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Abstract: At speed delay testing is important for embedded systems. Attempts to solve the problems of delay testing only 

with non-scan or scan-based tests are unsuccessful. There is no need to oppose these tests, but it is necessary to use both taking 

full advantage of their opportunities. Design flow and the ability to use non-scan and scan-based ATPG, functional test and 

fault simulation is presented. The goal is to detect as many faults with non-scan at-speed test. The remaining faults are detected 

with a scan-based test. As a result, there are less of undetected faults and the length of the scan-based test is reduced. The 

proposed approach provides more flexibility for test generation. Design flow forced the development of new methods for 

speeding up fault simulation and for more efficient generation of input patterns. Experimental results demonstrate the 

possibilities of approach. 
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1. Introduction 

Circuit testing using only the inputs and outputs is the 

easiest way. The test generation problem is too complex to be 

resolved within a reasonable period of time for large circuits. 

Therefore, the additional inputs and outputs are added to 

change and monitor the internal circuit states. As a result, 

circuit size and testing time increases. Currently, large 

circuits are designed to facilitate testing. At speed testing of 

delay faults is particularly important for modern circuits. At 

speed testing detects defects that cannot be detected with a 

scan-based test. Scan-based test is usually voluminous and its 

implementation requires a lot of timing signals. Scan-based 

test can detect faults, which actually do not affect the 

functioning. In this case, there is a so-called problem of over-

testing. Using together the non-scan and scan-based tests is 

possible. We are working with the assumption that at-sped 

test of transition faults detects more defects than the scan-

based test of transition faults. Part of the faults can be tested 

with non-scan test and the other part of faults with the scan-

based test. Non-scan test received only for part of faults also 

makes sense because it is possible to detect more defects 

through at speed testing and to shorten the scan-based test. 

Non-scan test is useful when using testing with partial scan 

as well. 

Test generation methods have been developed for several 

decades. Commercial test generation packages contain circuit 

test generation tools without scan (full sequential). However, 

these tools can successfully generate tests only for those 

faults which do not require long test patterns (sequences). 

Large circuits, usually have only a small amount of faults 

detectable with short patterns. Therefore, the quality of the 

test is unsatisfactory and the test must be supplemented. 

Fully sequential test generator test may be supplemented 

by adding a functional test. The functional test is usually 

generated by a higher level of abstraction and is usually long. 

It can detect the same faults as the test obtained using fully 

sequential generators. Therefore, the test patterns, which do 

not detect new faults, have to be discarded from the 

functional test. It can perform fault simulator. 

Fault simulator can be used for the further addition of test 

quality. This article explores the various options for the 

addition of the test, using fault simulation. Scan-based test 

can detect the remaining faults that are not detected by the 

non-scan test. 

The remaining article part is structured in such a way. Next 

Section 2 is dedicated to a brief overview of the most 
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important trends in test generation. Design flow, which 

allows flexibility in the use of non-scan and scan-based test 

generation approaches and gradual addition of the test are 

described in the third section. The fourth section explores test 

generation using state-of-the art non-scan ATPG. Fault 

simulation acceleration of functional test is discussed in the 

fifth section. The sixth section discusses the addition of 

similar test patterns to the final test. Experimental results 

with benchmarks are described in the seventh section. The 

conclusions of the article are presented in the last section. 

2. Related Work 

Scan-based testing achieves high fault coverage, but 

requires long test application times and substantial tester 

memory, in addition to the overhead in chip area and high 

test power. Non-scan test, on the other hand, suffers from low 

coverage, but can be applied at-speed. Experimental studies 

[1] have shown that some of the defects can be detected only 

by a functional at-speed test. Exclusion of at-speed test 

increases the risk that not fully tested chips will cause a 

system failure. Non-scan at-speed testing remains necessary 

despite all the effort [2] to improve the scan-based testing. 

At-speed tests are effective in relation to the length of the 

test, so aim to detect more faults with non-scan test is 

understandable. 

The RAMs are tested using BIST, and are not covered by 

any scan test. Without the provision of the BIST tests a scan-

based test would have substantial numbers of defective parts 

escaping. In this way, the non-scan and scan-based tests, as 

well as BIST should be used for testing of modern circuits 

Test generation methods for non-scan circuits are developed 

for a long time [3, 4, 5, 6]. Design-for-Test methodology for 

non-scan at-speed testing is suggested in [7]. The circuit state 

set is expanded by use of inverse outputs of flip-flops, and 

grouping them by introducing an additional input enabling and 

facilitating the availability on the output. This provides better 

fault detection conditions. Design-for-Test methodology for 

non-scan testing at a functional level is suggested in [8]. 

Combining BIST and ATE are discussed in [9]. 

Functional test generation uses functional fault models and 

criteria based on the description of functioning on a higher 

level of abstraction [10]. Description can be expressed by 

algorithmic language before circuit synthesis. 

Functional faults are associated with the text of the 

description [11]. Description of functioning at a higher level 

of abstraction allows faster processing of large circuits. 

However, detection of functional faults does not guarantee 

the detection of gate faults. Methods for generating 

functional tests allow the detection of faults that are not 

detected by test generation techniques at the gate level. 

