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Abstract: Background: Acute myeloid leukemia (AML) is a common hematopoietic tumor with extremely high morbidity
and mortality. This study was designed to explore candidate genes that were related to the poor prognosis of AML patients and
analyze their relationship with drug sensitivity. Methods: Microarray databases were performed to screen the differentially
expressed genes (DEGs). DAVID 6.8 was used for further functional enrichment analysis. The protein-protein interaction (PPI)
network was constructed through STRING website and Cytoscape tool. Then, we analyzed and explored the mRNA
transcription level, prognosis correlation, and drug sensitivity of the candidate genes in AML via multiple acknowledged
databases including the GEPIA, BloodSpot, EMBL-EBI, UALCAN, LinkedOmics, and GSCALite databases. Results: A total
of 181 up-regulated DEGs were screened. Three candidate genes (MAP2K3, LST1, and CYTH4) related to poor outcomes of
AML patients were identified. Meanwhile, the high expression levels of the three genes were verified in AML patients and
AML cell lines, the expression differences of three genes at AML different subtypes were demonstrated. Drug sensitivity
analysis displayed the expression levels of MAP2K3, LST1, and CYTH4 were negatively related to drug resistance, indicating
that the three genes were sensitive to certain small-molecule drugs (including targeted drugs and non-targeted drugs).
Conclusion: In summary, MAP2K3, LST1, and CYTH4 may be potential prognostic indicators for AML, and may be
associated with the sensitivity of certain small molecule drugs.
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1. Introduction

Acute myeloid leukemia (AML) is a heterogeneous
hematopoietic tumor, featured by the clonal expansion of
undifferentiated myeloid progenitor cells [1]. It is often
accompanied by impaired hematopoietic function and bone
marrow failure, leading to severe consequences for patients
[2]. Meanwhile, it has been reported that various factors were
involved in the molecular mechanism of AML disease
progression and clinical prognosis, such as genetic, epigenetic,
and proteomic alterations [3, 4]. Although considerable
advances in elucidating the pathophysiology and molecular
heterogeneity of AML, the development of viable therapies
for patients remains a formidable challenge. Currently, the

poor prognosis of AML patients remains a clinical challenge,
with merely 40% of patients under 60 years of age surviving
more than five years. While AML patients could be relieved
with standard treatment, most patients who relapse after
complete recovery survive less than five years [5, 6].
Hematopoietic stem cell transplantation (HSCT) and
chemotherapy are effective treatment regimens for AML
patients [7, 8]. However, drug resistance markedly decreased
the efficacy of AML patients, and recurrence is still the
primary cause for the failure of HSCT [7]. Therefore, it is
imperative to identify reliable biomarkers that could
significantly enhance the prognosis and drug treatment
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sensitivity of AML patients.

The microarray database is a high-throughput tool that
could generate various data, such as mRNA expression, DNA
methylation, and microRNA expression [9, 10]. It also
provides basic information about gene function, protein
network, and regulatory pathway, which plays a key role in
biomedical research [11, 12]. Currently, multiple widely
recognized public databases, such as the Gene Expression
Profiles Interactive Analysis (GEPIA) [13], EMBL-EBI [5],
and GSCALite [14], are used to explore undiscovered tumor
biomarkers and therapeutic targets via the stored microarray
data.

The objective of this article was to explore the potential
candidate genes that lead to the poor prognosis of AML
patients through bioinformatics analysis. Except for the genes
reported to have specific carcinogenic effects on AML, three
up-regulated candidate genes (MAP2K3, LST1, and CYTH4)
may serve as novel prognostic indicators for AML. And then,
we analyzed the relation between high expression of the three
genes and drug sensitivity in AML cells. This research
provides initial evidence for exploring the underlying
sensitive drugs for AML.

2. Materials and Methods

2.1. Processing for Microarray Data and DEGs

Identification
Gene Expression Omnibus
(https://www.ncbi.nlm.nih.gov/geo/) is a free public

repository that collects microarray expression profile and
next-generation sequencing data, from which two series
(GSE65409 and GSE67936) were acquired. And
GSE65409 was based on the GPL96 platform (Illumina
HumanHT-12 V3.0 expression biochip, San Diego, CA,
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USA), which included 30 peripheral blood mononuclear
cells (PBMCs) from primary AML patient samples and 8
CD34+ bone marrow (BM) cells of healthy donors.
GSE67936 was based on the GPL10558 platform (Illumina
HumanHT-12 V4.0 expression biochip, San Diego, CA,
USA), which included 117 AML diagnosis samples and 9
CD34+ cells of normal controls. Detailed information about
the above two datasets was summarized in Supplementary
Figures 1 and 2. Afterward, the differentially expressed
genes (DEGs) were detected through GEO2R
(https://www.ncbi.nlm.nih.gov/geo/geo2r/) interactive web
tool in NCBI [15]. The threshold was established at
adjusted P-value < 0.05 and [log,FC| > 1. Meanwhile, the
overlapping DEGs were visualized by Venn diagram
(http://bioinformatics.psb.ugent.be/webtools/ Venn/).

