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Abstract: This paper studies a parabolic partial differential equation on digital spaces and digital n-dimensional manifolds, 

which are digital models of continuous n-manifolds. Conditions for the existence of solutions of equations are determined and 

investigated. Numerical solutions of the equation on a Klein bottle, a projective plane, a 4D sphere and a Moebius strip are 

presented. 
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1. Introduction 

In the past decades, non-orientable surfaces such as a 

Moebius strip, Klein bottle and projective plane have 

attracted many scientists from different fields. The study was 

derived from obvious practical and science background. In 

physics, a considerable interest has emerged in studying 

lattice models on non-orientable surfaces as new challenging 

unsolved lattice-statistical problems and as a realization and 

testing of predictions of the conformal field theory (see, e.g., 

[13]). In a joint Russian-French-German project a Moebius 

strip was proposed as a basic element of an airplane wing. 

Many important technical and physical properties of 

Moebius-type structural elements can be described by 

solutions of partial differential equations (PDE), where a 

Moebius strip serves as a domain. A problem exists in 

description of electronic and nuclear motions in nano-

technology structures and biological networks. Modeling 

blood flow through a capillary network or road traffic 

requires a system of differential equations on a graph. Since 

analytic solutions of PDE can be obtained only in simple 

geometric regions, for practical problems, it is more 

reasonable to use computational or numerical solutions. We 

can do this by implementing as domains graphs and digital 

spaces, which are discreet counterparts of continuous spaces, 

and by transferring PDE from a continuous area into discrete 

one. A review of works devoted to partial differential 

equations on graphs can be found in [2], [14], and [17]. A 

serious problem arises because in most of cases, the grid is 

not a correct counterpart of the continuous area in terms of 

digital topology and, therefore, cannot properly model the 

continuous domain. Distinctions between the differential 

equations on discrete and continuous spaces are also 

essential. One of differences is stipulated by the fact that a 

digital space can have just a few points. Another serious 

difference is linked to the existence of the natural least length 

in a digital space, defined by the length of the edge 

connecting two adjacent points of the space. In application to 

wave processes it means a lack of indefinitely short waves 

and indefinitely high frequencies that is the lack of the 

factors frequently conducting to divergences. 

In order to build mathematically correct grids it is 

reasonable to use digital topology methods. 

Digital spaces are studied in the framework of digital 

topology, which plays an important role in analyzing n-

dimensional digitized images arising in computer graphics as 

well as in many areas of science including neuroscience, 

medical imaging, computer graphics, geoscience and fluid 

dynamics. Usually, digital objects are represented by graphs 

whose edges define nearness and connectivity (see, e.g., [3] 

and [6]). The important feature of an n-surface is a similarity 

of its properties with properties of its continuous counterpart 
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in terms of algebraic topology. For example, the Euler 

characteristics and the homology groups of digital n-spheres, 

a Moebius strip and a Klein bottle are the same as ones of 

their continuous counterparts ([10] and [11]). In recent years, 

there has been a considerable amount of works devoted to 

building two, three and n-dimensional discretization schemes 

and digital images. In papers [4] and [9], discretization 

schemes are defined and studied that allow to build digital 

models of 2-dimensional continuous objects with the same 

topological properties as their continuous counterparts. 

Section 2: The material to be presented below begins with 

a short description digital spaces and digital n-surfaces 

studied in [5], [6], [8] such as digital n-dimensional spheres, 

a digital torus, a digital Klein bottle, etc. 

Section 3 defines parabolic differential equations on a 

digital space and a network and studies some its properties. 

Section 4 presents a numerical solution of a parabolic 

equation on a digital Klein bottle, a digital projective plane, a 

digital 4D sphere, a digital Moebius band and a directed 

network installed in digital space (which, for example, can 

model a capillary network for blood flow). 

2. Digital N-surfaces 

There are a considerable amount of literature devoted to 

the study of different approaches to digital lines, surfaces and 

spaces in the framework of digital topology. Digital topology 

studies topological properties of discrete objects which are 

obtained digitizing continuous objects. 

This section includes some results related to digital spaces. 

Traditionally, a digital image has a graph structure (see [3] 

and [7]). A digital space G is a simple undirected graph 

G=(V, W) where V=(v1, v2, ... vn, …) is a finite or countable 

set of points, and W = ((vрvq),....) is a set of edges. 