Therefore, functional and gates-level test generation 

techniques are used in combination [12]. 

Test generation methods express conditions for faults 

detection and search for a solution that satisfies those 

conditions. For this purpose, it is necessary to tackle the 

system of constraints [13], as conditions may require 

conflicting values in the input. This poses a major problem of 

finding a solution. Methods of satisfying constraints are 

widely used in solving the problem of test generation. 

Computer science to solve the problem of satisfaction (often 

abbreviated as marked in capital letters - SAT) must 

determine whether the Boolean variables can be assigned so 

that the expression should result in a value equal to one. 

Binary satisfaction is probably the most studied 

combinatorial optimization / search problem. Great efforts 

have been attempted to provide an efficient solution to 

practical problems. The SAT is one of the main problems in 

computer science with a theoretical and practical importance 

and has a very efficient practical realization [14]. SAT solvers 

are widely used for functional and gate-level test generation. 

Search field increases considerably during the search of 

the test vector sequence for sequential circuits. Only 

relatively short sequences manage to calculate within a 

reasonable period of time when using deterministic methods. 

Therefore, functional test generation techniques are useful, 

which uses the principle of the selection [15]. Test patterns 

are generated randomly or according to the given rules. Test 

patterns that satisfy the quality criteria are selected as tests. 

In this case, the length of the test patterns is not a critical 

parameter. It is also possible to use complex quality criteria. 

The process efficiency depends on the rules used for test 

generation and quality criterion used. 

Test quality criteria usually is based on simulation results 

of the test pattern and do not directly relate to the detection of 

gate faults. Therefore, functional test generation becomes 

inefficient when there are few undetected faults. In this 

situation the selection of test patterns may use fault 

simulation. Fault simulation is related to the long taking 

calculations. Calculation time reduction relates to fault list 

manipulation. The principles that are used for the generation 

of functional test can be applied using faults simulation [15]. 

Fault simulation requires greater resources than the analysis 

of functional faults. Therefore, faults simulation acceleration 

is relevant. 

The main fault simulation studies carried out mainly 

through two decades ago and are widely described in many 

books and articles, but will refer to only one of them [16]. 

The existing techniques for speeding up fault simulation 

provide algorithmic enhancements and development of 

special-purpose hardware for fault simulation. The number of 

faults that need to be simulated can be decreased by 

exploiting fault equivalence and fault dominance between a 

pair of faults. Fault collapsing is used to reduce the fault 

simulation time. It is the practice in which faults detected by 

a pattern are deleted from the fault list prior to the simulation 

of any subsequent pattern. Fault dropping decreases the 

complexity of fault simulation, but cannot be used for all 

fault simulation algorithms. 

Fault simulation algorithms can be divided into the serial, 

parallel, deductive and concurrent. Serial algorithms simulate 

fault-free and faulty circuits and comparing the responses. 

Such algorithms are easy to implement; need only a true-

value simulator, most faults, including analog faults, can be 
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simulated, but use much repeated computation. The parallel 

fault simulation takes advantage of multi-bit representation 

of data and availability of bitwise operations. With each pass 

of simulation, the fault-free circuit as well as machine word 

length faulty versions is simulated in parallel for a given 

pattern, but fault dropping cannot be used. Deductive fault 

simulation is a one-pass simulation, utilizes a dynamic data 

structure and 3-valued logic. Computation rules are difficult 

to derive for complex gates and gate delays are difficult to 

use. Concurrent fault simulation is based on a factor that 

most of the values in most of the faulty circuits agree with 

the corresponding values in the good circuit. Information 

about a fault will be entered in the fault list if the value 

implied at least one input or output of the gate is different 

from that implied at the corresponding line in the fault free 

version of the circuit. The fault is removed from the fault list 

if the corresponding input/output values are identical to that 

of the fault-free circuit. Measured coverage in the sample is 

used to estimate fault coverage in the entire circuit. It allows 

saving in computing resources, but limited data on detected 

and undetected faults is available. 

Hardware fault simulation methodology and tools, using 

partial reconfiguration, suitable for efficient fault modeling 

and simulation in FPGAs [17]. FPGA-based hardware fault 

simulation using partial reconfiguration is rewarding, as an 

alternative to software fault simulation, constraining fault 

simulation costs. Usual clock frequencies make hardware 

fault simulation time two orders of magnitude less dependent 

on the number of patterns than software fault simulation. 

Method about how to increase the speedup ratio of fault 

simulation in parallel test generation is presented in [18]. The 

method is based on fault partitioning. 

Dynamic fault grouping based on fault activity is used in 

both HOPE [19] and the PROOFS [20] systems. Faults are 

grouped so as to be initially detected more fault. Fault 

simulation time is reduced on the basis of the principle drop 

detected. Fault list is formed for all patterns. In this article, 

we'll offer up a new fault grouping for each pattern, and thus 

reduce the fault simulation time. The list of faults for patterns 

opens up new opportunities to reduce fault simulation time. 

