

Science Journal of Circuits, Systems and Signal Processing
2016; 5(2): 8-18

http://www.sciencepublishinggroup.com/j/cssp

doi: 10.11648/j.cssp.20160502.11

ISSN: 2326-9065 (Print); ISSN: 2326-9073 (Online)

Design Flow Allowing the Effective Use of Non-scan and
Scan-Based Tests

Rimantas Seinauskas

Software Department, Informatic Faculty, Kaunas University of Technology, Kaunas, Lithuania

Email address:
rimantas.seinauskas@ktu.lt

To cite this article:
Rimantas Seinauskas. Design Flow Allowing the Effective Use of Non-scan and Scan-Based Tests. Science Journal of Circuits, Systems and

Signal Processing. Vol. 5, No. 2, 2016, pp. 8-18. doi: 10.11648/j.cssp.20160502.11

Received: August 15, 2016; Accepted: August 23, 2016; Published: September 9, 2016

Abstract: At speed delay testing is important for embedded systems. Attempts to solve the problems of delay testing only

with non-scan or scan-based tests are unsuccessful. There is no need to oppose these tests, but it is necessary to use both taking

full advantage of their opportunities. Design flow and the ability to use non-scan and scan-based ATPG, functional test and

fault simulation is presented. The goal is to detect as many faults with non-scan at-speed test. The remaining faults are detected

with a scan-based test. As a result, there are less of undetected faults and the length of the scan-based test is reduced. The

proposed approach provides more flexibility for test generation. Design flow forced the development of new methods for

speeding up fault simulation and for more efficient generation of input patterns. Experimental results demonstrate the

possibilities of approach.

Keywords: Non-scan Test, Scan-Based Test, Functional Test, Design Flow

1. Introduction

Circuit testing using only the inputs and outputs is the

easiest way. The test generation problem is too complex to be

resolved within a reasonable period of time for large circuits.

Therefore, the additional inputs and outputs are added to

change and monitor the internal circuit states. As a result,

circuit size and testing time increases. Currently, large

circuits are designed to facilitate testing. At speed testing of

delay faults is particularly important for modern circuits. At

speed testing detects defects that cannot be detected with a

scan-based test. Scan-based test is usually voluminous and its

implementation requires a lot of timing signals. Scan-based

test can detect faults, which actually do not affect the

functioning. In this case, there is a so-called problem of over-

testing. Using together the non-scan and scan-based tests is

possible. We are working with the assumption that at-sped

test of transition faults detects more defects than the scan-

based test of transition faults. Part of the faults can be tested

with non-scan test and the other part of faults with the scan-

based test. Non-scan test received only for part of faults also

makes sense because it is possible to detect more defects

through at speed testing and to shorten the scan-based test.

Non-scan test is useful when using testing with partial scan

as well.

Test generation methods have been developed for several

decades. Commercial test generation packages contain circuit

test generation tools without scan (full sequential). However,

these tools can successfully generate tests only for those

faults which do not require long test patterns (sequences).

Large circuits, usually have only a small amount of faults

detectable with short patterns. Therefore, the quality of the

test is unsatisfactory and the test must be supplemented.

Fully sequential test generator test may be supplemented

by adding a functional test. The functional test is usually

generated by a higher level of abstraction and is usually long.

It can detect the same faults as the test obtained using fully

sequential generators. Therefore, the test patterns, which do

not detect new faults, have to be discarded from the

functional test. It can perform fault simulator.

Fault simulator can be used for the further addition of test

quality. This article explores the various options for the

addition of the test, using fault simulation. Scan-based test

can detect the remaining faults that are not detected by the

non-scan test.

The remaining article part is structured in such a way. Next

Section 2 is dedicated to a brief overview of the most

9 Rimantas Seinauskas: Design Flow Allowing the Effective Use of Non-scan and Scan-Based Tests

important trends in test generation. Design flow, which

allows flexibility in the use of non-scan and scan-based test

generation approaches and gradual addition of the test are

described in the third section. The fourth section explores test

generation using state-of-the art non-scan ATPG. Fault

simulation acceleration of functional test is discussed in the

fifth section. The sixth section discusses the addition of

similar test patterns to the final test. Experimental results

with benchmarks are described in the seventh section. The

conclusions of the article are presented in the last section.

2. Related Work

Scan-based testing achieves high fault coverage, but

requires long test application times and substantial tester

memory, in addition to the overhead in chip area and high

test power. Non-scan test, on the other hand, suffers from low

coverage, but can be applied at-speed. Experimental studies

[1] have shown that some of the defects can be detected only

by a functional at-speed test. Exclusion of at-speed test

increases the risk that not fully tested chips will cause a

system failure. Non-scan at-speed testing remains necessary

despite all the effort [2] to improve the scan-based testing.

At-speed tests are effective in relation to the length of the

test, so aim to detect more faults with non-scan test is

understandable.

The RAMs are tested using BIST, and are not covered by

any scan test. Without the provision of the BIST tests a scan-

based test would have substantial numbers of defective parts

escaping. In this way, the non-scan and scan-based tests, as

well as BIST should be used for testing of modern circuits

Test generation methods for non-scan circuits are developed

for a long time [3, 4, 5, 6]. Design-for-Test methodology for

non-scan at-speed testing is suggested in [7]. The circuit state

set is expanded by use of inverse outputs of flip-flops, and

grouping them by introducing an additional input enabling and

facilitating the availability on the output. This provides better

fault detection conditions. Design-for-Test methodology for

non-scan testing at a functional level is suggested in [8].

Combining BIST and ATE are discussed in [9].

Functional test generation uses functional fault models and

criteria based on the description of functioning on a higher

level of abstraction [10]. Description can be expressed by

algorithmic language before circuit synthesis.