Topological properties of G as a digital space in terms of 

adjacency, connectedness and dimensionality are completely 

defined by set W. Let G and v be a graph and a point of G. In 

[7], the subgraph O(v) containing all neighbors of v (without 

v) is called the rim of point v in G. The subgraph 

U(v)=v∪O(v) containing O(v) as well as point v is called the 

ball of point v in G. Let (vu) be an edge of G. The subgraph 

O(vu)=O(v)∩O(u) is called the rim of (vu). 

 

Fig. 1. S0 is a digital zero-dimensional sphere, S1
min, S

1
1, S

1
2, S

1
3 are digital one-dimensional spheres. 

 

Fig. 2. Two-dimensional spheres with a different number of point, any of spheres can be converted into the minimal sphere S2
min by contractible 

transformations. 

For two graphs G=(X, U) and H=(Y, W) with disjoint point 

sets X and Y, their join G⊕H is the graph that contains G, H 

and edges joining every point in G with every point in H. 

Contractible graphs are basic elements in this approach. 

Definition 2.1 

� A one-point graph is contractible. If G is a contractible 

graph and H is a contractible subgraph of G then G can 

be converted into H by sequential deleting simple 

points. 

� A point v in graph G is simple if the rim O(v) of v is a 

contractible graph. 

� An edge (uv) of a graph G is called simple if the rim 

O(vu)=O(v)∩O(u) of (uv) is a contractible graph. 

By construction, a contractible graph is connected. It 

follows from definition 1 that a contractible graph can be 

converted to a point by sequential deleting simple points. 

Definition 2.2 

� Deletions and attachments of simple points and edges 

are called contractible transformations. 

� Graphs G and H are called homotopy equivalent if one 

of them can be converted to the other one by a sequence 

of contractible transformations. 

Homotopy is an equivalence relation among graphs. 

Contractible transformations of graphs seem to play the same 

role in this approach as a homotopy in algebraic topology. In 

papers [10] and [11], it was shown that contractible 



 International Journal of Discrete Mathematics 2016; 1(1): 5-14 7 

 

transformations retain the Euler characteristic and homology 

groups of a graph. A digital n-manifold is a special case of a 

digital n-surface defined and investigated in [6]. 

Definition 2.3 

The digital 0-dimensional surface S
0
(a, b) is a 

disconnected graph with just two points a and b. For n>0, a 

digital n-dimensional surface G
n
 is a nonempty connected 

graph such that, for each point v of G
n
, O(v) is a finite digital 

(n-1)-dimensional surface. 

� A connected digital n-dimensional surface G
n
 is called a 

digital n-sphere, n>0, if for any point v∈G
n
, the rim 

O(v) is an (n-1)-sphere and the space G
n
-v is a 

contractible graph. 

� A digital n-dimensional surface G
n
 is a digital n-

manifold if for each point v of G
n
, O(v) is a finite 

digital (n-1)-dimensional sphere. 

Digital n-manifolds are called homeomorphic if they are 

homotopy equivalent. A digital n-manifold M can be 

converted to a homeomorphic digital n-manifold N with the 

minimal number of points by contractible transformations. 

Definition 2.4 

� Let M be a digital n-sphere, n>0, and v be a point 

belonging to M. The space N=M-v is called a digital n-

disk with the boundary ∂N=O(v) and the interior 

IntN=N-∂N. 

� Let M be an n-manifold and a point v belong to M. 

Then the space N=M-v is called an n-manifold with the 

spherical boundary ∂N=O(v) and the interior IntN=N-

∂N. 

According to definition 2.3, a digital n-disk is a 

contractible graph. A digital n-disk is a digital counterpart of 

a continuous n-dimensional disk in Euclidean E
n
. 

The following results were obtained in [6] and [8]. 

 

Fig. 3. Digital 2-dimensional torus T and Klein bottle K with sixteen points. 

Theorem 2.1 

� The join S
n

min=S
0

1⊕S
0

2⊕…S
0

n+1 of (n+1) copies of the 

zero-dimensional sphere S
0
 is a minimal n-sphere. 

� Let M and N be n and m-spheres. Then M⊕N is an 

(n+m+1)-sphere. 

� Any n-sphere M can be converted to the minimal n-

sphere Smin by contractible transformations. 

� Let M
 
be an n-manifold, G and H be contractible 

subspaces of M and v be a point in M. Then subspaces 

M-G, M-H and M-v are all homotopy equivalent to 

each other. 