Functions for embedded systems can be implemented as 

hardware or as software. Generating integrated test requires 

disposing of a unified embedded system model. Binary FSM 

model unanimously represents the functioning of the hardware 

and software. Hardware and software test quality criteria can 

be used for the generation of functional integration test for 

embedded systems. Hardware test quality criteria are more 

stringent compared to software test quality criteria]]. 

3. Design Flow 

Design flow, which allows flexibility in the use of non-

scan and scan-based test generation approaches and gradual 

addition of the test is shown in Figure 1. The software 

prototype can be developed in parallel with the specification 

and can be used for verification of the specification. The 

circuit is synthesized with a full-scan register. Non-scan 

ATPG can generate a test that detects more faults on circuits 

with a scan and with additional inputs and outputs compared 

with the circuit without a scan. Functional test generation 

based on the software prototype may be carried out in 

parallel with the circuit synthesis. The functional test cannot 

use full-scan capabilities as based on the prototype, which 

was made before the circuit synthesis. 

 

Fig. 1. Design flow. 
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Non-scan and scan-based tests will be generated. First 

non-scan test is generated for scan-based circuit. Full 

sequential ATPG generates a compact test and it is intended 

to take full advantage of the capabilities of the generator. 

Fault simulation shall select patterns, which detect new 

faults, from functional test. Further, the test is extended 

exploiting fault simulation capabilities. The remaining 

undetected faults are the object of the ATPG for scan circuits. 

Finally, non-scan and scan-based tests are optimized. 

Detection of more faults with non-scan test is always useful. 

This problem will be examined in this article. The proposed 

design flow is to be used in the case where very high 

requirements are raised for the coverage of faults, and 

computing time is not critical. Basic computing time costs 

are related to the generation of functional test that can be 

performed in the early design stages in parallel with the 

design steps. Quite a lot of time can be spent on this work, 

because it does not increase the time placing the product on 

the market. Design flow uses the principle of gradual 

addition of the test using different methods of replenishing. 

4. Test Generation Using State-of-the Art 

Non-scan ATPG 

DFT synthesis adds two additional inputs. Full sequential 

ATPG can use these two additional inputs. Test generation 

should terminate when the received test detects all faults. 

However, in practice it is difficult to reach. Therefore, test 

generation time should be limited. The test generation 

termination condition usually described by time, which is given 

on average for single fault detection before test generation. 

Setting test generation termination conditions expressed in 

the average value is not trivial. The calculation time depends 

on a variety of limitations, which are referred for test 

generation. As an example, we will demonstrate the 

generation of tests for the ITC benchmark B14 using 

TetraMax program. Limitation of time for a finding of the 

test pattern is indicated in the program. 

Table 1 shows the results of test generation with the full 

sequential generator of TetraMax. Time limits for single-fault 

test generation are shown in the first row. Test generation 

took several iterations gradually increasing allocated time 

limit. Time spent in a test generation iteration is shown in the 

second row. Amounts of detected faults for iterations are 

shown in the third row. Only undetected faults are examined 

during iterations. The fourth and fifth rows show the amount 

of test patterns (sequences) and the total amount of vectors. 

Amount of undetected faults after the iteration is shown in 

the penultimate row. The last line shows the calculated 

efficiency obtained by dividing the iteration time to the 

amount of detected faults. 

Almost new faults are not detected during the fourth 

iteration, when limitation equal to four. This indicates that 

the ATPG possibilities are exhausted. In the last column, the 

results are shown when at the very beginning the time limit 

shall be equal to three. Summary results of all three iterations 

are shown in the penultimate column. In this case there is a 

fault decreases in comparison with the use of several 

iterations. The best quality of the test (number of detected 

faults) is obtained by generating a test in an iterative manner 

and gradually increasing the time for finding of test pattern 

for a single fault. It has been observed for other circuits as 

well. This small example demonstrates that the results of full 

sequential test generation significantly depend on limitations 

used and at the same time from the tester's skills. The same is 

true in case of the full scan ATPG use. This experiment 

shows that with the same tool quite different qualitative 

results can be obtained. The use of various limitation 

methods for computing time and the circuit scale is not the 

object of this article. We want only to say that the best-

known in practice limitation methods used for ATPG test 

generation. This is important to show the influence of various 

test generation techniques to the final test quality. 

It is appropriate to examine the obtained test patterns with 

a fault simulator, which accurately indicates faults that are 

detected by the generated sequence of patterns. In general, 

the best experience with the use of modern ATPG tools is 

fully used in further experiments. 

Table 1. Non-scan test generation for B14 benchmark. 

Time limit 1 2 3 4 Σ1, 2, 3 Ø-3 

Generation time (sec.) 7522 11309 20191 4200 39022 16473 

Detected faults 13789 2348 2859 1 18996 14929 

Patterns 324 70 169 1 563 283 

Total quantities of vectors 2142 480 1257 12 3879 1939 

Not detected 12755 10407 7548 7547 7548 11615 

Efficiency 0,55 4,81 7,06 4200 2,05 1,10 

 

5. Acceleration of the Fault Simulation of 

the Functional Test 

The functional test can be generated at the beginning of the 

design, when device software prototype is available. 