Functional faults are associated with the text of the

description [11]. Description of functioning at a higher level

of abstraction allows faster processing of large circuits.

However, detection of functional faults does not guarantee

the detection of gate faults. Methods for generating

functional tests allow the detection of faults that are not

detected by test generation techniques at the gate level.

Therefore, functional and gates-level test generation

techniques are used in combination [12].

Test generation methods express conditions for faults

detection and search for a solution that satisfies those

conditions. For this purpose, it is necessary to tackle the

system of constraints [13], as conditions may require

conflicting values in the input. This poses a major problem of

finding a solution. Methods of satisfying constraints are

widely used in solving the problem of test generation.

Computer science to solve the problem of satisfaction (often

abbreviated as marked in capital letters - SAT) must

determine whether the Boolean variables can be assigned so

that the expression should result in a value equal to one.

Binary satisfaction is probably the most studied

combinatorial optimization / search problem. Great efforts

have been attempted to provide an efficient solution to

practical problems. The SAT is one of the main problems in

computer science with a theoretical and practical importance

and has a very efficient practical realization [14]. SAT solvers

are widely used for functional and gate-level test generation.

Search field increases considerably during the search of

the test vector sequence for sequential circuits. Only

relatively short sequences manage to calculate within a

reasonable period of time when using deterministic methods.

Therefore, functional test generation techniques are useful,

which uses the principle of the selection [15]. Test patterns

are generated randomly or according to the given rules. Test

patterns that satisfy the quality criteria are selected as tests.

In this case, the length of the test patterns is not a critical

parameter. It is also possible to use complex quality criteria.

The process efficiency depends on the rules used for test

generation and quality criterion used.

Test quality criteria usually is based on simulation results

of the test pattern and do not directly relate to the detection of

gate faults. Therefore, functional test generation becomes

inefficient when there are few undetected faults. In this

situation the selection of test patterns may use fault

simulation. Fault simulation is related to the long taking

calculations. Calculation time reduction relates to fault list

manipulation. The principles that are used for the generation

of functional test can be applied using faults simulation [15].

Fault simulation requires greater resources than the analysis

of functional faults. Therefore, faults simulation acceleration

is relevant.

The main fault simulation studies carried out mainly

through two decades ago and are widely described in many

books and articles, but will refer to only one of them [16].

The existing techniques for speeding up fault simulation

provide algorithmic enhancements and development of

special-purpose hardware for fault simulation. The number of

faults that need to be simulated can be decreased by

exploiting fault equivalence and fault dominance between a

pair of faults. Fault collapsing is used to reduce the fault

simulation time. It is the practice in which faults detected by

a pattern are deleted from the fault list prior to the simulation

of any subsequent pattern. Fault dropping decreases the

complexity of fault simulation, but cannot be used for all

fault simulation algorithms.

Fault simulation algorithms can be divided into the serial,

parallel, deductive and concurrent. Serial algorithms simulate

fault-free and faulty circuits and comparing the responses.

Such algorithms are easy to implement; need only a true-

value simulator, most faults, including analog faults, can be

 Science Journal of Circuits, Systems and Signal Processing 2016; 5(2): 8-18 10

simulated, but use much repeated computation. The parallel

fault simulation takes advantage of multi-bit representation

of data and availability of bitwise operations. With each pass

of simulation, the fault-free circuit as well as machine word

length faulty versions is simulated in parallel for a given

pattern, but fault dropping cannot be used. Deductive fault

simulation is a one-pass simulation, utilizes a dynamic data

structure and 3-valued logic. Computation rules are difficult

to derive for complex gates and gate delays are difficult to

use. Concurrent fault simulation is based on a factor that

most of the values in most of the faulty circuits agree with

the corresponding values in the good circuit. Information

about a fault will be entered in the fault list if the value

implied at least one input or output of the gate is different

from that implied at the corresponding line in the fault free

version of the circuit. The fault is removed from the fault list

if the corresponding input/output values are identical to that

of the fault-free circuit. Measured coverage in the sample is

used to estimate fault coverage in the entire circuit. It allows

saving in computing resources, but limited data on detected

and undetected faults is available.

Hardware fault simulation methodology and tools, using

partial reconfiguration, suitable for efficient fault modeling

and simulation in FPGAs [17]. FPGA-based hardware fault

simulation using partial reconfiguration is rewarding, as an

alternative to software fault simulation, constraining fault

simulation costs. Usual clock frequencies make hardware

fault simulation time two orders of magnitude less dependent

on the number of patterns than software fault simulation.

Method about how to increase the speedup ratio of fault

simulation in parallel test generation is presented in [18]. The

method is based on fault partitioning.

Dynamic fault grouping based on fault activity is used in

both HOPE [19] and the PROOFS [20] systems. Faults are

grouped so as to be initially detected more fault. Fault

simulation time is reduced on the basis of the principle drop

detected. Fault list is formed for all patterns. In this article,

we'll offer up a new fault grouping for each pattern, and thus

reduce the fault simulation time. The list of faults for patterns

opens up new opportunities to reduce fault simulation time.

Functions for embedded systems can be implemented as

hardware or as software. Generating integrated test requires

disposing of a unified embedded system model. Binary FSM

model unanimously represents the functioning of the hardware

and software. Hardware and software test quality criteria can

be used for the generation of functional integration test for

embedded systems. Hardware test quality criteria are more

stringent compared to software test quality criteria]].

3. Design Flow

Design flow, which allows flexibility in the use of non-

scan and scan-based test generation approaches and gradual

addition of the test is shown in Figure 1. The software

prototype can be developed in parallel with the specification

and can be used for verification of the specification. The

circuit is synthesized with a full-scan register. Non-scan

ATPG can generate a test that detects more faults on circuits

with a scan and with additional inputs and outputs compared

with the circuit without a scan. Functional test generation

based on the software prototype may be carried out in

parallel with the circuit synthesis. The functional test cannot

use full-scan capabilities as based on the prototype, which

was made before the circuit synthesis.