 

Fig. 4. P, S3 and S4 are digital two-dimensional projective plane, there- and four-dimensional spheres respectively. 

The replacement of an edge with a point increases the 

number of points in a digital n-manifold. 

Definition 2.5 

Let M be an n-manifold, v and u be adjacent points in M 

and (vu) be the edge in M. Glue a point x to M in such a way 

that O(x)=v⊕u⊕O(vu), and delete the edge (vu) from the 

space. This pair of contractible transformations is called the 

replacement of an edge with a point or R-transformation, R: 

M→N. The obtained space N is denoted by N=RM=(M∪x)-

(vu). 

Theorem 2.2 ([8]) 

Let M
 
be an n-manifold and N=RM be a space obtained 

from M by an R-transformation. Then N is homeomorphic to 

M. 

An R-transformation is a digital homeomorphism because 

it retains the dimension and other local and global 

topological features of an n-manifold. R-Transformations 

increase the number of points in a given n-manifold M 
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retaining the global topology (the homotopy type of M) and 

the local topology (the homotopy type and the dimension of 

the neighborhood of any point). A close connection between 

continuous and digital n-manifolds for n=2 was shown in [4]. 

A digital 0-dimensional surface is a digital 0-dimensional 

sphere. Fig. 1 depicts digital zero and one-dimensional 

spheres. Fig. 2 shows digital 2-dimensional spheres. All 

spheres are homeomorphic and can be converted into the 

minimal sphere S
2

min by contractible transformations. Digital 

torus T and a digital 2-dimensional Klein bottle K are shown 

in fig. 3. Fig. 4 depicts a digital projective plane P and digital 

three and four-dimensional spheres S
3
 and S

4
 respectively. In 

the finite difference method for solving partial differential 

equations in two and three dimensions, a two or three-

dimensional continuous domain is replaced by a grid. This 

grid has to be a digital model of a continuous space. 

However, in most of cases, the grid is not a correct two or 

three- dimensional space in terms of digital n-surfaces. For 

example, consider a standard two-dimensional grid G (fig. 

5(a)) often used in finite-difference schemes. As one can see, 

the neighborhood O(v) of any point v consists of four non-

adjacent points and, therefore, is not a one-dimensional 

sphere. Hence, G is not a part of a digital two-dimensional 

plane, but rather can be seen as a collection of one-

dimensional segments. Grid H in fig. 5(c) is a part of a digital 

plane because the rim O(v) of any interior point v is a digital 

1-sphere S
1
 containing six points and shown in fig. 1. Thus, 

H is a correct grid which should be used in finite-difference 

schemes. 

3. Parabolic PDE on a Digital Space 

3.1. The Structure of Parabolic Partial Differential 

Equations on a Digital Space 

Some results of the investigation of partial differential 

equations on digital spaces were published in [5]. Finite 

difference approximations of the PDE are based upon 

replacing partial differential equations by finite difference 

equations using Taylor approximations [15]. Consider a 

parabolic PDE with two spatial independent variables. 

���� � � ����	� 
 � ������ 
 
	                        (1) 

 

Fig. 5. (a) Finite difference 2D grid for two independent variable x and y, (b) The spatial stencil for the parabolic partial differential equation with two spatial 

independent variables x and y, (c) Digital 2-dimensional plane. 

 

Fig. 6. The ball U(v1) of point v1 (black points). F1
t+1=ct

11f1
t+ct

12f2
t+ct

13f3
t+ct

14f4
t+ct

15f5
t+ct

16f6
t+ct

17f7
t. 

where � � ���, �, ��, � � ���, �, ��, � � ���, �, ��, 
 �
��, �, ��.	 Using a two-dimensional spatial orthogonal grid 

G shown in fig. 5(a), the central difference formula for the 

second derivatives with respect to x and y, and the forward 

difference formula for the derivative with respect to t, we 

obtain the following equivalent finite deference equation 

��,�������,���� � ��,� ��!�,�� �"��,��#����,��
�	� 
 ��,� ��,�!�� �"��,��#��,����

��� 
 
�,� 	 (2) 

where � � $%�, $ � 1,2, … , � � )%�, ) � 1,2, … , � �*%�, * � 1,2, ….	Equation (2) can be written as 
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��,� #+ = ,��+,� ���+,� + ,��+,� ���+,� + ,�#+,� ��#+,� + ,�,��+ ��,��+ + ,�,�#+ ��,�#+ + ,�,� ��,� + Δ�
�,�                  (3) 

where ,�,� = 1 − ,��+,� − ,�#+,� −,�,��+ −,�,�#+ , ,��+,� = ,�#+,� = ���	� ��,� , ,�,�#+ = ,�,�#+ = ���	� ��,� . 