Functional test generation based on a functional fault model. 

The correlation between functional and gate faults models is 

not rigid. Therefore, some test patterns of functional test 

cannot detect new gate faults. Elimination of unnecessary test 

patterns is needed when the functional test is used as a 

complement to already existing test. Fault simulation can 

throw away unnecessary test patterns. 
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Elimination of test patterns requires that each test pattern to 

be analyzed independently from the others. Each test pattern to 

be simulated starting from the initial undefined state. The 

ability to detect some faults when the preceding pattern 

determines the state cannot be used during fault simulation. 

Fault simulation time can be very high for large circuits 

and long functional tests. Therefore, the possibility of 

shortening the duration of fault simulation is important. 

Currently, fault simulation methods and tools are fully 

developed. Fault simulation time mainly depends on the fault 

list size. Initially, the list of undetected faults is established and 

after the analysis of each test pattern it is adjusted. We suggest 

to create a list of faults detectable on each test pattern based on 

the simulation results. Each detected fault of test pattern to be 

detectable at the output of the logic gate. This assumption 

allows reducing the list of faults that are analyzed. 

During the simulation logic gate value calculation can be 

easily linked to the determination of fault detectable on the 

output. This requires a modification of the logic simulation 

program. The same can be done with an additional program 

that analyzes the simulation values. Gate transition faults can 

be detected, if at least one of the input or output signal is 

changing. Based on this assumption software has been 

developed. The program forms a list of faults detectable on test 

patterns. This program reduces the duration of fault simulation. 

As far as we know such an approach has not yet been used. 

 

Fig. 2. Fault simulation acceleration procedure. 

Test T consists of a sequence of test pattern, where T = <t1, 

t2,…, ti,…, tN>. In turn, test pattern for sequential circuits is a 

sequence of input vectors. The input data of the fault 

simulation tool are a test T and the list of undetected faults 

UF. Fault simulation program FS determines which faults of 

the list UF are detected by test T and write them to the list of 

DF, it is DF = FS (T, UF). The proposed fault simulation 

acceleration procedure is shown in the Fig. 2. 

The first line of the procedure shows that the test T and UF 

set of undetected faults are given, and at the beginning of the 

procedure set DF of detected faults is empty. The cycle, which 

analyzes all test patterns include lines from 2 to 10. Simulation 

of test pattern ti is carried out in the third line of procedure and 

the results are denoted as RSi. UFi set of the most likely faults 

that can be detected by test pattern ti is calculated in the 

procedure PA of the fourth line. The calculation is based on the 

simulation results RSi of test pattern ti. Also set UF still 

undetected faults to be assessed. Faults are not included in the 

UFi set if their gate inputs and outputs do not change during 

the simulations. This speeds up the fault simulation. 

Conventional fault simulation of a test pattern ti with a set of 

expected faults UFi is done in the fifth line. Test patterns, 

which do not detect new faults (line 6) are emitted from the 

test set T (line 9). Calculated faults of the set DFi are added to 

the set DF (line 7), and are discarded from the set UF (line 8). 

Let us first examine how the formation of the list of faults of 

individual test patterns can speed up the fault simulation. List 

of faults was formed on the basis of the assumption that the 

transition faults of gate cannot be detected if the signals of the 

gate do not change during logical modeling of a test pattern. 

For this purpose, the CPU of OR_1200 processor was 

analyzed. Tetramax tool automatically generated test patterns 

for the CPU. Ten first CPU circuit test patterns were analyzed. 

Results are presented in Table 2. The second line in seconds 

provides fault simulation times for individual test patterns 

when the complete faults list was used. The third line in 

seconds provides fault simulation times for individual test 

patterns when the list of faults was calculated on the basis of 

simulation results. The last row shows the acceleration times. 

The last column represents an average of acceleration. We can 

see that the individual test patterns fault simulation 

acceleration is significant for a given circuit. Further ten test 

patterns of or_1200 processor (which includes CPU core) have 

been analyzed to determine the change of acceleration trend in 

increasing the size of circuits. Results are presented in Table 3. 

The average acceleration increased. It is the hope that with the 

increasing scope of circuit, fault simulation acceleration also 

increases when their fault lists are formed for individual test 

patterns. This trend is encouraging. 

Table 2. Comparison of fault simulation time of the CPU circuit. 

Patterns 1 2 3 4 5 6 7 8 9 10 Aver. 

Full list 13.8 10.4 10.9 12.8 11.1 13.5 10.9 10.7 11.1 11.4 12.9 

Formed list 2.4 1.8 1.7 1.9 2.1 2.4 2.0 2.3 2.7 2.6 2.19 

Times faster 5.8 5.8 6.4 6.7 5.3 5.6 4.7 4.7 4.1 4.4 5.9 

Table 3. Comparison of fault simulation time of the OR_1200 processor circuit. 

Patterns 1 2 3 4 5 6 7 8 9 10 Aver. 