2.2. Integration of Protein—Protein Interaction (PPI)
Network, Functional Enrichment Analysis

The STRING (Search Tool for Retrieval of Interacting
Genes/Proteins, http://string-db.org/) online database [16] was
used to predict interaction networks of the protein products of
the up-regulated DEGs. The cut-off point was set as a
confidence score of >0.4. Then, the Cytoscape (3.7.2)
software (www.cytoscape.org/) was applied to visualize the
protein interaction network relationships. In Cytoscape,
CytoHubba plugin [17] provides a simple interface to explore
important nodes in biological networks by numerous
algorithms. To further understand the biological functions of
the DEGs, the Database for Annotation, Visualization, and
Integrated Discovery (DAVID; https://david.nciferf.gov/) was
used to annotate and analyze the associated the Gene
Ontology (GO) terms and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways of the DEGs [18]. P<0.05 was
defined as the criterion for significance.
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Figure 1. Up-regulated and down-regulated genes information of the GSE65409 and GSE67936 datasets (The red dots mean all the up-regulated genes, and the

blue dots mean all the down-regulated genes).



Cancer Research Journal 2021; 9(4): 176-190 178
GSEGS409
o T TIIIII I I IIEITITEIIITIIE
- MIH [l 1 [t [ ! ]

15 =

cod BRpbiebiiesidigdbieinprassd

6o - PEEE

B T T T PR I R R T -
HOINSLEAC-NATONCLSOD —NRIN S Ga0 —No Y aas e
o ot o oot b el b o b b o i o o s o i o
mmwm§ﬂimmn§mﬁmgmmmgnmmmﬂmmmmmnmmmmnggm
B R S R R e n AR R R R AR RAREE AR ER ARREE
SEII e s B IFT SEIFIIFIIITITITIIITT
cEEEREEEREE PR EERREEEEEEER EREEREEEREEE

12

10 4 ¢

[

&

z) i '
%&ﬁ%@%%mw*wsw:ﬁﬁm nossnrosase: oo sas oy §§§aﬁ¢a$ma&mw o ----&Mmﬁﬁ%ﬁ%ﬁﬁgmg;n
.. = = - - -
B R R R R R R R R R B R R R R R R R R R BRI N R RERas

Figure 2. Sample information of the GSE65409 and GSE67936 datasets (The green is AML samples, and the purple is normal samples).
genes in AML patients [13]. EMBL-EBI

2.3. Screening of Survival-Related Upregulated Genes

Gene Expression Profiling Interactive Analysis (GEPIA)
is an online tool based on Cancer Genome Atlas (TCGA;
http://portal.gdc.cancer.gov/) and  Genotype Tissue
Expression (GTEx) (GTEx; https://www.gtexportal.org/)
projects, which could provide key interactive functions
including differential expression analysis, correlation
analysis, and patient survival analysis [13]. We constructed
to illuminate correlations between the DEGs expression
and prognosis of AML patients by GEPIA. The cut-off
value was set to 0.05. BloodSpot
(http://servers.binf.ku.dk/bloodspot/) is a newly developed
gene-centric mRNA expression dataset containing healthy
and malignant hematopoietic cells [19]. The correlation
between the candidate genes expression and genetic
characteristics of AML patients were analyzed through
BloodSpot.

2.4. Verification of the Expression Levels of MAP2K3, LSTI,
and CYTH4 in AML Patients and Cell Lines

The "differential expression analysis" module of the
GEPIA2 was used to verify the expression of the candidate

(https://www.ebi.ac.uk) was used to further analyze the
candidate genes expression in 14 common AML cell lines, A
mass of cancer cell lines in this database could provide
powerful clues to the gene expression in cancer subtypes of
different tissue origin [20].

2.5. Expression Analysis of the Candidate Genes in
Different Clinical Parameters of AML Patients

UALCAN  (http://ualcan.path.uab.edu), an extensive
interactive web-portal that could provide analyses based on
TCGA and METS500 cohort data [21]. In our study, gene
expression data were examined via the “AML” dataset and the
“Expression Analysis” module of UALCAN. We use it to
compare the expression differences of the 3 candidate genes in
AML patients of different subtypes, ages and genders.
Student’s t test was used to gain a P-value. The cut-off value of
P-value was 0.05.