Grid G in fig. 5(a) is a graph with points /01 = (2%�, 3%�). Point /��  is adjacent to points /�,�±+	 and /�±+,�	.	Notice that 

points /�� , /�,�±+	  and /�±+,�	  form the ball l 5(/��) = /��	 ∪ 6(/��))  depicted in fig.5(b). Based on this consideration and 

equation (3), we can define a dynamic system on a digital space G by the set of equations on G. 

�0�#+=∑ 809�vk∈U:vp; �9� + 
0� , 2 = 1,… *,<ℎ,>,	 ∑ 809�vk∈U:vp; = 1, 2 = 1,… *	                         (4) 

The summation is produced over all points vk belonging to 

the ball U(vp) of point vp. Here �9� is the value of the function �(/9 , �) at point /9 of G at the moment t, coefficients 809�  are 

functions on the pairs of point (/0, /9) and t (with domain ? × ? × �). If points /0 and /9 are not adjacent, then 809� = 0. 

Remark 3.1 

In general, the condition ∑ 809	�vk∈U:vp; = 1, 2 =1,2, … *,	is not necessary for the PDE. For example, it does 

not hold for the diffusion equation on a directed network. If 

all 
0� = 0, then the equation is called homogeneous. Later 

on in this paper, all 
0� = 0. 
Definition 3.1 

Let G(V, W) be digital space (graph) with the set of points 

V=(v1, v2,...vn), the set of edges W = ((vрvq),....), and U:vp; 
be the ball of point /0. A parabolic PDE on G is the set of n 

equations of the form 

fp
t+1

=∑ 809�vk∈U:vp; fk
t , 2 = 1,… *	                (5) 

Thus a PDE on a given point /9 depends on the values of a 

function on /9 and the points adjacent to /9. Equation (5) is 

illustrated in fig. 6. The ball U(v1) consists of black points, 

and �+�#+ = 8++� �+� + 8+"� �"� + 8+B� �B� + 8+C� �C� + 8+D� �D� +8+E� �E� + 8+F� �F� .  Since 809� = 0  if points /0  and /9  are non-

adjacent, then set (5) can be written in the form 

fp
 t +1

=∑ 809�	vk∈U:vp; fk
 t = ∑ 809� �9� 9G+ , 2 = 1,2, …*,    (6) 

Equations (6) do not depend explicitly on the dimension of 

G and can be applied to a digital space of any dimension or a 

network. All dimensional features are contained in the local 

and global structure of a digital space G. Set (6) is similar to 

the set of differential equations on a graph investigated by A. 

I. Volpert in [16]. Equation (6) can be presented in the matrix 

form 

�� = H�+�∙� �J , K(�) = L8++� 8+"� ∙8"+� ∙ ∙∙ ∙ 8  � M,	              (7) 

��#+ = K(�)�� 	                                    (8) 

Consider now the initial conditions for solving equation 

(5). Initial conditions are defined in a regular way by the set 

of equations 

�0N = �:/0 , 0;, 2 = 1,2, …*	                    (9) 

Definition 3.2 

Equations (5) along with initial conditions (9) are called 

the initial value problem for the parabolic PDE on a digital 

space O(/+, /", … / ). 
fp
 t +1

=∑ 809	�vk∈U:vp; fk
 t, �0N = �:/0 , 0;, 2 = 1,2, … *     (10) 

Boundary conditions can also be set the usual way. 

Boundary conditions are affected by what happens at the 

subspace H of G. Let H be a subspace of G. Let the value of 

the function �(/9 , �)  at points /9PQ  at the moment �  be 

given by the set 

�(/9 , �) = �9� = 39� , /9PQ	                 (11) 

The boundary-value problem on G can be formulated as 

follows 

Definition 3.3 

Let O(/+, /", … / ) be a digital space and the set (5) be a 

differential parabolic equation on G. Let H be a subspace of 

G, and the value of the function �(/9 , �) at points /9PQ at 

the moment �  be defined by boundary conditions (11). 