Full list 9818 10037 12496 12418 12747 9937 9949 9913 12411 10008 10973 

Formed list 475 549 691 756 715 546 459 475 502 723 589 

Times faster 20.6 18.3 18.1 16.4 17.8 18.2 21.7 20.9 24.7 13.8 18.6 
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Described fault simulation acceleration principle has two 

disadvantages. Fault list drawn up by the simulation results 

can not miss faults that can be detected with the present test 

pattern. List inaccuracy affects the final results. An 

acceleration efficiency decreases with decreasing undetected 

fault list. Acceleration is useless when there is a small 

undetected fault list. Acceleration tool should be used with 

caution. The fault simulation acceleration tool was used for 

the analysis of functional test and for the test addition. 

6. The Addition of Non-scan Test Based 

on the Results of Fault Simulation 

A functional test generation often uses random generation 

of test patterns and their selection according to the chosen 

criteria. Random generation allows the flexibility to choose 

the test pattern length. The selection criteria only indirectly 

reflect detectable faults. Therefore, functional test cannot 

achieve a high coverage of fault detection. The selection of 

test patterns based on the fault simulation can be meaningful 

as well. Fault simulation is an accurate criterion for the 

selection, but requires more computing resources. In this case 

the quantity of the analyzed generated test patterns will be 

less. However, a more accurate criterion can yield benefits. 

Straightforward policy use of fault simulation for test 

generation is not viable. A smart way of generating input 

sequences substantially changes the situation. Experiments 

confirmed that. 

Setting the conditions for completing the generation, 

selection of the correct length of test patterns, setting the best 

distribution of ones and zeroes for random generation can be 

carried out on the same principles as during functional test 

generation. These principles are described in the article [15]. 

Evolutionary programming and genetic algorithms are 

often used for functional test generation. A method for 

generating mutations and fitness function are essential in this 

case. Fault simulation can be used as an accurate fitness 

function. However, fault simulation is receptive to to 

computer resources, and does not allow consider a lot of 

mutations. 

Selection of test patterns based on the fault simulation 

creates preconditions for successful use of the principle of 

similar test pattern (mutation) generation, which summarizes 

the evolutionary programming and genetic algorithm. Each 

test pattern of T test detects any of circuit faults. The test 

pattern is similar to one given if only one or more input 

values are different. A similar test pattern can detect other 

faults. Similar test pattern of a given test may detect new 

faults. Similar test pattern is generated by changing some of 

the input values to the opposite. Inputs for replacement are 

selected in various ways. A test sequence that has all of the 

input values opposite in respect of a given sequence is 100 

percent different and zero percent similar. A test sequence 

that differ only in one input value is the minimum 

differentiated and of the maximum similarity. The selected 

percentage influences the efficiency of generation. 

CPU core of OR_1200 processor was selected for case 

experimentation. A situation was considered where a test has 

detected 53555 transition faults. Similar test patterns were 

generated for two test patterns. Maximum 300 similar test 

patterns were generated for different percentages of 

modifiable signal value. The results are given in Table 4. 

Similar test patterns were generated for two test patterns, 

which were obtained at the end of test generation. One of 

them has detected 121 new transition faults, and the other 

just one. This was done to determine whether the amount of 

the detected faults is affecting the success of a similar test 

pattern generation. A similar test pattern generation is done 

by changing a fixed percentage of values to the opposite. The 

percentage of modified inputs are indicated in the first row. 

Table cells contain how many new faults are discovered after 

the generation of 100, 200 and 300 test patterns. In 

parentheses, it is indicated how many test patterns detected 

new faults. The column labeled "new" is intended for the 

results of pure random generation. It is presented to compare 

the results of a purely random and similar test sequence 

generation. The comparison clearly demonstrates that a 

random test sequence generation descends in respect of a 

similar test sequence generation. 

Table 4. Results of generating similar test patterns. 

Modifiable input percentage New 1% 2% 5% 10% 15% 20% 

Test 

patterns 

Detected new 

faults 

Similar 

generated 
       

1 121 

100 13 (2) 352 (23) 471 (27) 623 (30) 679 (24) 254 (14) 252(14) 

200 41 (6) 445 (30) 578 (41) 829 (47) 905 (39) 347 (25) 298(22) 

300 50 (9) 450 (32) 614 (48) 891 (55) 979 (47) 380 (33) 396(28) 

2 1 

100 7 (5) 165 (5) 191 (12) 250 (20) 261 (18) 378 (25) 130(19) 

200 14 (8) 199 (7) 261 (20) 341 (31) 388 (32) 463 (35) 141(24) 

300 91 (9) 218 (12) 272 (24) 451 (40) 447 (43) 501 (43) 279(33) 

Average 300 71(9) 334 (22) 443 (36) 671 (48) 713 (45) 441 (38) 338 (31) 

 

Analysis of the experiment results shows that considerably 

better similar test patterns are generated from the test pattern 

that detects more new faults. Most of the new faults are 

detected during the first two hundred of the test patterns. The 

average number of detected faults (Table 4) by generating a 

test sequence with different percentage of modifiable inputs 
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is shown in Figure 3. The best similar test patterns are 

obtained when 10 percent of test values are modified for this 

circuit (Fig. 3.). 