2.6. The Correlation Analysis of MAP2K3, LSTI, and
CYTH4 in AML

LinkedOmics  database  (http://www.linkedomics.org)
contains the multiple-omics data and clinical data for 11,158
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patients from the TCGA project [22]. The relationships of the
candidate genes were analyzed using LinkedOmics dataset
and verified using GEPIA database. The P-value cutoff was
0.05.

2.7. Drug Sensitivity Analysis of MAP2K3, LSTI1, and
CYTH4 in AML Cell Lines

GSCALite (http://bioinfo.life.hust.edu.cn/web/GSCALite/)
is a web-based platform for gene sets cancer analysis, which is
the dynamic analysis and visualization of gene sets in cancer
pathway activity, methylation, and drug-sensitivity analysis
[14]. The Spearman correlation was performed to detect the
correlation between gene expression and 265 small molecules
or drugs from Cancer Drug Sensitivity Genomics (GDSC).
The negative correlation means that highly expressed genes
are sensitive to the drug, vise verse.

a

GSEB5409

‘GSE67936

3. Results

3.1. Screening of Overlapping DEGs and Integration of PPI
Network in AML

Based on the critical value of P<0.05 and [log,FC] > 1, 369
overlapping DEGs were screened from GSE65409 and
GSE67936 (Figure 3a). Subsequently, the 181 up-regulated
DEGs were further studied (Figure 3b), and the up-regulated
genes highlighted in red were reported to have specific
carcinogenic effects on AML. Then, A total of 181
up-regulated DEGs were uploaded into Cytoscape software
and STRING online database to further screen. Eventually, the
top 100 DEGs with the high correlation were obtained by
CytoHubba plugin, the PPI action network was shown in
Figure 3c. The deeper the color, indicated the higher the
correlation between the genes.

Upregulated DEGs (n=181)

ANXAZ CCNAI MOB3A ASGR2 FCGR2A H2AFJ GZMH TYROBP OSCAR RPPHI HOMER3
FGR ADGRES TMEMS1 AQP9 SERTAD3 SDSL ARL4A HCST SLC22A18 LINCO0936
HISTIH2AM HISTIH2ZBEG LILRB3 GZMA TAGLN2 DYSF EVIZA GPBARI STABI LGALS3
FOXCl SLC2A6 JUNB CYP27TAl RHOB SLC2A3 IFI30 CD6 EHD4 EMP3 HISTIH2BC
TNFRSFIB ABL1 SLC30A1 SLCI16A3 CRIP? NACCI PLEC ZNF467 SCIMP IERS PILRA
HISTIH2ZAC MAL SLC43A2 NFIL3 TNFRSFI0OB CD247 HIST2ZHIAA3 GRN PRRKCD ADAPI
NEU1 SERPINA1 ITPRIPL2 ID2 FCGRIB SLCISA3 HBM MCEMPI GZMK HISTIH2ZBK
LRRC25 AHNAK ITGAX ILIRN S100A10 PIMI MAFB GRINA ITGB7 NKG7 SGSH CRIP1
VCAN VMPI ADAP2 TNFRSF4 IL4R UBTD1 CCLS IER3 DPEP2 RNH1 MYOF SH3BGRL3
FGFBP2 TNF GLIPRI GAST7 BAG4 CASB MYOIF KLF2 HISTIH3D FAM214B TLRE CD7
HELZ2 SERTADI CDKNIC HSPAG6 CASP1 CDSA UPPI FCGRI1A MYOIG ILI3RAI CSFIRA
PLA2GI6 GLIPRZ ANKRD33 NCF1 BCL3 MIDN CDC42 CTSA HISTIHIBD FCERIG RRAS
GABARAPLI F12 OLIG1 PRF1 LST1 TPPP3 CTSH CFP NOD2 CTSZ ALDH3B1 LMNA TOMI1
PRICKLE]I HES4 FBXOG6 CX3CR1 KLFI0 CD3D CTSD GPX1 HISTIHIC FAM2OC IFITMI
CEBPB CXCLI6 TCN2 CRISPLD2 TIMPI PLAUR MAPZK3 AIF1I LFNG LILRAS S100A11
TYMP CFD HISTIHZAC FLVCR2 TOB1 CD6R8 MVP KLREI GADD4SE HBA2 ADGREI
PITPNMI CYTH4 GNLY PIK3IP1

Figure 3. ldentification of consistent DEGs and PPI network analysis. (a) Venn diagram for consistent DEGs. (b) List of 181 consistent up-regulated DEGs (the
up-regulated genes highlighted in red indicate genes that have been reported to have a carcinogenic effect on AML). (c) the top 100 central genes with a higher
degree of connectivity. The deeper the color, indicated the higher the correlation between the genes. DEGs, differentially expressed genes.