Equation (5) along with boundary conditions (11) is called 

the boundary value problem for the parabolic PDE on a 

digital space G. 

fp
 t +1

=∑ 809	�vk∈U:vp; fk
 t, 2 = 1,2, … *, �(/9 , �) = 39� , /9PQ, (12) 

Consider the stability of equation (5) using a standard 

approach. For �� , the norm is defined as ‖��‖ =|�+�|+. . . |� �|. Equation (5) is called stable according to initial 

values if there exists a positive b such that ‖��‖ ≤�‖�N‖.	for all t. 

Theorem 3.1 

An equation (10) on a digital space O(/+, /", … / )  is 

stable according to initial values, i.e., ‖��‖ ≤ U‖�N‖, if for 

any t there is �, 0 < � < 1 *W ,  such that X809� X ≤ �, 2, Y =1,… *. 
Proof 

Consider the equation in form (6). X�0�#+X = X∑ 809� �9�| ≤ 9G+∑ |809� X|�9�X ≤ � ∑ X�9�X = � 9G+ ‖��‖. 9G+ X  Then ‖��#+‖ =|�+�#+|+. . . |� �#+| ≤ �‖��‖+. . . �‖��‖ = �*‖��‖ <1 *W *‖��‖ = ‖��‖.  Since ‖��#+‖ < ‖��‖  for any t, then ‖��‖ < ‖�N‖. It completes the proof.  
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3.2. The Heat and Diffusion Equations 

Later in this section we consider homogeneous 

equations. Diffusion is the process by which particles are 

transported from one point of a digital space O(/+, /", … / � to another points adjacent to the first one 

as a result of random motions: the number 809� �9�  of 

particles on point /9  will jump to point /0 , the number 800� �0�  of particles on point /0  will stay on /0 . 

Conservation of the total number of particles is obvious, 

i.e., �9�=∑ 809�vp∈U�vk� �9�. This means that 

∑ 809�vp∈U�vk� � 1, 890� Z 0, Y � 1,…*,	           (13) 

Definition 3.4 

Let O�/+, /", … / � be a digital space and the set (5) be a 

parabolic PDE on G. If coefficients satisfy the set (13), then 

equation (5) is called the diffusion equation on a digital space G. 

fp
 t +1

=∑ 809	�vk∈U:vp; fk
 t, 2 � 1,2, …*, ∑ 809�vp∈U�vk� � 1, 890� Z 0, Y � 1,…*	                        (14) 

Let us show that the sum [� � ∑ �9� 9G+ 	of values of the 

function on all points of the digital space G for a diffusion 

equation (14) according to initial values does not depend on t. 

Theorem 3.2 

In the diffusion equation (14) on a digital space O�/+, /", … / � , the sum [� � ∑ �9� 9G+ 	 of values of the 

solution �0� on all points of G according to initial values does 

not depend on t. 

Proof 

Consider the diffusion equation in the form (6). [�#+ �∑ �0�#+ 0G+ 	� ∑ 	∑ 809� �9� � ∑ ∑ 809� �9� � 0G+ 9G+ 9G+ 0G+

∑ �9� ∑ 809� . 0G+ 9G+ 		  According to (13), ∑ 809� 0G+ � 1, Y �1,… *.  Therefore, [�#+ � ∑ �9� 9G+ � [� .  Hence, [� � [N. 
The proof is complete.  

It is easy to see that equation (14) is stable. 

Theorem 3.3 

A diffusion equation (14) on a digital space O�/+, /", … / �  is stable according to initial values, i.e., ‖��‖ T ‖�N‖, if for any t. 

Proof 

Consider the diffusion equation in the form (6).

||��#+|| � ∑ |�0�#+| 0G+ 	� ∑ |	∑ 809� �9�| T ∑ 	∑ |809� ||�9�| � ∑ ∑ |809� ||�9�| � ∑ |�9�| ∑ |809� |. 0G+ 9G+ 	 0G+ 9G+ 9G+ 	 0G+ 9G+ 	 0G+   

According to (13), ∑ |809� | 0G+ � ∑ 809� 0G+ � 1, Y � 1,… *. 
Therefore, ||��#+|| T ∑ |�9�| 9G+ � ||��||.  Hence, ||��|| T||�N||. The proof is complete. P 

At rather large times t, the form of a solution will be 

determined by a limit form of a matrix K� � ∏ K�3��1GN . It is 

of some interest to clarify a behavior of matrix K� 	�3	� → ∞. 

