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Abstract: Background: Acute myeloid leukemia (AML) is a common hematopoietic tumor with extremely high morbidity 

and mortality. This study was designed to explore candidate genes that were related to the poor prognosis of AML patients and 

analyze their relationship with drug sensitivity. Methods: Microarray databases were performed to screen the differentially 

expressed genes (DEGs). DAVID 6.8 was used for further functional enrichment analysis. The protein-protein interaction (PPI) 

network was constructed through STRING website and Cytoscape tool. Then, we analyzed and explored the mRNA 

transcription level, prognosis correlation, and drug sensitivity of the candidate genes in AML via multiple acknowledged 

databases including the GEPIA, BloodSpot, EMBL-EBI, UALCAN, LinkedOmics, and GSCALite databases. Results: A total 

of 181 up-regulated DEGs were screened. Three candidate genes (MAP2K3, LST1, and CYTH4) related to poor outcomes of 

AML patients were identified. Meanwhile, the high expression levels of the three genes were verified in AML patients and 

AML cell lines, the expression differences of three genes at AML different subtypes were demonstrated. Drug sensitivity 

analysis displayed the expression levels of MAP2K3, LST1, and CYTH4 were negatively related to drug resistance, indicating 

that the three genes were sensitive to certain small-molecule drugs (including targeted drugs and non-targeted drugs). 

Conclusion: In summary, MAP2K3, LST1, and CYTH4 may be potential prognostic indicators for AML, and may be 

associated with the sensitivity of certain small molecule drugs. 
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1. Introduction 

Acute myeloid leukemia (AML) is a heterogeneous 

hematopoietic tumor, featured by the clonal expansion of 

undifferentiated myeloid progenitor cells [1]. It is often 

accompanied by impaired hematopoietic function and bone 

marrow failure, leading to severe consequences for patients 

[2]. Meanwhile, it has been reported that various factors were 

involved in the molecular mechanism of AML disease 

progression and clinical prognosis, such as genetic, epigenetic, 

and proteomic alterations [3, 4]. Although considerable 

advances in elucidating the pathophysiology and molecular 

heterogeneity of AML, the development of viable therapies 

for patients remains a formidable challenge. Currently, the 

poor prognosis of AML patients remains a clinical challenge, 

with merely 40% of patients under 60 years of age surviving 

more than five years. While AML patients could be relieved 

with standard treatment, most patients who relapse after 

complete recovery survive less than five years [5, 6]. 

Hematopoietic stem cell transplantation (HSCT) and 

chemotherapy are effective treatment regimens for AML 

patients [7, 8]. However, drug resistance markedly decreased 

the efficacy of AML patients, and recurrence is still the 

primary cause for the failure of HSCT [7]. Therefore, it is 

imperative to identify reliable biomarkers that could 

significantly enhance the prognosis and drug treatment 
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sensitivity of AML patients. 

The microarray database is a high-throughput tool that 

could generate various data, such as mRNA expression, DNA 

methylation, and microRNA expression [9, 10]. It also 

provides basic information about gene function, protein 

network, and regulatory pathway, which plays a key role in 

biomedical research [11, 12]. Currently, multiple widely 

recognized public databases, such as the Gene Expression 

Profiles Interactive Analysis (GEPIA) [13], EMBL-EBI [5], 

and GSCALite [14], are used to explore undiscovered tumor 

biomarkers and therapeutic targets via the stored microarray 

data. 

The objective of this article was to explore the potential 

candidate genes that lead to the poor prognosis of AML 

patients through bioinformatics analysis. Except for the genes 

reported to have specific carcinogenic effects on AML, three 

up-regulated candidate genes (MAP2K3, LST1, and CYTH4) 

may serve as novel prognostic indicators for AML. And then, 

we analyzed the relation between high expression of the three 

genes and drug sensitivity in AML cells. This research 

provides initial evidence for exploring the underlying 

sensitive drugs for AML. 

2. Materials and Methods 

2.1. Processing for Microarray Data and DEGs 

Identification 

Gene Expression Omnibus 

(https://www.ncbi.nlm.nih.gov/geo/) is a free public 

repository that collects microarray expression profile and 

next-generation sequencing data, from which two series 

(GSE65409 and GSE67936) were acquired. And 

GSE65409 was based on the GPL96 platform (Illumina 

HumanHT-12 V3.0 expression biochip, San Diego, CA, 

USA), which included 30 peripheral blood mononuclear 

cells (PBMCs) from primary AML patient samples and 8 

CD34+ bone marrow (BM) cells of healthy donors. 