 

Fig. 3. The average number of detected faults by generating with different 

percentage of modifiable inputs. 

The additional experimental study showed that the best 

modifiable inputs percentage depends on the number of 

previously detected faults. The best modifiable inputs 

percentage decreases with increasing quantities of previously 

detected faults. 

The results reflect the regularities of one particular circuit. 

It is necessary to carry out experiments with lots of circuits, 

and with lots of test patterns to generalize regularity. 

However, generalized results cannot be accurate for a given 

circuit. Therefore, it may be appropriate to examine each 

individual circuit, in order to choose the best test generation 

strategy. Still, this approach is promising. We will use the 

results of such rapid study for generation of test patterns. 

The assumption that it is appropriate to modify the less 

inputs, when remains little of undetected faults, allows us to 

create a general test generation method for cases in which 

there is little of undetected faults. 

Minimal modification is the replacement of one binary 

value of the test sequence to the opposite. Minimal 

modifications often do not change the output values of the 

test sequence. It is therefore possible to use the assumption 

that it is unlikely that the test sequence with the same output 

values detect different faults. Therefore, modifications which 

do not change outputs of the test sequence, it is reasonable to 

be rejected. This significantly reduces the amount of re-

calculation of fault simulation. Sample analysis showed that 

about 20 percent of the modified inputs of the test sequence 

replaces at least one output value. 

These observations allowed us to create new minimal 

modifications (MM) approach. The approach consists of two 

parts. First all minimal modifications in test sequence are 

examined. Only those modifications which change the test 

sequence outputs are selected and analyzed with fault 

simulation. 

The test sequence inputs that modification alters the 

outputs are written to a separate input set. Pairs of minimal 

modifications of such an input set are considered during the 

second phase. Pairs of minimal modifications that do not 

change the outputs of the test sequence are also rejected. 

The new iterative procedure for test addition was formed 

on the basis of the observed trends. The procedure is 

presented in Fig. 4. 

The procedure is used when test generation tools do not 

receive the required quality T test. Baseline data of the 

procedure are the lists DF, UF of detected and undetected 

faults, and test T received (line 1). T test is also written to the 

operating set of test patterns (TT, line 2). External loop DO1 

(3-16 lines) may be automatic and not when the solution of 

ordinary iteration execution is taken after analysis of the 

results. TS set of test patterns, which detected only new 

faults, is selected from the set of available tests TT (line 4). 

Operating set TT is cleaned prior to the generation of patterns 

(line 5). Cycle DO2 (6-14 lines) deals with all the test 

patterns of the TS set. Cycle DO3 (7-13 lines) generates 

similar test patterns. Size SA determines the amount of 

generated test patterns. 

 

Fig. 4. The new iterative procedure for test addition. 

Procedure MM for minimal modifications always 

generates a new input sequence maximal similar to the test 

pattern ti (line 8). Generated input sequence changes at least 

one output. The parameter j refers to generating consistency. 

Minimal modifications are generated first and then pairs of 

minimum modifications are generated. SA factor limits the 

amount of generated similar input patterns. Less similar input 

patterns are generated when the all minimum modifications 

and their couples are being used. Fault simulation estimates 

the faults detected by the input sequence generated (line 9). 

Actions of increased efficiency for fault simulation is 

described in Fig. 2, so there is no repeat. The test pattern ti is 

added to the set TT, if it identifies at least one new fault (line 

10). Rows 11 and 12 adjust the lists of the detected and non-

detected faults. At the end of the iteration T test is extended 

(line 15). 

Execution time of the procedure depends on the duration 

of fault simulation of a test pattern. The overall procedure’s 

execution time is proportional to the multiplication product 
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of the selected test patterns (line 4) and the amount of similar 

test patterns generated (SA, line 7). Therefore, the duration of 

a single iteration of the procedure can be roughly calculated. 

A careful analysis of the results obtained in the last 

iteration of the procedure enables to choose a reasonable 

amount of the generated similar test patterns and the amount 

of test patterns, which are selected to the set TS. Selection of 

the iteration parameters provides the flexibility and 

adaptability during the task solution. It is also possible to 

examine the influence of the distribution of ones and zeros of 

the tests. Additionally, it is also possible to construct tests 

manually and carry out generation of similar tests. 

The table 5 shows how iterations converge by generating 

similar test patterns. Iterations started with a test of the 2142 

test patterns that detect 53555 transition faults. Five test 

patterns were selected in the first iteration, and generated 300 

similar tests, of which 135 tests detected 1470 faults. In the 

first iteration, the amount of the detected faults decreases 

rapidly, but the decline has slowed down later. Five test 

patterns that detect the majority of new faults are selected for 

generating similar test patterns. The question of how much it 

is appropriate to select test patterns for further generation still 

requires further investigation. Within ten iterations 550 test 

patterns were selected, which detected 4040 faults (last 

column). An iteration should end when new faults are not 

detected at all or the amount of newly detected faults is very 

low. 