Call this limit as a final matrix K_ . The final matrix K_ 

converts initial values �9N  into final values �9_ . In the 

diffusion equation (14) in the matrix form (8), the square (n x 

n)-matrix K�  is a stochastic matrix (or, more correct, a 

transposed stochastic matrix) which properties are well 

known (see [1] and [12]). Such matrices are used in Markov 

processes. Let's consider some applications of such approach 

for a solution of the initial value problem for the diffusion 

equation on a digital space O�/+, /", … / �. Consider the case 

when matrix C(t) is not time dependent, K��� � K � `809a. 
Then the initial value problem for the diffusion equation on a 

digital space O�/+, /", … / � is the set (14) when 

K��� � K � b809c, 809 Z 0, 2, Y � 1,…*	         (15) 

 
Fig. 7. (a) K is a digital Klein bottle containing 16 points. (b) The solution profile at point 1 and 3 on tne Klein bottle K, t=0, 1,… 100, f1

0=16, fk
0=0, k≠1. 

If matrix C is indecomposable and primitive, then it has a 

simple maximum eigenvalue 1, and there are no other 

complex eigenvalues which modulus are equal one (see [1] 

and [12] ). Matrix K� converges to a limit stochastic matrix K_ as t→∞, which can be presented in the following form: 
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K_ = H8+ ∙ 8+∙ ∙ ∙8 ∙ 8 J � lim�→_�K��a @ K�� . 1�…@ K�0�� , ∑ 89 9G+ � 1, ∀89 h 0.	                       (16) 

Theorem 3.4 

If matrix K � `809a in the diffusion equation (14) is indecomposable and primitive, then the final solution �_ of (14) as 

t→∞ at any initial values is stationary, not time-dependent (in each point of space, a value of function �_ is constant, does not 

depend on time t), is determined only by the sum of values of function f in all points of the space G and has the form: 

�_ � K_�N	                                                                                    (17) 

�_ � [ H8+∙8 J , K_ � H8+ ∙ 8+∙ ∙ ∙8 ∙ 8 J , �N � L�+N∙� NM , ∑ �9N 9G+ � [,∑ 89 9G+ � 1, ∀89 h 0                      (18) 

Proof K_ � lim�→_��K��� @ …K�0�� . According to [1] and 

[12], K_ � H8+ ∙ 8+∙ ∙ ∙8 ∙ 8 J . It is easy to check directly that 

K_�N � �_ and K�_ � �_.	Therefore, �_ the final solution 

of (14). The proof is complete.  

Clearly, the solution �_  depends only on S, but not on 

concrete distribution of values of function �N  on points of 

space G in the initial moment t = 0. Besides, any function of 

the form � � i�_ is an eigenvector of K � KN � K�, and a 

stationary solution of the equation (13) because K� �KK�∞�� � K�∞�K � �.	That is 

�0 � ∑ 809�9		jk∈m                             (19) 

This equation can be considered as an analog of an 

elliptical equation on a digital space. 

The accuracy of the solution of equation (5) can be 

increase by several ways. The first way is to tune functions 809�  in (5) so that the accuracy is higher. This way is not the 

best because equation (5) must fit the given PDE and cannot 

be used for other equations. The other way is to use more 

points in the domain which is a digital space G. For example, 

an edge (uv) in G can be replaced by a point z using 

contractible transformations, and the obtained space �O .�n/�� ∪ o is homeomorphic to G (see [8]). In fig. 2, digital 2-

sphere S
2

min containing six points can be replaced by S
2

3 

containing twelve points. 

4. Numerical Solutions of a Diffusion 

Equation 

Consider several examples of the numerical solutions of 

the diffusion equation (14) on different digital spaces. 

fp
 t +1

=∑ 809	vk∈U:vp; fk
 t � ∑ 	809�9� 9G+ , 2 � 1,2, … *,	    (20) 

p809 
0G+

� 1, 809 Z 0, Y, 2 � 1,2…* 

4.1. Digital 2-dimensional Klein Bottle K. the Heat 

Equation on K 

 

Fig. 8. Numerical solutions on the projective plane P. (a) The solution profile of the initial value problem at points 1, 2 and 10 on the projective plane P, t=0, 

1,… 30, f1
0=1, fk

0=0, k≠1. (b) The solution profile of the boundary value problem at points 2, 8 and 11 on the Moebius strip M, t=0, 1,… 30, f1
t=f11

t=4. 