GSE67936 was based on the GPL10558 platform (Illumina 

HumanHT-12 V4.0 expression biochip, San Diego, CA, 

USA), which included 117 AML diagnosis samples and 9 

CD34+ cells of normal controls. Detailed information about 

the above two datasets was summarized in Supplementary 

Figures 1 and 2. Afterward, the differentially expressed 

genes (DEGs) were detected through GEO2R 

(https://www.ncbi.nlm.nih.gov/geo/geo2r/) interactive web 

tool in NCBI [15]. The threshold was established at 

adjusted P-value < 0.05 and |log2FC| > 1. Meanwhile, the 

overlapping DEGs were visualized by Venn diagram 

(http://bioinformatics.psb.ugent.be/webtools/ Venn/). 

2.2. Integration of Protein–Protein Interaction (PPI) 

Network, Functional Enrichment Analysis 

The STRING (Search Tool for Retrieval of Interacting 

Genes/Proteins, http://string-db.org/) online database [16] was 

used to predict interaction networks of the protein products of 

the up-regulated DEGs. The cut-off point was set as a 

confidence score of ≥0.4. Then, the Cytoscape (3.7.2) 

software (www.cytoscape.org/) was applied to visualize the 

protein interaction network relationships. In Cytoscape, 

CytoHubba plugin [17] provides a simple interface to explore 

important nodes in biological networks by numerous 

algorithms. To further understand the biological functions of 

the DEGs, the Database for Annotation, Visualization, and 

Integrated Discovery (DAVID; https://david.ncifcrf.gov/) was 

used to annotate and analyze the associated the Gene 

Ontology (GO) terms and Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathways of the DEGs [18]. P<0.05 was 

defined as the criterion for significance. 

 
Figure 1. Up-regulated and down-regulated genes information of the GSE65409 and GSE67936 datasets (The red dots mean all the up-regulated genes, and the 

blue dots mean all the down-regulated genes). 
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Figure 2. Sample information of the GSE65409 and GSE67936 datasets (The green is AML samples, and the purple is normal samples). 

2.3. Screening of Survival-Related Upregulated Genes 

Gene Expression Profiling Interactive Analysis (GEPIA) 

is an online tool based on Cancer Genome Atlas (TCGA; 

http://portal.gdc.cancer.gov/) and Genotype Tissue 

Expression (GTEx) (GTEx; https://www.gtexportal.org/) 

projects, which could provide key interactive functions 

including differential expression analysis, correlation 

analysis, and patient survival analysis [13]. We constructed 

to illuminate correlations between the DEGs expression 

and prognosis of AML patients by GEPIA. The cut-off 

value was set to 0.05. BloodSpot 

(http://servers.binf.ku.dk/bloodspot/) is a newly developed 

gene-centric mRNA expression dataset containing healthy 

and malignant hematopoietic cells [19]. The correlation 

between the candidate genes expression and genetic 

characteristics of AML patients were analyzed through 

BloodSpot. 

2.4. Verification of the Expression Levels of MAP2K3, LST1, 

and CYTH4 in AML Patients and Cell Lines 

The "differential expression analysis" module of the 

GEPIA2 was used to verify the expression of the candidate 

genes in AML patients [13]. EMBL-EBI 

(https://www.ebi.ac.uk) was used to further analyze the 

candidate genes expression in 14 common AML cell lines, A 

mass of cancer cell lines in this database could provide 

powerful clues to the gene expression in cancer subtypes of 

different tissue origin [20]. 

2.5. Expression Analysis of the Candidate Genes in 

Different Clinical Parameters of AML Patients 

UALCAN (http://ualcan.path.uab.edu), an extensive 

interactive web-portal that could provide analyses based on 

TCGA and MET500 cohort data [21]. In our study, gene 

expression data were examined via the “AML” dataset and the 

“Expression Analysis” module of UALCAN. We use it to 

compare the expression differences of the 3 candidate genes in 

AML patients of different subtypes, ages and genders. 

Student’s t test was used to gain a P-value. The cut-off value of 

P-value was 0.05. 