3.2. GO and KEGG Enrichment Analysis

To comprehend the biological value of DEGs in the
interaction network, DAVID 6.8 was performed to analyze the
GO terms and KEGG enrichment pathways of the top 100
upregulated DEGs. The top 15 enrichment analysis results
were shown in Figure 4. GO terms describe the DEGs from

three aspects, namely molecular function (MF), cellular
component (CC), and biological process (BP) [23]. In the MF,
the genes were primarily enriched “IgG binding”, “protein
heterodimerization activity”, “receptor activity”, “protein
binding”, “S100 protein binding” and so on (Figure 4a). In the
CC, the genes mainly participated in “nucleosome”,
“extracellular exosome”, “plasma membrane”, “extracellular
nuclear nucleosome”, etc. (Figure 4b). In the BP, the

CERNT3

space”,
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genes were principally enriched “immune response”,
“regulation of immune response”, “Fc-gamma receptor
signaling pathway involved in phagocytosis”, “regulation of
cell proliferation”, “defense response to bacterium”, etc.
(Figure 4c). In KEGG enrichment analysis, the main pathways
included “Systemic lupus erythematosus”, “Alcoholism”,
“TNF signaling pathway”, “Hematopoietic cell lineage”,
“Osteoclast differentiation”, etc. (Figure 4d).

3.3. Prognostic Value Analysis of MAP2K3, LSTI1, and
CYTH4 in AML Patients

To comprehend the possible value of the top 100 DEGs in
the prognosis prediction of AML patients, survival analysis
was performed using the GEPIA2 databases. At last, As
shown in Figure 5, three genes (MAP2K3, LST1, and CYTH4)
were related to poor prognosis of AML patients in addition to
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the genes reported to have specific carcinogenic effects on
AML patients (p<0.05).

To further confirm the relationship between the high
expression of MAP2K3, LST1, and CYTH4 and the
prognosis of AML patients, we used the BloodSpot
database to explore the impact of genes epigenetic
mutation on the risk stratification of AML patients. AML
with t(11923), AML with del(5q), AML with del(7q)/7q-
and other chromosomal abnormalities have been widely
used as clinical indicators to evaluate the poor prognosis
of AML. We found that MAP2K3, LST1, and CYTH4
were almost significantly overexpressed in karyotype
samples suggestive of poor prognosis, which indicated the
high expression of the three genes in AML patients may

suggest high-risk groups at the level of genetic
stratification (Figure 6).
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Figure 4. The top 15 GO enrichment terms and KEGG enrichment pathways of DEGs. The Y-axis represents the enrichment term, the X-axis shows the P-value,
and the color and size of the dots reflect the number and proportion of gene enrichment. (a) The top 15 Molecular functions. (b) The top 15 Cellular components.
(¢c) The top 15 Biological processes. (d) The top 15 Functional pathways. GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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Figure 5. Prognostic value of MAP2K3, LSTI, and CYTH4 in AML patients, analyzed by GEPIA.
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Figure 6. The relationship between the 3 candidate genes expression and genetic characteristics of AML patients, analyzed by BloodSpot. Detailed descriptions

of the data were presented in Table 1.
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Table 1. Detailed descriptions of the data.

182

Short Abbreviation

HSC Hematopoietic stem cell

MPP Multipotential progenitors

CMP Common myeloid progenitor cell
GMP Granulocyte monocyte progenitors
MEP Megakaryocyte-erythroid progenitor cell
early PM Early Promyelocyte

Late PM Late Promyelocyte

BC Band cell

MM Metamyelocytes

MY Myelocyte

Mono Monocytes

PMN Polymorphonuclear cells

Normal AML with Normal karyotype
Complex AML with Complex karyotype

inv (16) AML with inv (16)

t (15;17) AML with t (15;17)

t(8;21) AML with t (8;21)

t(11g23)/MLL AML with t (11q23)/MLL

MDS MDS

nan AML with no karyotype information
Trisomy 8 AML with Trisomy 8

del (5q) AML with del (5q)

del(7q)/7q- AML with del (7q)/7q-

t(9;11) AML with t (9;11)

Other AML with Other abnormalities

7 AML with +7

Complex_ del(5q) AML with Complex del(5q)

Complex_ untypical
ALL

AML with Complex untypical karyotype
ALL

inv (3) AML with inv (3)
trisomy 11 AML with trisomy 11
trisomy 13 AML with trisomy 13
t (6;9) AML with t (6;9)

t (8;16) AML with t (8;16)
del (9q) AML with del (9q)

t (1;3) AML with t (1;3)
-5/7(q) AML with -5/7(q)
-9q AML with -9q

8 AML with +8
t(9;22) AML with t (9;22)
abn (3q) AML with abn (3q)

3.4. Verification of High Expression Levels of the 3
Candidate Genes in AML Patients and Cell Lines

Using the GEPIA dataset, this study reanalyzed the
expression levels of the above three genes in AML patients
(Figure 7). MAP2K3, LST1, and CYTH4 were significantly
overexpressed in AML patients compared with normal
controls (P<0.05). Meanwhile, we further analyzed the gene
expression in 14 common AML cell lines using the
EMBL-EBI bioinformatics website, and the results showed

that MAP2K3, LST1, and CYTH4 were increased in most
common AML cell lines (Figure 8).