Fig. 1. Design flow.

11 Rimantas Seinauskas: Design Flow Allowing the Effective Use of Non-scan and Scan-Based Tests

Non-scan and scan-based tests will be generated. First

non-scan test is generated for scan-based circuit. Full

sequential ATPG generates a compact test and it is intended

to take full advantage of the capabilities of the generator.

Fault simulation shall select patterns, which detect new

faults, from functional test. Further, the test is extended

exploiting fault simulation capabilities. The remaining

undetected faults are the object of the ATPG for scan circuits.

Finally, non-scan and scan-based tests are optimized.

Detection of more faults with non-scan test is always useful.

This problem will be examined in this article. The proposed

design flow is to be used in the case where very high

requirements are raised for the coverage of faults, and

computing time is not critical. Basic computing time costs

are related to the generation of functional test that can be

performed in the early design stages in parallel with the

design steps. Quite a lot of time can be spent on this work,

because it does not increase the time placing the product on

the market. Design flow uses the principle of gradual

addition of the test using different methods of replenishing.

4. Test Generation Using State-of-the Art

Non-scan ATPG

DFT synthesis adds two additional inputs. Full sequential

ATPG can use these two additional inputs. Test generation

should terminate when the received test detects all faults.

However, in practice it is difficult to reach. Therefore, test

generation time should be limited. The test generation

termination condition usually described by time, which is given

on average for single fault detection before test generation.

Setting test generation termination conditions expressed in

the average value is not trivial. The calculation time depends

on a variety of limitations, which are referred for test

generation. As an example, we will demonstrate the

generation of tests for the ITC benchmark B14 using

TetraMax program. Limitation of time for a finding of the

test pattern is indicated in the program.

Table 1 shows the results of test generation with the full

sequential generator of TetraMax. Time limits for single-fault

test generation are shown in the first row. Test generation

took several iterations gradually increasing allocated time

limit. Time spent in a test generation iteration is shown in the

second row. Amounts of detected faults for iterations are

shown in the third row. Only undetected faults are examined

during iterations. The fourth and fifth rows show the amount

of test patterns (sequences) and the total amount of vectors.

Amount of undetected faults after the iteration is shown in

the penultimate row. The last line shows the calculated

efficiency obtained by dividing the iteration time to the

amount of detected faults.

Almost new faults are not detected during the fourth

iteration, when limitation equal to four. This indicates that

the ATPG possibilities are exhausted. In the last column, the

results are shown when at the very beginning the time limit

shall be equal to three. Summary results of all three iterations

are shown in the penultimate column. In this case there is a

fault decreases in comparison with the use of several

iterations. The best quality of the test (number of detected

faults) is obtained by generating a test in an iterative manner

and gradually increasing the time for finding of test pattern

for a single fault. It has been observed for other circuits as

well. This small example demonstrates that the results of full

sequential test generation significantly depend on limitations

used and at the same time from the tester's skills. The same is

true in case of the full scan ATPG use. This experiment

shows that with the same tool quite different qualitative

results can be obtained. The use of various limitation

methods for computing time and the circuit scale is not the

object of this article. We want only to say that the best-

known in practice limitation methods used for ATPG test

generation. This is important to show the influence of various

test generation techniques to the final test quality.

It is appropriate to examine the obtained test patterns with

a fault simulator, which accurately indicates faults that are

detected by the generated sequence of patterns. In general,

the best experience with the use of modern ATPG tools is

fully used in further experiments.

Table 1. Non-scan test generation for B14 benchmark.

Time limit 1 2 3 4 Σ1, 2, 3 Ø-3

Generation time (sec.) 7522 11309 20191 4200 39022 16473

Detected faults 13789 2348 2859 1 18996 14929

Patterns 324 70 169 1 563 283

Total quantities of vectors 2142 480 1257 12 3879 1939

Not detected 12755 10407 7548 7547 7548 11615

Efficiency 0,55 4,81 7,06 4200 2,05 1,10

5. Acceleration of the Fault Simulation of

the Functional Test

The functional test can be generated at the beginning of the

design, when device software prototype is available.

Functional test generation based on a functional fault model.

The correlation between functional and gate faults models is

not rigid. Therefore, some test patterns of functional test

cannot detect new gate faults. Elimination of unnecessary test

patterns is needed when the functional test is used as a

complement to already existing test. Fault simulation can

throw away unnecessary test patterns.

 Science Journal of Circuits, Systems and Signal Processing 2016; 5(2): 8-18 12

Elimination of test patterns requires that each test pattern to

be analyzed independently from the others. Each test pattern to

be simulated starting from the initial undefined state. The

ability to detect some faults when the preceding pattern

determines the state cannot be used during fault simulation.

Fault simulation time can be very high for large circuits

and long functional tests. Therefore, the possibility of

shortening the duration of fault simulation is important.

Currently, fault simulation methods and tools are fully

developed. Fault simulation time mainly depends on the fault

list size. Initially, the list of undetected faults is established and

after the analysis of each test pattern it is adjusted. We suggest

to create a list of faults detectable on each test pattern based on

the simulation results. Each detected fault of test pattern to be

detectable at the output of the logic gate. This assumption

allows reducing the list of faults that are analyzed.

During the simulation logic gate value calculation can be

easily linked to the determination of fault detectable on the

output. This requires a modification of the logic simulation

program. The same can be done with an additional program

that analyzes the simulation values. Gate transition faults can

be detected, if at least one of the input or output signal is

changing. Based on this assumption software has been

developed. The program forms a list of faults detectable on test

patterns. This program reduces the duration of fault simulation.

As far as we know such an approach has not yet been used.