2.6. The Correlation Analysis of MAP2K3, LST1, and 

CYTH4 in AML 

LinkedOmics database (http://www.linkedomics.org) 

contains the multiple-omics data and clinical data for 11,158 
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patients from the TCGA project [22]. The relationships of the 

candidate genes were analyzed using LinkedOmics dataset 

and verified using GEPIA database. The P-value cutoff was 

0.05. 

2.7. Drug Sensitivity Analysis of MAP2K3, LST1, and 

CYTH4 in AML Cell Lines 

GSCALite (http://bioinfo.life.hust.edu.cn/web/GSCALite/) 

is a web-based platform for gene sets cancer analysis, which is 

the dynamic analysis and visualization of gene sets in cancer 

pathway activity, methylation, and drug-sensitivity analysis 

[14]. The Spearman correlation was performed to detect the 

correlation between gene expression and 265 small molecules 

or drugs from Cancer Drug Sensitivity Genomics (GDSC). 

The negative correlation means that highly expressed genes 

are sensitive to the drug, vise verse. 

3. Results 

3.1. Screening of Overlapping DEGs and Integration of PPI 

Network in AML 

Based on the critical value of P<0.05 and [log2FC] > 1, 369 

overlapping DEGs were screened from GSE65409 and 

GSE67936 (Figure 3a). Subsequently, the 181 up-regulated 

DEGs were further studied (Figure 3b), and the up-regulated 

genes highlighted in red were reported to have specific 

carcinogenic effects on AML. Then, A total of 181 

up-regulated DEGs were uploaded into Cytoscape software 

and STRING online database to further screen. Eventually, the 

top 100 DEGs with the high correlation were obtained by 

CytoHubba plugin, the PPI action network was shown in 

Figure 3c. The deeper the color, indicated the higher the 

correlation between the genes. 

 
Figure 3. Identification of consistent DEGs and PPI network analysis. (a) Venn diagram for consistent DEGs. (b) List of 181 consistent up-regulated DEGs (the 

up-regulated genes highlighted in red indicate genes that have been reported to have a carcinogenic effect on AML). (c) the top 100 central genes with a higher 

degree of connectivity. The deeper the color, indicated the higher the correlation between the genes. DEGs, differentially expressed genes. 

3.2. GO and KEGG Enrichment Analysis 

To comprehend the biological value of DEGs in the 

interaction network, DAVID 6.8 was performed to analyze the 

GO terms and KEGG enrichment pathways of the top 100 

upregulated DEGs. The top 15 enrichment analysis results 

were shown in Figure 4. GO terms describe the DEGs from 

three aspects, namely molecular function (MF), cellular 

component (CC), and biological process (BP) [23]. In the MF, 

the genes were primarily enriched “IgG binding”, “protein 

heterodimerization activity”, “receptor activity”, “protein 

binding”, “S100 protein binding” and so on (Figure 4a). In the 

CC, the genes mainly participated in “nucleosome”, 

“extracellular exosome”, “plasma membrane”, “extracellular 

space”, “nuclear nucleosome”, etc. (Figure 4b). In the BP, the 
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genes were principally enriched “immune response”, 

“regulation of immune response”, “Fc-gamma receptor 

signaling pathway involved in phagocytosis”, “regulation of 

cell proliferation”, “defense response to bacterium”, etc. 

(Figure 4c). In KEGG enrichment analysis, the main pathways 

included “Systemic lupus erythematosus”, “Alcoholism”, 

“TNF signaling pathway”, “Hematopoietic cell lineage”, 

“Osteoclast differentiation”, etc. (Figure 4d). 

3.3. Prognostic Value Analysis of MAP2K3, LST1, and 

CYTH4 in AML Patients 

To comprehend the possible value of the top 100 DEGs in 

the prognosis prediction of AML patients, survival analysis 

was performed using the GEPIA2 databases. At last, As 

shown in Figure 5, three genes (MAP2K3, LST1, and CYTH4) 

were related to poor prognosis of AML patients in addition to 

the genes reported to have specific carcinogenic effects on 

AML patients (p<0.05). 

To further confirm the relationship between the high 

expression of MAP2K3, LST1, and CYTH4 and the 

prognosis of AML patients, we used the BloodSpot 

database to explore the impact of genes epigenetic 

mutation on the risk stratification of AML patients. AML 

with t(11q23), AML with del(5q), AML with del(7q)/7q- 

and other chromosomal abnormalities have been widely 

used as clinical indicators to evaluate the poor prognosis 

of AML. We found that MAP2K3, LST1, and CYTH4 

were almost significantly overexpressed in karyotype 

samples suggestive of poor prognosis, which indicated the 

high expression of the three genes in AML patients may 

suggest high-risk groups at the level of genetic 

stratification (Figure 6). 