3.5. Expression of the 3 Candidate Genes in AML Different
Subtypes and Their Correlation with Patients’ Age

Then, UALCAN database was performed to analyze the
expression differences of MAP2K3, LST1, and CYTH4 in
AML patients of different subtypes, ages and genders (Figure 9).
As shown in Figure 9a, MAP2K3, LST1, and CYTH4 showed
significant expression differences in AML of different subtypes.



183 Fenling Zhou ef al.: Identification of Three Candidate Genes and Their Correlation with
Drug Sensitivity in Acute Myeloid Leukemia

Compared with other subtypes, the three genes showed lower
expression in M3 type. Besides, the expression of three
candidate genes was highest in elderly patients (especially
patients over 60 years old), but the difference between genders
was not statistically significant (Figures 9D, c).

3.6. The Correlation Analysis of MAP2K3, LSTI1, and
CYTH4 in AML

To further explore the potential role of the 3 candidate

genes, we analyzed the association between MAP2K3, LST1,
and CYTH4 via the LinkedOmics database. And it was found
that MAP2K3 was both positively connected with LST1 (R =
0.4198, p < 0.05), and CYTH4 (R = 0.2721, p <0.05). LST1
was positively connected with CYTH4 (R = 0.6343, p <0.05)
(Figure 10a). Next, we verified their relationship using the
GEPIA database. Expectedly, the results also suggested that
there was a positive correlation between MAP2K3, LSTI,
and CYTH4 in AML (Figure 10b).

Table 2. Detailed information of common clinical small-molecule drugs.

Drug_name Synonyms Drug targets pathway Drug targets

Phenformin DBI Other Biguanide agent

Daporinad APOB866, FK866, FK866 Metabolism NAMPT

Qill?o?lucleotide ﬁll(f(ﬁﬁ),-Ribofuranosyl)-S-aminoimidazole-4-carboxamide Metabolism AMPK agonist

Vorinostat f}(])(lilrr;itnslilzl;llé\ia,sﬁgi)né;(;hydroxamlc TS, Ui Chromatin histone acetylation =~ HDAC inhibitor Class I, Ila, IIb, IV
VNLG/124 HDAC inhibitor XV Chromatin histone acetylation = HDAC, RAR

Tubastatin A - Chromatin histone acetylation =~ HDAC1, HDAC6, HDAC8
CUDC-101 CUDC 101 Other HDACI1-10, EGFR, ERBB2
CAY10603 - Chromatin histone acetylation = HDAC1, HDAC6

Belinostat PXD101, PXD-101 Chromatin histone acetylation =~ HDACI1

AR-42 HDAC-42, AR 42, AR42 Chromatin histone acetylation =~ HDACI1

Dacinostat NVP-LAQ824, LAQ824 Chromatin histone acetylation =~ HDACI1

NPK76-11-72-1 - Cell cycle PLK3

MPS-1-IN-1 - Mitosis MPS1

Ispinesib Mesylate SB-715992 Mitosis KSP

GSK1070916 GSK-1070916 Mitosis AURKA, AURKC

Genentech Cpd 10 - Mitosis AURKA, AURKB

ZM447439 ZM-447439, ZM 447439 Mitosis AURKA, AURKB

Tozasertib MK 0457, MK-0457, MK-045, VX-680 VX 680 VX-68 Mitosis AURKA, AURKB, AURKC, others
I-BET-762 GSK525762A Chromatin other BRD2, BRD3, BRD4

JQ1 JQ-1, (H)-JQ-1 Chromatin other BRD2, BRD3, BRD4, BRDT
ZSTKA474 KIN001-167, ZSTK-474, ZSTK 474 PI3K/MTOR signaling PI3K (class 1)

PIK-93 PIK 93, PIK93 PI3K/MTOR signaling PI3Kgamma

PI-103 PI-103, PI103, PI 103 Other, kinases PI3Kalpha, DAPK3, CLK4, PIM3, HIPK2
KINO001-244 PDK1 inhibitor 7 Metabolism PDK1 (PDPKI)