Fig. 2. Fault simulation acceleration procedure.

Test T consists of a sequence of test pattern, where T = <t1,

t2,…, ti,…, tN>. In turn, test pattern for sequential circuits is a

sequence of input vectors. The input data of the fault

simulation tool are a test T and the list of undetected faults

UF. Fault simulation program FS determines which faults of

the list UF are detected by test T and write them to the list of

DF, it is DF = FS (T, UF). The proposed fault simulation

acceleration procedure is shown in the Fig. 2.

The first line of the procedure shows that the test T and UF

set of undetected faults are given, and at the beginning of the

procedure set DF of detected faults is empty. The cycle, which

analyzes all test patterns include lines from 2 to 10. Simulation

of test pattern ti is carried out in the third line of procedure and

the results are denoted as RSi. UFi set of the most likely faults

that can be detected by test pattern ti is calculated in the

procedure PA of the fourth line. The calculation is based on the

simulation results RSi of test pattern ti. Also set UF still

undetected faults to be assessed. Faults are not included in the

UFi set if their gate inputs and outputs do not change during

the simulations. This speeds up the fault simulation.

Conventional fault simulation of a test pattern ti with a set of

expected faults UFi is done in the fifth line. Test patterns,

which do not detect new faults (line 6) are emitted from the

test set T (line 9). Calculated faults of the set DFi are added to

the set DF (line 7), and are discarded from the set UF (line 8).

Let us first examine how the formation of the list of faults of

individual test patterns can speed up the fault simulation. List

of faults was formed on the basis of the assumption that the

transition faults of gate cannot be detected if the signals of the

gate do not change during logical modeling of a test pattern.

For this purpose, the CPU of OR_1200 processor was

analyzed. Tetramax tool automatically generated test patterns

for the CPU. Ten first CPU circuit test patterns were analyzed.

Results are presented in Table 2. The second line in seconds

provides fault simulation times for individual test patterns

when the complete faults list was used. The third line in

seconds provides fault simulation times for individual test

patterns when the list of faults was calculated on the basis of

simulation results. The last row shows the acceleration times.

The last column represents an average of acceleration. We can

see that the individual test patterns fault simulation

acceleration is significant for a given circuit. Further ten test

patterns of or_1200 processor (which includes CPU core) have

been analyzed to determine the change of acceleration trend in

increasing the size of circuits. Results are presented in Table 3.

The average acceleration increased. It is the hope that with the

increasing scope of circuit, fault simulation acceleration also

increases when their fault lists are formed for individual test

patterns. This trend is encouraging.

Table 2. Comparison of fault simulation time of the CPU circuit.

Patterns 1 2 3 4 5 6 7 8 9 10 Aver.

Full list 13.8 10.4 10.9 12.8 11.1 13.5 10.9 10.7 11.1 11.4 12.9

Formed list 2.4 1.8 1.7 1.9 2.1 2.4 2.0 2.3 2.7 2.6 2.19

Times faster 5.8 5.8 6.4 6.7 5.3 5.6 4.7 4.7 4.1 4.4 5.9

Table 3. Comparison of fault simulation time of the OR_1200 processor circuit.

Patterns 1 2 3 4 5 6 7 8 9 10 Aver.

Full list 9818 10037 12496 12418 12747 9937 9949 9913 12411 10008 10973

Formed list 475 549 691 756 715 546 459 475 502 723 589

Times faster 20.6 18.3 18.1 16.4 17.8 18.2 21.7 20.9 24.7 13.8 18.6

13 Rimantas Seinauskas: Design Flow Allowing the Effective Use of Non-scan and Scan-Based Tests

Described fault simulation acceleration principle has two

disadvantages. Fault list drawn up by the simulation results

can not miss faults that can be detected with the present test

pattern. List inaccuracy affects the final results. An

acceleration efficiency decreases with decreasing undetected

fault list. Acceleration is useless when there is a small

undetected fault list. Acceleration tool should be used with

caution. The fault simulation acceleration tool was used for

the analysis of functional test and for the test addition.

6. The Addition of Non-scan Test Based

on the Results of Fault Simulation

A functional test generation often uses random generation

of test patterns and their selection according to the chosen

criteria. Random generation allows the flexibility to choose

the test pattern length. The selection criteria only indirectly

reflect detectable faults. Therefore, functional test cannot

achieve a high coverage of fault detection. The selection of

test patterns based on the fault simulation can be meaningful

as well. Fault simulation is an accurate criterion for the

selection, but requires more computing resources. In this case

the quantity of the analyzed generated test patterns will be

less. However, a more accurate criterion can yield benefits.

Straightforward policy use of fault simulation for test

generation is not viable. A smart way of generating input

sequences substantially changes the situation. Experiments

confirmed that.

Setting the conditions for completing the generation,

selection of the correct length of test patterns, setting the best

distribution of ones and zeroes for random generation can be

carried out on the same principles as during functional test

generation. These principles are described in the article [15].

Evolutionary programming and genetic algorithms are

often used for functional test generation. A method for

generating mutations and fitness function are essential in this

case. Fault simulation can be used as an accurate fitness

function. However, fault simulation is receptive to to

computer resources, and does not allow consider a lot of

mutations.

Selection of test patterns based on the fault simulation

creates preconditions for successful use of the principle of

similar test pattern (mutation) generation, which summarizes

the evolutionary programming and genetic algorithm. Each

test pattern of T test detects any of circuit faults. The test

pattern is similar to one given if only one or more input

values are different. A similar test pattern can detect other

faults. Similar test pattern of a given test may detect new

faults. Similar test pattern is generated by changing some of

the input values to the opposite. Inputs for replacement are

selected in various ways. A test sequence that has all of the

input values opposite in respect of a given sequence is 100

percent different and zero percent similar. A test sequence

that differ only in one input value is the minimum

differentiated and of the maximum similarity. The selected

percentage influences the efficiency of generation.