The proposed iterative procedure for the addition of the 

test most appropriate to use in the final phase of the 

generation when other generation methods have become 

ineffective. Similar input pattern generation is most 

successful when the received test already detects more than 

95 percent of faults. This is very important when we need to 

achieve the highest possible level of fault detection. The 

proposed addition of the test procedure can be used not only 

for the final test generation phase. In this case, we need to 

select the best degree of similarity of generated input 

sequences of the procedure MM. 

Table 5. Iterations of similar test pattern generation. 

Iterations 0 1 2 3 4 5 6 7 8 9 10 Total 

Selected 0 5 5 5 5 5 5 5 5 5 5  

Faults det. 53555 1470 633 441 240 180 244 207 282 204 143 4040 

Patterns 2142 135 75 66 41 35 46 37 38 39 38 550 

 

7. Experiments with Benchmarks 

Design flow, which is shown in Fig. 1 provides that the 

synthesized circuit has automatically included DFT 

accessories. It can be full scan or accessories that increase 

circuit observability and controllability. This decision is very 

important because the tests are immediately generated for the 

modified circuit. Additional inputs of circuits allow detecting 

more faults with non-scan test. However, the test patterns 

which are obtained with a state-of-art ATPG are limited to a 

short vector sequence. Therefore, the following functional 

test can significantly increase the amount of the detected 

faults. The method for generating of functional test is 

described in [15]. 

The functional test is generated for a circuit without scan. 

The additional inputs for a scan must define the operating 

mode of the circuit. The functional test does not evaluate that 

some of the faults have detected by non-scan test. In addition, 

some test patterns cannot detect new faults, especially for a 

generalized selection criterion. Therefore, fault simulation 

enables to discard redundant test patterns. 

Fault simulation accurately determines whether a test 

pattern detects faults still undetected. Test patterns can be 

generated at random and selected only those who find new 

faults. Drawing up lists of faults that can detect a particular 

test pattern (described in section 5) enables efficient selection 

of test patterns from a randomly generated. Random 

generation remains meaningful and after application of a 

functional test to detect yet undetected faults. In this way, 

addition of test coverage is done. 

Another way to add to the test coverage based on the 

generation of similar test patterns as described in section 6. 

When all the possibilities of non-scan test generation are 

exhausted scan-based ATPG is used for the remaining faults. 

This allows not only increase the amount of faults found by 

the non-scan test, but also to reduce the amount of undetected 

faults and the amount of clock signals. This is illustrated by 

the experimental results with the benchmarks. 

Non-scan and scan-based test optimization uses sorting of 

test patterns. Test patterns which detect more faults are 

transferred forward. This allows some of the test pattern 

throw out. Latest vectors of test patterns can be discarded if 

they do not entail new fault detection. 

Biggest benchmarks B14, B15, B17, B20, B22 of ITC’99 

set [22] and publicly available CPU of OR_1200 processor 

were selected for experiments. Test generation time, the 

quantity required clock signals and remaining undetected 

faults are shown in Table 6 for each test generation method. 

Data on test generation with fully sequential test generator 

Tetramax are shown in the third column. Tests were 

generated for the circuits with scan and the two additional 

inputs. Generation time constraints were chosen in order to 

get the best performance. The fourth column contains the 

data for fault simulation of functional test, that is, the 

duration of fault simulation (Time(s)), how much clocks 

required of the selected test patterns to detect new faults 

(Clocks), and the remaining undetected faults after the 

functional test (Not detec.). Functional test has been obtained 

on the basis of the methods described in [15]. Subsequent 

two columns show data after the selection of the test patterns 

generated at random and generated similar to the already 

selected as described in the fifth and sixth sections. Next 

TetraMax scan ATPG was used for the remaining undetected 
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faults. The data are presented in the seventh column. The 

eighth column shows the summary data when it was used all 

the methods for generating. The data which have been 

obtained using only TetraMax scan ATPG is presented before 

the last column. The penultimate column shows the 

difference between the test obtained with TetraMax scan 

ATPG and final test obtained from combining all previously 

derived tests. The combined test detects more faults, requires 

fewer clock signals, but test generation takes more time. 

Time increase in the number of times and the decrease in the 

percentage of clock cycles and undetected faults are 

highlighted in the last column. 

The dynamics of the transition fault coverage percentage 

are shown in Table 7. The contribution of the different 

methods for fault coverage is very uneven. This leads to the 

idea that it makes sense to supplement the test in different 

ways. Third line from the end shows how many faults can be 

detected at speed. Quantity of faults detected by the scan 

only on some circuits remains negligible. The influence of 

each method to the final result is shown in Fig. 5. The left 

column shows the percentage of fault coverage for the scan 

ATPG for each benchmark. Columns on the right show how 

the percentage of fault coverage is increasing using non-scan 

ATPG, functional test, random generation, the addition of the 

test and scan ATPG. At speed testing allows to detect more 

defects. This is an important advantage of manner proposed. 

Table 6. The experimental results with the benchmarks. 