AKT inhibitor VIII Akti-1/2, KIN001-102 PI3K/MTOR signaling AKTI1, AKT2, AKT3

Omipalisib GSK2126458, GSK-2126458, EX-8678, GSK458 PI3K/MTOR signaling PI3K (class 1), MTORC1, MTORC2
Idelalisib CAL-101, Zydelig PI3K/MTOR signaling PI3Kdelta

BX-912 - Metabolism PDKI1 (PDPKT1)

GSK690693 GSK 690693, GSK-690693 PI3K/MTOR signaling AKTI, AKT2, AKT3

AS605240 KINO001-173, AS-605240 PI3K/MTOR signaling PI3Kgamma

XMD14-99 - Other, kinases ALK, CDK7, LTK, others
Cabozantinib BMS-907351, XL-184, Cometriq RTK signaling ;/fg‘lf%ig?z}(i]sl KIT, FLTL, FLT3,
WZ3105 ) Other (S)::IS;SROCKZ, NTRK2, FLT3, IRAK1,
Fedratinib TG101348, TG-101348, SAR302503, SAR-302503 Other, kinases JAK2

Sunitinib Sutent, Sunitinib Malate, SU-11248 RTK signaling El;? IF 15 » KIT, VEGFR, FLT3, RET,
Sorafenib Nexavar, 284461-73-0, BAY 43-9006 RTK signaling PDGFR, KIT, VEGFR, RAF
QL-X1-92 - Cytoskeleton DDRI

OSI-930 0OSI1930 OSI930 RTK signaling KIT

Masitinib AB1010, Masivet RTK signaling KIT, PDGFRA, PDGFRB
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Drug_name Synonyms Drug targets pathway Drug targets
PP . . VEGFR1, VEGFR2, VEGFR3, CSFIR.
Linifanib ABT-869, ABT 869 RTK signaling FL"1E33, KI:F GFR2, VEGFR3, CSFIR,
Foretinib GSK1363089, XL-880, EXEL-2880, GSK089 RTK signaling 11\{/[(5;1 I;gg%gi%;ﬁfﬁ ];IgF/ELT“’
Lestaurtinib CEP-701, SP-924, SPM-924, A-154475, KT-555 Other, kinases FLT3, JAK2, NTRK1, NTRK2, NTRK3
NVP-BHG712 BHG712 RTK signaling EPHB4
Quizartinib AC220, AC 220, AC-220, Asp-2689 RTK signaling FLT3
Alectinib CH5424802, CH 542802, Alecensa RTK signaling ALK
UNC0638 UNC-0638, UNC 0683 Chromatin histone methylation G9a and GLP methyltransferases
THZ-2-49 - Cell cycle CDK9
THZ-2-102-1 - Cell cycle CDK7
PHA-793887 PHA793887, PHA 793887 Cell cycle CDK2, CDK7, CDKS
AT-7519 AT7519 Cell cycle CDKI1, CDK2, CDK4, CDK6, CDK9
XMD13-2 - Apoptosis regulation RIPK1
TPCA-1 - Other, kinases IKK2
TL-1-85 - Other, kinases TAK
STF-62247 STF62247 Other Autophagy inducer
SNX-2112 SNX 2112 gzztrzglaf;zg‘hty and HSP90
QL-XII-61 - Other, kinases BMX, BTK
QL-XII-47 - Other, kinases BTK, BMX
QL-X-138 - Other, kinases BTK
NG-25 NG25 Other, kinases TAK1, MAP4K2
KIN001-260 Bayer IKKb inhibitor, ACHP Other, kinases IKKB
KIN001-236 - RTK signaling Angiopoietin-1 receptor
JW-7-24-1 - Other, kinases LCK
CX-5461 CX5461, CX 5461 Other RNA Polymerase 1
BX795 BX-795 Other, kinases ;%IE;gDKI (DI, G AUILIE,
BMS-345541 BMS345541, IKK Inhibitor 3 Other, kinases IKK1, IKK2
BIX02189 BIX 02189 ERK MAPK signaling MEKS, ERK5
BAY-61-3606 Syk Inhibitor, BAY-613606 Other, kinases SYK
Tretinoin ATRA, Vesanoid, Renova, Atralin, Tretin-X, Avita Other Retinoic acid
ZG-10 - JNK and p38 signaling INK1
YM201636 YM-201636, YM 201636 PI3K/MTOR signaling PIKFYVE
XMD8-92 XMD 8-92 ERK MAPK signaling MAPK7
Ruxolitinib INCB-18424, Ruxolitinib Phosphate, Jakafi Other, kinases JAK1, JAK2
Enzastaurin LY317615 Other, kinases PKCB
DMOG Dimethyloxalylglcine Metabolism HIF-PH
XMD15-27 - Other, kinases CAMK2
Navitoclax ABT-263, ABT263, ABT 263 Apoptosis regulation BCL2, BCL-XL, BCL-W
PAC-1 GTPL5238 Apoptosis regulation Procaspase-3, Procaspase-7
OSI-027 A-1065-5 PI3K/MTOR signaling MTORC1, MTORC2
AZDB055 AZD-8055 PI3K/MTOR signaling MTORC1, MTORC2
CP466722 CP-466722, CP 466722, 1080622-86-1 Genome integrity ATM
AZD7762 SN1031853762 Cell cycle CHEKI, CHEK2
TL-2-105 - Other not defined
FR-180204 FR 180204, FR180204, ERK Inhibitor II ERK MAPK signaling ERK1, ERK2
FMK KINO001-242 Other, kinases RSK
Trametinib GSK1120212, Mekinist ERK MAPK signaling MEKI1, MEK2
Ponatinib AP24534, AP-24534, KIN001-192, Iclusig Other, kinases ?113 (I::’ ?352’1711:{33VEGFR2, pGERE
Nilotinib Tasigna, AMN 107 ABL signaling ABL
Y-39983 - Cytoskeleton ROCK
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Drug_name Synonyms Drug targets pathway Drug targets
GSK429286A - Cytoskeleton ROCKI, ROCK2
TAK-715 KIN001-201, TAK 715 JNK and p38 signaling p38alpha, p38beta
Methotrexate Abitrexate, Amethopterin, Rheumatrex, Trexall, Folex DNA replication Antimetabolite
5-Fluorouracil 5-FU Other Antimetabolite (DNA & RNA)
Pelitinib EKB-569 EGEFR signaling EGFR
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Figure 7. The expression analysis of MAP2K3, LST1, and CYTH4 in AML patients. *P<0.05.
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Figure 10. (a) The relationship between the three genes in AML, analyzed by LinkedOmics (p <0.05). (b) The relationship between the three genes in AML,
analyzed by GEPIA (p <0.05).
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3.7. The Relationship Between Genes Expression and Drug
Sensitivity in AML Cells