A Klein bottle has attracted attention of researcher in many 

fields. We mention here, among the others, physics [13], 

where a considerable interest has emerged in studying lattice 

models on non-orientable surfaces as new challenging 

unsolved lattice-statistical problems and as a realization and 

testing of predictions of the conformal field theory. 
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Fig. 9. (a) The Moebius strip M is formed by interior points 9, 10, 11, 12 and boundary points 1-8. (b) The solution profile of the initial value problem at 

points 1, 2 and 12 on the Moebius strip M, t=0, 1,… 30, f1
0=12, fk

0=0, k≠1. 

A digital Klein bottle K depicted in fig. 3 and fig. 7(a) 

consists of sixteen points. The rim O(vk) of every point vk 

is a digital 1-sphere containing six points. K is a 

homogeneous digital space containing the minimal 

number of points. The number of points can be increased 

by using contractible transformation. Topological 

properties of a digital 2D Klein bottle are similar to 

topological properties of its continuous counterpart. For 

example, the Euler characteristic and the homology groups 

of a continuous and a digital Klein bottle are the same 

([10] and [11]). 

Define coefficients 809  in the following way. If points 

vp and vk are adjacent then 809=0.1; ckk=0.4, k=1,…16. 

Initial values are given as f
1

	N
=16, f

k

	N
=0, k=2,…16. In fig. 

7(b), numerical solutions of the of the initial value 

problem for (20) are plotted at time t=1,…100. Two lines 

give the numerical solutions of the of the initial value 

problem for (20) at point 1 and point 3 (see fig. 7(a)). It 

follows from calculations that both lines converge to the 

same limit, lim�→_ �9� = 1, Y � 1,… 16,.	 The physical 

interpretation of (20) on K is the heat equation and the 

numerical solution shows the temperature at points of K. 

4.2. Digital 2D Projective Plane P. the Diffusion Equation 

on P 

Fig. 2 shows a digital 2-dimensional projective plane P. P 

is a non-homogeneous digital space containing eleven points. 

The rim O(vk) of every point vk is a digital 1-sphere. 

Topological properties of a digital and a continuous 2D 

projective plane are similar. It was shown in [10] and [11] 

that the Euler characteristic and the homology groups of a 

continuous and a digital projective plane are the same. It is 

easy to check directly that a digital 2D projective plane 

without a point is homotopy equivalent to a digital 1D sphere 

as it is for a continuous projective plane. 

Define coefficients 809 in the following way; if vk and vp 

are adjacent then 890 � 809 � 0.1, 800 � 1 . ∑ 890++9G+,9r0 . 
Consider the numerical solutions of the initial value problem 

for (20). Initial values are given as f
1

	N
=11, f

k

	N
=0, k=2,…10. 

The profiles of the solution at points 1, 2 and 10 are plotted 

in fig. 8(a), where t=1,…30. It follows from direct 

calculations that all three lines converge to b=1. The physical 

meaning of these solutions is consistent with the distribution 

of particles on P caused by Brownian motion. 

 

Fig. 10. (a) S4 is a digital 4-dimensional sphere with ten point. (b) The solution profile of the initial value problem at point 1, 2 and 6 on S4, t=0, 1,… 80, f1
0=1, 

fk
0=0, k≠1. 
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Consider the boundary value problem for (20). The 

boundary conditions are defined by equations f
1

	�
=1, f

11

	�
=4. Let 

f
k

	N
=0, k=2,…10. The profiles of the solution of the boundary 

value problem for (20) at points 2, 9 and 10 for t=1,…30 are 

shown in fig. 8(b). 

This is consistent with the physical interpretation of (20) 

as heat equation, and the solution is the temperature 

distribution at points on P. 

4.3. Digital 2D Moebius Strip M. the Heat Equation on M 

The Moebius strip M depicted in fig. 9(a) consists of 

twelve points. This is the minimal possible number of points. 

Points 9, 10, 11 and 12 are interior points, points 1-8 are 

boundary points which form a one-dimensional sphere 

(circle). 

Assume that coefficients cik do not depend on t; if cik≠0, 

i≠k, then cik=cki=0.1, cpp=0.4, p=9,…12, cpp=0.6, p=1,…8. 

Initial values are given as f
0

1=12, f
0

k=0, k=2,…12. The 

profiles of the solution of (20) at points 1, 2 and 12 are 

shown in fig. 9(b), where t=0,…30. One may note that the 

difference between function values at different points 

dissipates with large passage of time. Direct computations 

show that lim�→_ �9� = 1, 	Y � 1,…12.  This is consistent 

with the physical interpretation of (20) as heat flow on M. 