 
Figure 4. The top 15 GO enrichment terms and KEGG enrichment pathways of DEGs. The Y-axis represents the enrichment term, the X-axis shows the P-value, 

and the color and size of the dots reflect the number and proportion of gene enrichment. (a) The top 15 Molecular functions. (b) The top 15 Cellular components. 

(c) The top 15 Biological processes. (d) The top 15 Functional pathways. GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes. 
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Figure 5. Prognostic value of MAP2K3, LST1, and CYTH4 in AML patients, analyzed by GEPIA. 

 
Figure 6. The relationship between the 3 candidate genes expression and genetic characteristics of AML patients, analyzed by BloodSpot. Detailed descriptions 

of the data were presented in Table 1. 
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Table 1. Detailed descriptions of the data. 

Short Abbreviation 

HSC Hematopoietic stem cell 

MPP Multipotential progenitors 

CMP Common myeloid progenitor cell 

GMP Granulocyte monocyte progenitors 

MEP Megakaryocyte-erythroid progenitor cell 

early_PM Early Promyelocyte 

Late_PM Late Promyelocyte 

BC Band cell 

MM Metamyelocytes 

MY Myelocyte 

Mono Monocytes 

PMN Polymorphonuclear cells 

Normal AML with Normal karyotype 

Complex AML with Complex karyotype 

inv (16) AML with inv (16) 

t (15;17) AML with t (15;17) 

t (8;21) AML with t (8;21) 

t(11q23)/MLL AML with t (11q23)/MLL 

MDS MDS 

nan AML with no karyotype information 

Trisomy 8 AML with Trisomy 8 

del (5q) AML with del (5q) 

del(7q)/7q- AML with del (7q)/7q- 

t (9;11) AML with t (9;11) 

Other AML with Other abnormalities 

7 AML with +7 

Complex_ del(5q) AML with Complex del(5q) 

Complex_ untypical AML with Complex untypical karyotype 

ALL ALL 

inv (3) AML with inv (3) 

trisomy 11 AML with trisomy 11 

trisomy 13 AML with trisomy 13 

t (6;9) AML with t (6;9) 

t (8;16) AML with t (8;16) 

del (9q) AML with del (9q) 

t (1;3) AML with t (1;3) 

-5/7(q) AML with -5/7(q) 

-9q AML with -9q 

8 AML with +8 

t (9;22) AML with t (9;22) 

abn (3q) AML with abn (3q) 

 

3.4. Verification of High Expression Levels of the 3 

Candidate Genes in AML Patients and Cell Lines 

Using the GEPIA dataset, this study reanalyzed the 

expression levels of the above three genes in AML patients 

(Figure 7). MAP2K3, LST1, and CYTH4 were significantly 

overexpressed in AML patients compared with normal 

controls (P<0.05). Meanwhile, we further analyzed the gene 

expression in 14 common AML cell lines using the 

EMBL-EBI bioinformatics website, and the results showed 

that MAP2K3, LST1, and CYTH4 were increased in most 

common AML cell lines (Figure 8). 

3.5. Expression of the 3 Candidate Genes in AML Different 

Subtypes and Their Correlation with Patients’ Age 

Then, UALCAN database was performed to analyze the 

expression differences of MAP2K3, LST1, and CYTH4 in 

AML patients of different subtypes, ages and genders (Figure 9). 

As shown in Figure 9a, MAP2K3, LST1, and CYTH4 showed 

significant expression differences in AML of different subtypes. 
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Compared with other subtypes, the three genes showed lower 

expression in M3 type. Besides, the expression of three 

candidate genes was highest in elderly patients (especially 

patients over 60 years old), but the difference between genders 

was not statistically significant (Figures 9b, c). 

3.6. The Correlation Analysis of MAP2K3, LST1, and 

CYTH4 in AML 

To further explore the potential role of the 3 candidate 

genes, we analyzed the association between MAP2K3, LST1, 

and CYTH4 via the LinkedOmics database. And it was found 

that MAP2K3 was both positively connected with LST1 (R = 

0.4198, p < 0.05), and CYTH4 (R = 0.2721, p <0.05). LST1 

was positively connected with CYTH4 (R = 0.6343, p <0.05) 

(Figure 10a). Next, we verified their relationship using the 

GEPIA database. Expectedly, the results also suggested that 

there was a positive correlation between MAP2K3, LST1, 

and CYTH4 in AML (Figure 10b). 