We next analyzed the correlation between the three genes
expression (MAP2K3, LST1, and CYTH4) and
small-molecule drugs sensitivity in AML cells using the
GDSC IC50 drug data from the GSCALite database (Figure
11). Drug sensitivity analysis showed that AML cells with
over-expression of MAP2K3, LSTI1, and CYTH4 were
sensitive to certain small molecule drugs (including targeted
drugs and non-targeted drugs). For example, we found that the
sensitivity to the anti-metabolite methotrexate was associated
with the over-expression of LST1 and CYTH4 in AML cells.
Similarly, AML cell lines with overexpressing LST1 and
CYTH4 also showed sensitivity to sorafenib (Nexavar), which
drug targets were PDGFR, KIT, VEGFR, RAF. However,
AML cells with high MAP2K3 expression showed sensitivity
only to trametinib, which mainly acting on ERK MAPK
signaling pathway. Detailed information about -clinical
small-molecule drugs were presented in Table 2.

4. Discussion

Despite advances in understanding the molecular
mechanism of the disease initiation and progression, AML is
still the hematopoietic tumor with high morbidity and
mortality [24]. Therefore, investigating the AML pathogenesis
and exploring new biomarkers have emerged as a hot research
field. Microarray technology, as a newly developed molecular
biology technology in recent years, could enable us to
discover the nature of diseases, and it has proven to be a
reliable way to research for potential human tumor biomarkers,
including AML.

In the current study, the gene expression profiles of
GSE65409 and GSE67936 were acquired from the GEO dataset
to screen the DEGs between AML patients and healthy donor
samples. Ultimately, 181 up-regulated genes were selected.
Then, the interactions among the top 100 up-regulated genes
were analyzed through DAVID database. GO enrichment
analyses manifested that the up-regulated genes mainly
participated in immune response, cell adhesion, and cell
proliferation. Similarly, it has been reported tumor cells could
accelerate cancer progression by down-regulating the
expression of immunogenic molecules to avoid immune
response [25, 26]. KEGG pathway enrichment results revealed
that the overlapped DEGs participated in multiple pathways,
such as the T cell receptor signaling pathway, TNF signaling
pathway, and chemokine signaling pathway. Numerous
researches disclosed that these pathways play a critical role in
human cancer progression [27-29]. Therefore, the results
suggested the up-regulated DEGs might be closely related to
tumorigenesis and progression of AML, which was in
agreement with the previous studies.

