

2

5

−−−
−− ∑∑

−

=

−

=

tPstth
st

tg
t

s

t

s  
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( )
5

1

5

2 9

10
=,5and

10

1
=)(,

11

1
=)(

−

−

=

















 −−+∑

t

PPt

s

tet

stt

tF νν ��
�

 

respectively. Thus from Theorem 6 we find that for 10=t  

,60.1831367906580.00172253=(10)=)( cEtE ⋅−  

as an error. For � = 10 we find that 

,
9

1
=)(,1=)(,

1

1
=)(

1

10

2

10

−−−
−− ∑∑

−

=

−

=

tPstth
st

tg
t

s

t

s

 

( )
10

1

10

2 9

10
=,10and

10

1
=)(,

11

1
=)(

−

−

=

















 −−+∑

t

PPt

s

tet

stt

tF νν ��
�

 

respectively and the error will be approximately 

,60.18313679705650.00067340=(10)=)( cEtE ⋅−  

for 
 = 10. Finally if we choice � = 10 and 
t

tf
1

=)(  we get 

,
9

1
=)(,1=)(,

1

1
=)(

1

10

2

10

−−−
−− ∑∑

−

=

−

=

tPstth
st

tg
t

s

t

s

 

( )
10

1

10

9

10
=,10and 

10

1
=)(,

11

1
=)(

−

−

=

















 −−+∑

t

PPt

s

tet

stt

tF νν ��
�

 

respectively and the error will be approximately 

,60.1831367970150.00233647=(15)=)( cEtE ⋅−  

for 15=t . 

3.1. First-Order Nonlinear Weakly-Singular Volterra Integro-Dynamic Equations 

In this subsection we consider the first-order nonlinear Volterra integro-dynamic equation of the form 

( ) ( ) ( ) ( ) ( )( )
( )( ) 1,<<0,;= α

ρ α
ρ btas

st

syG
tftytpty

t

a

≤≤∇
−

++ ∫
∇

                (16) 

where ( )yG  is analytic in the solution .y  

We have by setting 

( ) ( )( ),= tyGtu                                  (17) 

( ) ( ) ( ) ( ) ( )
( )( ) ,1<<0,;= α

ρ α
ρ btas

st

su
tftytpty

t

a

≤≤∇
−

++ ∫
∇
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as before, we write this equation in the following form 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( )( ) 1,<<0,;= α

ρ α
ρ btas

st

tutusu
tftytpty

t

a

≤≤∇
−

+−++ ∫
∇

 

or 

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( )

( )( ) ( )( )∫∫ ∇−
−

−+∇
−

++ −∇
t

a

t

a

sst
st

tusu
s

st
tutftytpty

α
α

ρ ρ
ρρ

11
= . 

An approximate solution can be found by considering 
( ) ( )

( ) ( )tG
st

sutu ∇

−
−

≃

ρ
 

( ) ( ) ( ) ( ) ( )( )( ) ( ) ( )( ) ( ),= thtyGtgtyGtftytpty ∇∇ −++ ρρ                  (18) 

where ( )tg  and ( )th  are the same as before. 

Therefore, Equ. (16) can be approximated by the first-order nonlinear dynamic equation Equ. (18). 
Naturally Equ. (16) and Equ. (18)coincide with Equ. (2) and Equ. (8) of [5] when .= RT  

3.2. Second-Order Linear Weakly-Singular Volterra Integro-Dynamic Equations 

The same procedure can be adopted to transform a second-order linear weakly-singular Volterra integro-dynamic equation into 
an first-order dynamic equation, which permits convenient resolution of these equations. 

Consider the following second-order linear weakly-linear Volterra integro-dynamic equation 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( )( ) 1,<<0,  , = α

ρ α
ρ btas
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sy
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t
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≤≤∇
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+++ ∫
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             (19) 

where ( ),tf  ( )tg  and ( )tp  are given functions as in previous section. If we use the same procedure as in previous section 

we can write 
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or 

( )
( )( ) ( ) ( ) ( ) ( ),= thtytgtys

st

sy
t

a

∇+∇
−∫

ρ
αρ

 

where ( ) ( )( ) ststh
t

a
∇− −

∫
αρ 1=  as in section 3. 

Thus we can rewrite Equ.(3.10) as 

( ) ( ) ( ) ( ) ( ) ( ).= thtytftytpty ∇∇∇∇ ++                             (20) 

By setting ( ) ( )tzty =∇  in Equ. (20) we get first-order linear dynamic equation as 

( ) ( ) ( ) ( ),= tftztQtz +∇                             (21) 

where ( ) ( ) ( ).= thtptQ −  

Therefore, Equ.(3.10) can be approximated by the first-order nonlinear dynamic equation Equ. (21). 
If we use the same procedure of the Theorem 6 we get the error function as 
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Example 6 Let )(=)( thtp  and ,=)( λtf  where λ  is an abritrary constant. Then we find that 

( ) ( ) ( ) ,=where,===)( 11 λλ ccatcatctytz −−∇
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If we use these facts in Equ. (22) we find that 
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It is easy to sea that ( ) = 0E t  for = 0λ , ( )( ) = 1E t cλ −  

for = 1a  and = 2t , ( )( ) = 3 1E t cλ − −  for = 1a  and 

= 3t  and finally ( )( ) = 10.65685425 1E t cλ − ⋅ −  for = 1a  

and = 4.t  Naturally as t a−  increases ( )E t  increases. 

Note: In order to calculate )(tE  in the above examples 

Maple 13 software has been used. 

4. Some Remarks 

We have reduced the solution of a class of linear and 
nonlinear weakly-singular Volterra integro-dynamic equations 
to the solution of ordinary dynamic equations by removing the 
singularity using an approximate nabla derivative. Then we 
have demonstrated the solution of these ordinary dynamic 
equations, which approximate the solution for the original 
weakly-singular Volterra integro-dynamic equations. 

5. Conclusions 

We have considered several distinct examples to illustrate 
our new approach and have verified our solution, beginning 
with first-order and second order linear weakly-singular 
Volterra integro-dynamic equations. Of course, it would be 

better to obtain a similar procedure if ( )g t  is an arbitrary 

ld-contunious function in Equ.(3.10). It seems that ones can 
get over the problem by using the Taylor expansions of a 
function on time scales [3, 4]. 
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