CPU core of OR_1200 processor was selected for case

experimentation. A situation was considered where a test has

detected 53555 transition faults. Similar test patterns were

generated for two test patterns. Maximum 300 similar test

patterns were generated for different percentages of

modifiable signal value. The results are given in Table 4.

Similar test patterns were generated for two test patterns,

which were obtained at the end of test generation. One of

them has detected 121 new transition faults, and the other

just one. This was done to determine whether the amount of

the detected faults is affecting the success of a similar test

pattern generation. A similar test pattern generation is done

by changing a fixed percentage of values to the opposite. The

percentage of modified inputs are indicated in the first row.

Table cells contain how many new faults are discovered after

the generation of 100, 200 and 300 test patterns. In

parentheses, it is indicated how many test patterns detected

new faults. The column labeled "new" is intended for the

results of pure random generation. It is presented to compare

the results of a purely random and similar test sequence

generation. The comparison clearly demonstrates that a

random test sequence generation descends in respect of a

similar test sequence generation.

Table 4. Results of generating similar test patterns.

Modifiable input percentage New 1% 2% 5% 10% 15% 20%

Test

patterns

Detected new

faults

Similar

generated

1 121

100 13 (2) 352 (23) 471 (27) 623 (30) 679 (24) 254 (14) 252(14)

200 41 (6) 445 (30) 578 (41) 829 (47) 905 (39) 347 (25) 298(22)

300 50 (9) 450 (32) 614 (48) 891 (55) 979 (47) 380 (33) 396(28)

2 1

100 7 (5) 165 (5) 191 (12) 250 (20) 261 (18) 378 (25) 130(19)

200 14 (8) 199 (7) 261 (20) 341 (31) 388 (32) 463 (35) 141(24)

300 91 (9) 218 (12) 272 (24) 451 (40) 447 (43) 501 (43) 279(33)

Average 300 71(9) 334 (22) 443 (36) 671 (48) 713 (45) 441 (38) 338 (31)

Analysis of the experiment results shows that considerably

better similar test patterns are generated from the test pattern

that detects more new faults. Most of the new faults are

detected during the first two hundred of the test patterns. The

average number of detected faults (Table 4) by generating a

test sequence with different percentage of modifiable inputs

 Science Journal of Circuits, Systems and Signal Processing 2016; 5(2): 8-18 14

is shown in Figure 3. The best similar test patterns are

obtained when 10 percent of test values are modified for this

circuit (Fig. 3.).

Fig. 3. The average number of detected faults by generating with different

percentage of modifiable inputs.

The additional experimental study showed that the best

modifiable inputs percentage depends on the number of

previously detected faults. The best modifiable inputs

percentage decreases with increasing quantities of previously

detected faults.

The results reflect the regularities of one particular circuit.

It is necessary to carry out experiments with lots of circuits,

and with lots of test patterns to generalize regularity.

However, generalized results cannot be accurate for a given

circuit. Therefore, it may be appropriate to examine each

individual circuit, in order to choose the best test generation

strategy. Still, this approach is promising. We will use the

results of such rapid study for generation of test patterns.

The assumption that it is appropriate to modify the less

inputs, when remains little of undetected faults, allows us to

create a general test generation method for cases in which

there is little of undetected faults.

Minimal modification is the replacement of one binary

value of the test sequence to the opposite. Minimal

modifications often do not change the output values of the

test sequence. It is therefore possible to use the assumption

that it is unlikely that the test sequence with the same output

values detect different faults. Therefore, modifications which

do not change outputs of the test sequence, it is reasonable to

be rejected. This significantly reduces the amount of re-

calculation of fault simulation. Sample analysis showed that

about 20 percent of the modified inputs of the test sequence

replaces at least one output value.

These observations allowed us to create new minimal

modifications (MM) approach. The approach consists of two

parts. First all minimal modifications in test sequence are

examined. Only those modifications which change the test

sequence outputs are selected and analyzed with fault

simulation.

The test sequence inputs that modification alters the

outputs are written to a separate input set. Pairs of minimal

modifications of such an input set are considered during the

second phase. Pairs of minimal modifications that do not

change the outputs of the test sequence are also rejected.

The new iterative procedure for test addition was formed

on the basis of the observed trends. The procedure is

presented in Fig. 4.

The procedure is used when test generation tools do not

receive the required quality T test. Baseline data of the

procedure are the lists DF, UF of detected and undetected

faults, and test T received (line 1). T test is also written to the

operating set of test patterns (TT, line 2). External loop DO1

(3-16 lines) may be automatic and not when the solution of

ordinary iteration execution is taken after analysis of the

results. TS set of test patterns, which detected only new

faults, is selected from the set of available tests TT (line 4).

Operating set TT is cleaned prior to the generation of patterns

(line 5). Cycle DO2 (6-14 lines) deals with all the test

patterns of the TS set. Cycle DO3 (7-13 lines) generates

similar test patterns. Size SA determines the amount of

generated test patterns.

Fig. 4. The new iterative procedure for test addition.

Procedure MM for minimal modifications always

generates a new input sequence maximal similar to the test

pattern ti (line 8). Generated input sequence changes at least

one output. The parameter j refers to generating consistency.

Minimal modifications are generated first and then pairs of

minimum modifications are generated. SA factor limits the

amount of generated similar input patterns. Less similar input

patterns are generated when the all minimum modifications

and their couples are being used. Fault simulation estimates

the faults detected by the input sequence generated (line 9).

Actions of increased efficiency for fault simulation is

described in Fig. 2, so there is no repeat. The test pattern ti is

added to the set TT, if it identifies at least one new fault (line

10). Rows 11 and 12 adjust the lists of the detected and non-

detected faults. At the end of the iteration T test is extended

(line 15).