Bench. Param. Sequen. ATPG Funct. Rand. Similar. Add. Scan Total Scan ATPG Differ. Ratio 

B14 

Time (s) 27042 1547 859 520 14 29982 69 -29913 -434 

Clocks 1113 29520 9840 2820 93345 136638 302820 166182 55% 

Not detec. 10897 3281 1116 830 36 36 166 130 78% 

B15 

Time (s) 34156 38227 19993 15945 1632 109953 2021 -107932 -53 

Clocks 642 48650 39200 22593 609293 720378 953676 233298 24% 

Not detec. 35031 15521 10617 9160 1218 1218 1817 599 33% 

B17 

Time (s) 54396 104564 58804 29868 3532 251164 3717 -247447 -67 

Clocks 101 52924 69892 36562 5439260 5598739 6042050 443311 7% 

Not detec. 105611 88991 68641 59908 8316 8316 8688 372 4% 

B20 

Time (s) 134556 32416 4460 2060 9 173501 35 -173466 -4956 

Clocks 1313 124432 107262 11009 131810 375826 892290 516464 20% 

Not detec. 42370 10613 782 623 234 234 2659 2425 91% 

B22 

Time (s) 205124 44904 9451 7716 43 257238 352 -266886 -758 

Clocks 243 133421 113322 19897 462315 729198 1749300 1020102 58% 

Not detec. 58186 15075 2125 1621 358 358 1566 1208 77% 

CPU 

Time (s) 175504 29172 110497 11001 58493 384667 57904 -326763 -564 

Clocks 7583 13635 3737 505 5074030 5099490 8141770 3042280 37% 

Not detec. 61177 59702 58053 57912 12035 12035 14270 2235 15% 

Table 7. Dynamics of the transition fault coverage percentage. 

Benchmarks B14 B15 B17 B20 B22 CPU 

Number of faults 21282 36230 107724 43808 65888 139274 

Sequential ATPG 48,80% 3,31% 1,96% 3,28% 11,70% 56,07% 

+ Functional test 84,58% 57,16% 17,39% 75,77% 77,12% 57,13% 

+ Random gen. 94,75% 70,70% 36,28% 98,21% 96,77% 58,32% 

+ Similar gen. 96,56% 74,71% 44,37% 98,58% 97,54% 58,42% 

+ Scan ATPG 99,83% 96,64% 92,28% 99,47% 99,46% 91,36% 

Only scan ATPG 99,22% 94,98% 91,93% 93,93% 97,70% 89,75% 

 

 

Fig. 5. The influence of each method to the final test coverage. 

8. Conclusions 

High fault's coverage cannot be achieved by one method. 

The proposed design flow provides the gradual addition of 

the test using a variety of methods. Non-scan structural test 

generation (ATPG) for the circuits with scan enables to detect 

more faults, because additional inputs and outputs of the DFT 

are used. Effective use of fault simulation enables to to 

achieve higher fault coverage. 

Full scan enables the detection of the most faults of 

circuits. However, the full scan does not create preconditions 

for at speed testing. Testing at least part of the faults at speed 

is always meaningful, since it enables the detection of more 

defects. Modern non-scan ATPG tools detect a relatively 

small number of faults, even for circuits with embedded scan. 
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Methods for generating functional test can significantly 

complement the fault coverage. Fault simulation acceleration 

through faults lists of test patterns helps increase the fault 

coverage using only the random generation and selection 

based on fault simulation. Generating test patterns that were 

similar to those that already detected some circuit faults 

allows replenishment the test. It is thus intended to have a 

test that can detect more faults at speed. Conventional full-

scan test is generated for the remaining not detected faults. 

These provide the higher fault coverage and at the same time 

the possibility of more faults to test at speed. 

Experiments with benchmarks confirmed that non-scan 

test enables the detection of more faults, reduces the amount 

of clock signals required for the execution of the test, but the 

test generation takes significantly more time. The proposed 

approach is meaningful in the case where very high 

requirements are raised to test quality. 

Non-scan test can detect a considerable proportion of fault 

models. Influence for fault coverage of different non-scan 

test generation techniques is very diverse, and therefore it 

makes sense to use a wide range of techniques that 

complement the fault coverage. Presented dynamics of the 

transition fault test coverage percentage demonstrates the 

complementarity of different methods and provide the basis 

for selection of test generation strategy. 

The proposed circuit design scheme allows the use of 

modern ATPG tools and accumulated experience. The 

proposed way to create the fault lists for individual test 

patterns creates preconditions widely use fault simulation 

during test generation. Individual faults list for each test 

pattern further reduces fault simulation time and retains the 

ability to exploit existing fault simulation speedups. In this 

case, the opportunity arises to use the achievements obtained 

by generating the input sequence of functional test and at the 

same rely on fault simulation. 

The proposed new generation method of similar test 

patterns allows the detection of new faults in the final phase 

of the test generation, when all the possibilities of other 

approaches are exhausted. 

Experiments with benchmarks demonstrated that the stepwise 

addition of the test leads to far better fault detection, showed an 

increase in the degree of quality, and the impact on the quality of 

the final test of a variety of test generation approaches. 

Embedded systems can have functions that are 

implemented as hardware or software. Replacement of the 

input and output variables of the software with binary input 

and output vectors enables the same hardware test generation 

techniques use for the software test generation. This is the 

object of further study. 
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