After a sequence of screening, analysis, and confirmation, a
total of 3 candidate genes (MAP2K3, LST1, and CYTH4)
were screened in connection with the poor outcome of AML

patients, which was not reported in previous studies.
BloodSpot database analysis showed that over-expression of
the three candidate genes in AML patients may indicate
high-risk groups at the level of genetic stratification.
Meanwhile, the GEPIA and EMBL-EBI datasets confirmed
the high expression of MAP2K3, LST1, and CYTH4 in AML
patients and AML cell lines. Subsequently, in the UALCAN
database, the expression differences of the three genes in the
AML different subtypes were presented. It is worth noting that
the three genes showed relatively low expression levels in M3
type AML, which may be due to the pathogenesis of M3 being
inconsistent with other subtypes, and it was related to the
formation of PML/RARA fusion genes. Moreover, we found
that expression levels of the three genes was highest in elderly
patients (especially patients over 60 years old), but the
difference between genders had not statistically significant. To
comprehensively analyze the biological role of MAP2K3,
LST1, and CYTH4 in AML, the correlation analysis of the
genes in AML were carried out by the LinkedOmics and
GEPIA database. The results suggested that there was a
positive correlation between MAP2K3, LST1, and CYTH4 in
AML. The treatment of traditional drugs leads to adaptive
resistance of patients, which is the main reason for the poor
outcome of AML patients. Drug sensitivity analysis showed
that AML patients with high expression of LST1 and CYTH4
were sensitive to most small-molecule drugs, while AML cells
with high MAP2K3 expression were only sensitive to
Trametinib. All of the evidence indicated that the three
candidate genes might have potential application values in
prognostic prediction and targeted drug therapy of AML.
Mitogen-activated protein kinase kinase 3 (MAP2KS3,
MKK3) is the main member of the bi-specific protein kinase
[30]. Increasing evidence emphasizes MAP2K3 was involved
in the progression and invasion of human tumor cells. Some
studies demonstrated that MAP2K3, as a transcriptional target
of up-regulated mutant (mut) p53, could maintain the
proliferation and existence of human tumor cells [31]. In
wild-type (wt) and mutp53-carrying cells, MAP2K3 deficiency
induced endoplasmic reticulum stress and autophagy, which
was conducive to stabilizing WTP53 and degrading mutp53,
respectively [30]. In general, MAP2K3 is expected to be a
promising anticancer therapeutic target in mutp53- and
wtp53-carrying tumors. Leukocyte-specific transcript 1 (also
termed LSTI1, B144, SLC21A6, OATP2, or OATP-C), is a
myeloid leukocyte-specific membrane-anchored proteins
encoded in the histocompatibility = complex, with
comprehensive selective splicing and immunomodulatory
functions [32, 33]. It is mainly expressed in myeloid cells and as
a negative regulator to participated in myeloid cell signaling
[32]. Furthermore, it is also a key regulator of self-renewal, acts
as a carcinogen to promotes oncogenesis [34]. Currently, the
carcinogenic effect of LST1 aberrant expression was reported
in hepatocellular carcinoma, breast cancer, and bladder cancer
[33, 35, 36]. The carcinogenic mechanism of cytohesin family
proteins CYTH4 (Cytohesin-4) is still poorly understood.
Zhang et al. revealed [37] that CYTH4 was closely relevant to
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multiple immune cells (such as CD8'T cells, CD4'T cells, and
neutrophils) and crucial immune checkpoints (such as CTLA4,
CD274, and PDCDI). Meanwhile, previous researches
revealed the protein participated in tumorigenesis and
progression as a carcinogenic factor in ovarian cancer and
breast cancer [37, 38].

To the best of our knowledge, this is the first discovery of
the possible carcinogenic role of MAP2K3, LSTI1, and
CYTH4 in AML, which may be the potential prognostic
markers and drug treatment targets for AML. However, there
are some limitations in our study: Firstly, the sample size of
our expression profile analysis was small, further studies with
larger sample sizes are necessary. Secondly, the DEGs were
obtained from clinical case samples, and verification of
pre-clinical trials is necessary. Lastly, drug sensitivity data
was just derived from AML cells, and these predictions are
worthy of animal experiment verification in future studies.
Overall, we look forward to this research will lay a sufficient
theoretical foundation for the following experimental
verification and provide reliable guidance for the clinical drug
treatment of AML patients in the future.

5. Conclusions

In summary, this study systematically analyzed the
dysfunctional genes related to the tumorigenesis and
prognosis of AML. Eventually, three up-regulated genes
(MAP2K3, LST1, and CYTH4) were identified in connection
with the poor outcome of AML patients and might be regarded
as novel biomarkers for drug screening. The over-expression
of the three candidate genes in AML patients may suggest
high-risk population at the level of genetic stratification,
which will provide powerful guidance for clinical
therapeutics.
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