Execution time of the procedure depends on the duration

of fault simulation of a test pattern. The overall procedure’s

execution time is proportional to the multiplication product

15 Rimantas Seinauskas: Design Flow Allowing the Effective Use of Non-scan and Scan-Based Tests

of the selected test patterns (line 4) and the amount of similar

test patterns generated (SA, line 7). Therefore, the duration of

a single iteration of the procedure can be roughly calculated.

A careful analysis of the results obtained in the last

iteration of the procedure enables to choose a reasonable

amount of the generated similar test patterns and the amount

of test patterns, which are selected to the set TS. Selection of

the iteration parameters provides the flexibility and

adaptability during the task solution. It is also possible to

examine the influence of the distribution of ones and zeros of

the tests. Additionally, it is also possible to construct tests

manually and carry out generation of similar tests.

The table 5 shows how iterations converge by generating

similar test patterns. Iterations started with a test of the 2142

test patterns that detect 53555 transition faults. Five test

patterns were selected in the first iteration, and generated 300

similar tests, of which 135 tests detected 1470 faults. In the

first iteration, the amount of the detected faults decreases

rapidly, but the decline has slowed down later. Five test

patterns that detect the majority of new faults are selected for

generating similar test patterns. The question of how much it

is appropriate to select test patterns for further generation still

requires further investigation. Within ten iterations 550 test

patterns were selected, which detected 4040 faults (last

column). An iteration should end when new faults are not

detected at all or the amount of newly detected faults is very

low.

The proposed iterative procedure for the addition of the

test most appropriate to use in the final phase of the

generation when other generation methods have become

ineffective. Similar input pattern generation is most

successful when the received test already detects more than

95 percent of faults. This is very important when we need to

achieve the highest possible level of fault detection. The

proposed addition of the test procedure can be used not only

for the final test generation phase. In this case, we need to

select the best degree of similarity of generated input

sequences of the procedure MM.

Table 5. Iterations of similar test pattern generation.

Iterations 0 1 2 3 4 5 6 7 8 9 10 Total

Selected 0 5 5 5 5 5 5 5 5 5 5

Faults det. 53555 1470 633 441 240 180 244 207 282 204 143 4040

Patterns 2142 135 75 66 41 35 46 37 38 39 38 550

7. Experiments with Benchmarks

Design flow, which is shown in Fig. 1 provides that the

synthesized circuit has automatically included DFT

accessories. It can be full scan or accessories that increase

circuit observability and controllability. This decision is very

important because the tests are immediately generated for the

modified circuit. Additional inputs of circuits allow detecting

more faults with non-scan test. However, the test patterns

which are obtained with a state-of-art ATPG are limited to a

short vector sequence. Therefore, the following functional

test can significantly increase the amount of the detected

faults. The method for generating of functional test is

described in [15].

The functional test is generated for a circuit without scan.

The additional inputs for a scan must define the operating

mode of the circuit. The functional test does not evaluate that

some of the faults have detected by non-scan test. In addition,

some test patterns cannot detect new faults, especially for a

generalized selection criterion. Therefore, fault simulation

enables to discard redundant test patterns.

Fault simulation accurately determines whether a test

pattern detects faults still undetected. Test patterns can be

generated at random and selected only those who find new

faults. Drawing up lists of faults that can detect a particular

test pattern (described in section 5) enables efficient selection

of test patterns from a randomly generated. Random

generation remains meaningful and after application of a

functional test to detect yet undetected faults. In this way,

addition of test coverage is done.

Another way to add to the test coverage based on the

generation of similar test patterns as described in section 6.

When all the possibilities of non-scan test generation are

exhausted scan-based ATPG is used for the remaining faults.

This allows not only increase the amount of faults found by

the non-scan test, but also to reduce the amount of undetected

faults and the amount of clock signals. This is illustrated by

the experimental results with the benchmarks.

Non-scan and scan-based test optimization uses sorting of

test patterns. Test patterns which detect more faults are

transferred forward. This allows some of the test pattern

throw out. Latest vectors of test patterns can be discarded if

they do not entail new fault detection.

Biggest benchmarks B14, B15, B17, B20, B22 of ITC’99

set [22] and publicly available CPU of OR_1200 processor

were selected for experiments. Test generation time, the

quantity required clock signals and remaining undetected

faults are shown in Table 6 for each test generation method.

Data on test generation with fully sequential test generator

Tetramax are shown in the third column. Tests were

generated for the circuits with scan and the two additional

inputs. Generation time constraints were chosen in order to

get the best performance. The fourth column contains the

data for fault simulation of functional test, that is, the

duration of fault simulation (Time(s)), how much clocks

required of the selected test patterns to detect new faults

(Clocks), and the remaining undetected faults after the

functional test (Not detec.). Functional test has been obtained

on the basis of the methods described in [15]. Subsequent

two columns show data after the selection of the test patterns

generated at random and generated similar to the already

selected as described in the fifth and sixth sections. Next

TetraMax scan ATPG was used for the remaining undetected

 Science Journal of Circuits, Systems and Signal Processing 2016; 5(2): 8-18 16

faults. The data are presented in the seventh column. The

eighth column shows the summary data when it was used all

the methods for generating. The data which have been

obtained using only TetraMax scan ATPG is presented before

the last column. The penultimate column shows the

difference between the test obtained with TetraMax scan

ATPG and final test obtained from combining all previously

derived tests. The combined test detects more faults, requires

fewer clock signals, but test generation takes more time.

Time increase in the number of times and the decrease in the

percentage of clock cycles and undetected faults are

highlighted in the last column.