 

Fig. 11. (a) A digital 2D sphere S. (b) A directed network N on S. (c) The solution profile of the initial value problem at point 1, 2 and 8 on S4, t=1,… 30, f1
0=8, 

fk
0=0, k=2,… 8. 

4.4. Digital 4-dimensional Sphere S
4
. the Heat Equation on 

S
4
 

Consider a digital 4-dimensional -sphere S
4
 with ten points 

depicted in fig. 4 and fig. 10(a). The rim O(vk) of every point 

vk is a digital 3-sphere containing eight points and depicted in 

fig. 4. S
4
 is a homogeneous digital space containing the 

minimal number of points. The number of points can be 

increased by using contractible transformation. Topological 

properties of a digital 4D sphere are similar to topological 

properties of a continuous 4D sphere. 

Consider the numerical solutions of the initial value 

problem for (20). Let cik=cki=0.01 if points vi and vk are 

adjacent, and cpp=0.92 for p=1,…10. Initial values are given 

as f
0

1=1, f 
0

k=0, k=2,…10. The results of the solution of the 

initial value problem (20) at points 1, 2 and 6 for t=0,…80 

are displayed in fig. 10(b), which illustrates the time behavior 

of the values of the function f. In the physical heat 

interpretation, this is the temperature distribution on S
4
. It 

follows from direct computations that lim�→_ �9� � 0.1, 	Y �1,… 10. 
4.5. Digital 2D Sphere S. A Directed Network 

Consider a digital 2-dimensional sphere S with eight points 

depicted in fig. 11(a). The rim O(vk) of every point vk is a 

digital 1-sphere. Define coefficients 809  in equation (20) in 

the following way; if �/�/9� ∈ [	�=,*	8�9 h 0, 89� �0	�s>	8�9 � 0, 89� h 0� , 800 � ∑ 890t9G+ , p=1,…8. In this 

case, equation (20) forms a directed network N on S shown 

in fig. 11(b). Edge �/�/9�  in S can be replaced with a 

directed edge (or arc) �/� → /9�	from /�  to /9 . Dynamical 

system on such a network can be applied to a study of the 

movement of blood through the system of vessels or to an 

analysis of the of road traffic, ets. Let 8+" � 8+B � 8+C � 8+D � 8++ � 8"" � 8BB � 8CC � 8DD �8EE � 8FF � 8tt � 0.2, 8"+ � 8"t � 8BC � 8Bt � 8CD � 8Ct �8DE � 8Dt � 8EF � 8E+ � 8F" � 8F+ � 8tE � 8tF � 0.4.  
All other coefficients are equal to zero. Consider the 

numerical solutions of the initial value problem for (20). 

Initial values are given as f
1

	N
=8, f

k

	N
=0, k=2,…8. The results of 

the solution of (20) at points 1, 2 and 8 for t=1,…30 are 

displayed in fig. 11(c), which illustrates the time behavior of 

the values of the function. Dynamical system on such a 

network can be applied to a study of the movement of blood 

through the system of vessels or to an analysis of the of road 

traffic, ets. 

5. A Method of Finding Numerical 

Solutions of a Parabolic PDE 

Based on the results we presented in Sections 2 and 3, now 

we are able to describe a method that lets us find numerical 
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solutions of a parabolic PDE on, for example, a Klein bottle K. 

Step 1. Construct a digital Klein bottle D with the 

necessary number of points defined by required accuracy and 

precision of the results. 

Step 2. Determine appropriate coefficients 809� 	 in the 

parabolic PDE (6) on the digital D in accordance with 

continuous parabolic PDE on K. 

Step 3. Compute the numerical solution of the parabolic 

PDE on D for a required t. 

6. Conclusions and Open Question 

A numerical explicit method for approximating the 

solution of differential parabolic equations on digital spaces, 

digital n-dimensional manifolds, n>0, and networks is 

presented and some properties of this method are 

investigated. This method is mathematically correct in terms 

of digital topology in the comparison with other methods 

used before. Solutions of the equation on a digital Klein 

bottle, a digital projective plane, a digital 4D sphere, a digital 

Moebius strip and a directed network are presented. 

An open question is to extend this method of solving 

parabolic PDE to other types of equations. 
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