The dynamics of the transition fault coverage percentage

are shown in Table 7. The contribution of the different

methods for fault coverage is very uneven. This leads to the

idea that it makes sense to supplement the test in different

ways. Third line from the end shows how many faults can be

detected at speed. Quantity of faults detected by the scan

only on some circuits remains negligible. The influence of

each method to the final result is shown in Fig. 5. The left

column shows the percentage of fault coverage for the scan

ATPG for each benchmark. Columns on the right show how

the percentage of fault coverage is increasing using non-scan

ATPG, functional test, random generation, the addition of the

test and scan ATPG. At speed testing allows to detect more

defects. This is an important advantage of manner proposed.

Table 6. The experimental results with the benchmarks.

Bench. Param. Sequen. ATPG Funct. Rand. Similar. Add. Scan Total Scan ATPG Differ. Ratio

B14

Time (s) 27042 1547 859 520 14 29982 69 -29913 -434

Clocks 1113 29520 9840 2820 93345 136638 302820 166182 55%

Not detec. 10897 3281 1116 830 36 36 166 130 78%

B15

Time (s) 34156 38227 19993 15945 1632 109953 2021 -107932 -53

Clocks 642 48650 39200 22593 609293 720378 953676 233298 24%

Not detec. 35031 15521 10617 9160 1218 1218 1817 599 33%

B17

Time (s) 54396 104564 58804 29868 3532 251164 3717 -247447 -67

Clocks 101 52924 69892 36562 5439260 5598739 6042050 443311 7%

Not detec. 105611 88991 68641 59908 8316 8316 8688 372 4%

B20

Time (s) 134556 32416 4460 2060 9 173501 35 -173466 -4956

Clocks 1313 124432 107262 11009 131810 375826 892290 516464 20%

Not detec. 42370 10613 782 623 234 234 2659 2425 91%

B22

Time (s) 205124 44904 9451 7716 43 257238 352 -266886 -758

Clocks 243 133421 113322 19897 462315 729198 1749300 1020102 58%

Not detec. 58186 15075 2125 1621 358 358 1566 1208 77%

CPU

Time (s) 175504 29172 110497 11001 58493 384667 57904 -326763 -564

Clocks 7583 13635 3737 505 5074030 5099490 8141770 3042280 37%

Not detec. 61177 59702 58053 57912 12035 12035 14270 2235 15%

Table 7. Dynamics of the transition fault coverage percentage.

Benchmarks B14 B15 B17 B20 B22 CPU

Number of faults 21282 36230 107724 43808 65888 139274

Sequential ATPG 48,80% 3,31% 1,96% 3,28% 11,70% 56,07%

+ Functional test 84,58% 57,16% 17,39% 75,77% 77,12% 57,13%

+ Random gen. 94,75% 70,70% 36,28% 98,21% 96,77% 58,32%

+ Similar gen. 96,56% 74,71% 44,37% 98,58% 97,54% 58,42%

+ Scan ATPG 99,83% 96,64% 92,28% 99,47% 99,46% 91,36%

Only scan ATPG 99,22% 94,98% 91,93% 93,93% 97,70% 89,75%

Fig. 5. The influence of each method to the final test coverage.

8. Conclusions

High fault's coverage cannot be achieved by one method.

The proposed design flow provides the gradual addition of

the test using a variety of methods. Non-scan structural test

generation (ATPG) for the circuits with scan enables to detect

more faults, because additional inputs and outputs of the DFT

are used. Effective use of fault simulation enables to to

achieve higher fault coverage.

Full scan enables the detection of the most faults of

circuits. However, the full scan does not create preconditions

for at speed testing. Testing at least part of the faults at speed

is always meaningful, since it enables the detection of more

defects. Modern non-scan ATPG tools detect a relatively

small number of faults, even for circuits with embedded scan.

17 Rimantas Seinauskas: Design Flow Allowing the Effective Use of Non-scan and Scan-Based Tests

Methods for generating functional test can significantly

complement the fault coverage. Fault simulation acceleration

through faults lists of test patterns helps increase the fault

coverage using only the random generation and selection

based on fault simulation. Generating test patterns that were

similar to those that already detected some circuit faults

allows replenishment the test. It is thus intended to have a

test that can detect more faults at speed. Conventional full-

scan test is generated for the remaining not detected faults.

These provide the higher fault coverage and at the same time

the possibility of more faults to test at speed.

Experiments with benchmarks confirmed that non-scan

test enables the detection of more faults, reduces the amount

of clock signals required for the execution of the test, but the

test generation takes significantly more time. The proposed

approach is meaningful in the case where very high

requirements are raised to test quality.

Non-scan test can detect a considerable proportion of fault

models. Influence for fault coverage of different non-scan

test generation techniques is very diverse, and therefore it

makes sense to use a wide range of techniques that

complement the fault coverage. Presented dynamics of the

transition fault test coverage percentage demonstrates the

complementarity of different methods and provide the basis

for selection of test generation strategy.

The proposed circuit design scheme allows the use of

modern ATPG tools and accumulated experience. The

proposed way to create the fault lists for individual test

patterns creates preconditions widely use fault simulation

during test generation. Individual faults list for each test

pattern further reduces fault simulation time and retains the

ability to exploit existing fault simulation speedups. In this

case, the opportunity arises to use the achievements obtained

by generating the input sequence of functional test and at the

same rely on fault simulation.

The proposed new generation method of similar test

patterns allows the detection of new faults in the final phase

of the test generation, when all the possibilities of other

approaches are exhausted.

Experiments with benchmarks demonstrated that the stepwise

addition of the test leads to far better fault detection, showed an

increase in the degree of quality, and the impact on the quality of

the final test of a variety of test generation approaches.

Embedded systems can have functions that are

implemented as hardware or software. Replacement of the

input and output variables of the software with binary input

and output vectors enables the same hardware test generation

techniques use for the software test generation. This is the

object of further study.

References

[1] Crouch A. L, Potter J. D. (2016) “Invited - A box of dots:
using scan-based path delay test for timing verification”. In
Proceedings of the 53rd Annual Design Automation
Conference (DAC'16). ACM, New York, NY, USA, Article
174, 6 pages. DOI: 10.1145/2897937.2905001.

[2] Zhang G. L, Li B, Schlichtmann U. (2016). “EffiTest:
efficient delay test and statistical prediction for configuring
post-silicon tunable buffers”. In Proceedings of the 53rd
Annual Design Automation Conference (DAC'16). ACM,
New York, NY, USA, Article 60, 6 pages. DOI:
10.1145/2897937.2898017.

[3] Niermann T, and J. H. Patel J. H. (1991) “HITEC: a test
generation package for sequential circuits”. DATE, pp. 214-
218.

[4] Hsiao M. S, Rudnick E. M and Patel J. H. (1997) “Sequential
circuit test generation using dynamic state traversal”. DATE,
pp. 22-28.

[5] Lin X, Pomeranz I and Reddy S. M. (1998) “MIX: a test
generation system for synchronous sequential circuits”. VLSI
Design Conf, pp. 456-463. DOI: 10.1109/ICVD.1998.646649.

[6] Giani A, Sheng S, Hsiao M. S, and Agrawal V. (2001)
“Efficient spectral techniques for sequential ATPG”. DATE,
pp. 204-208. DOI: 10.1109/DATE.2001.915025.

[7] Mainak B, Rahagude N, and Hsiao M. S. (2011) "Design-for-
test methodology for non-scan at-speed testing". Design,
Automation & Test in Europe Conference & Exhibition
(DATE), 2011. IEEE, DOI: 10.1109/DATE.2011.5763041.

[8] Bareisa E, Jusas V, Motiejunas K, Seinauskas R. (2013)
“Delay fault testing using partial multiple scan chains”.
Microelectronics reliability, Vol. 53, iss. 12. pp. 2070-2077.
DOI: 10.1016/j.microrel.2013.07.002.

[9] Hashempour H, Meyer F. J and Lombardi F. (2002) “Test time
reduction in a manufacturing environment by combining BIST
and ATE”. Defect and Fault Tolerance in VLSI Systems, pp
186-194. DOI: 10.1109/DFTVS.2002.1173515.

[10] Chen M and Mishra P. (2010) “Functional Test Generation
Using Efficient Property Clustering and Learning
Techniques”. IEEE Trans. Computer-Aided Design of
Integrated Circuits and Systems, vol. 29, no. 3, pp. 396-404.
DOI: 10.1109/TCAD.2010.2041846.

[11] Levendel Y. H and Menon P. R.(1982) “Test generation
algorithms for computer hardware description languages”,
IEEE Trans. Comput., vol. 31, pp. 557-588. DOI:
10.1109/TC.1982.1676054.

[12] Mishra P, Dutt N. D. (2005) “Functional Coverage Driven
Test Generation for Validation of Pipelined Processors”. In
Proc. Design Automation and Testing in Europe, pp. 678-683,
DOI: 10.1109/DATE.2005.162.

[13] Frühwirth T, (1998) “Theory and practice of constraint
handling rules”, “The Journal of Logic Programming”
Volume 37, Issues 1–3, pp. 95–138.

[14] Moskewicz M. W, Madigan C. F, Zhao Y, Zhang L, Malik S.
(2001) “Chaff: Engineering an Efficient SAT Solver”. In
Proceeding of the 38th Design Automation Conference, pp.
530-535 DOI: 10.1109/DAC.2001.

[15] Bareisa E, Jusas V, Motiejunas K, Seinauskas R. (2013)
“Functional delay test generation approach using a software
prototype of the circuit”. Computer Science and Information
Systems, Vol. 10, iss. 3. p. 1165-1184.

[16] Wang L. T, Chang Y. W, and Cheng K. T. (2009) “Electronic
Design Automation: Synthesis, Verification, and Test
(Systems on Silicon)”. Morgan Kaufmann, p. 933.

 Science Journal of Circuits, Systems and Signal Processing 2016; 5(2): 8-18 18

[17] Parreira A, Teixeira J. P, and Santos M. (2003) “A novel
approach to FPGA based hardware fault modeling and
simulation”. In Proc. 6th IEEE Int. Workshop Des.
Diagnostics Electron. Circuits Syst., pp. 17–24, DOI:
10.1.1.1.3581.

[18] Ravikumar C. P, Jain V, Dod A. (1997) “Faster Fault
Simulation through Distributed Computing”. International
Conference on VLSI Design, pp. 482-487. DOI:
10.1109/ICVD.1997.568181.

[19] Lee H. K, Ha D. S. (1996) “HOPE: An Efficient Parallel Fault
Simulator for Synchronous Sequential Circuits”. lEEE
Transactions on computer-aided design of integrated circuits
and systems, Vol. 15, No. 9, pp. 1048-1058. DOI:
10.1109/43.536711.

[20] Niermann T. M, Cheng W. T, Patel J. H. (1992) “PROOFS: A
Fast, Memory-Efficient Sequential Circuit Fault Simulator”.
lEEE Transactions on computer-aided design of integrated
circuits and systems, Vol. 11, No. 2, pp. 198-207. DOI:
10.1109/DAC.1990.114913.

[21] Seinauskas, R., Seinauskas, V. (2013). “Examination of the
possibilities for integrated testing of embedded systems”.
American Journal of Embedded Systems and Applications,
Vol. 1, No. 1, pp. 1-12.

[22] Corno, F., Reorda, M. S., & Squillero, G. (2000). “RT-level
ITC'99 benchmarks and first ATPG results”. IEEE Design &
Test of computers, (3), 44-53.