Table 2. Detailed information of common clinical small-molecule drugs. 

Drug_name Synonyms Drug targets pathway Drug targets 

Phenformin DBI Other Biguanide agent 

Daporinad APO866, FK866, FK866 Metabolism NAMPT 

AICA 

Ribonucleotide 

AICAR, 

N1-(b-D-Ribofuranosyl)-5-aminoimidazole-4-carboxamide 
Metabolism AMPK agonist 

Vorinostat 
Zolinza, SAHA, suberanilohydroxamic acid, suberoylanilide 

hydroxamic acid, MK-0683 
Chromatin histone acetylation HDAC inhibitor Class I, IIa, IIb, IV 

VNLG/124 HDAC inhibitor XV Chromatin histone acetylation HDAC, RAR 

Tubastatin A - Chromatin histone acetylation HDAC1, HDAC6, HDAC8 

CUDC-101 CUDC 101 Other HDAC1-10, EGFR, ERBB2 

CAY10603 - Chromatin histone acetylation HDAC1, HDAC6 

Belinostat PXD101, PXD-101 Chromatin histone acetylation HDAC1 

AR-42 HDAC-42, AR 42, AR42 Chromatin histone acetylation HDAC1 

Dacinostat NVP-LAQ824, LAQ824 Chromatin histone acetylation HDAC1 

NPK76-II-72-1 - Cell cycle PLK3 

MPS-1-IN-1 - Mitosis MPS1 

Ispinesib Mesylate SB-715992 Mitosis KSP 

GSK1070916 GSK-1070916 Mitosis AURKA, AURKC 

Genentech Cpd 10 - Mitosis AURKA, AURKB 

ZM447439 ZM-447439, ZM 447439 Mitosis AURKA, AURKB 

Tozasertib MK 0457, MK-0457, MK-045, VX-680 VX 680 VX-68 Mitosis AURKA, AURKB, AURKC, others 

I-BET-762 GSK525762A Chromatin other BRD2, BRD3, BRD4 

JQ1 JQ-1, (+)-JQ-1 Chromatin other BRD2, BRD3, BRD4, BRDT 

ZSTK474 KIN001-167, ZSTK-474, ZSTK 474 PI3K/MTOR signaling PI3K (class 1) 

PIK-93 PIK 93, PIK93 PI3K/MTOR signaling PI3Kgamma 

PI-103 PI-103, PI103, PI 103 Other, kinases PI3Kalpha, DAPK3, CLK4, PIM3, HIPK2 

KIN001-244 PDK1 inhibitor 7 Metabolism PDK1 (PDPK1) 

AKT inhibitor VIII Akti-1/2, KIN001-102 PI3K/MTOR signaling AKT1, AKT2, AKT3 

Omipalisib GSK2126458, GSK-2126458, EX-8678, GSK458 PI3K/MTOR signaling PI3K (class 1), MTORC1, MTORC2 

Idelalisib CAL-101, Zydelig PI3K/MTOR signaling PI3Kdelta 

BX-912 - Metabolism PDK1 (PDPK1) 

GSK690693 GSK 690693, GSK-690693 PI3K/MTOR signaling AKT1, AKT2, AKT3 

AS605240 KIN001-173, AS-605240 PI3K/MTOR signaling PI3Kgamma 

XMD14-99 - Other, kinases ALK, CDK7, LTK, others 

Cabozantinib BMS-907351, XL-184, Cometriq RTK signaling 
VEGFR, MET, RET, KIT, FLT1, FLT3, 

FLT4, TIE2, AXL 

WZ3105 - Other 
SRC, ROCK2, NTRK2, FLT3, IRAK1, 

others 

Fedratinib TG101348, TG-101348, SAR302503, SAR-302503 Other, kinases JAK2 

Sunitinib Sutent, Sunitinib Malate, SU-11248 RTK signaling 
PDGFR, KIT, VEGFR, FLT3, RET, 

CSF1R 

Sorafenib Nexavar, 284461-73-0, BAY 43-9006 RTK signaling PDGFR, KIT, VEGFR, RAF 

QL-XI-92 - Cytoskeleton DDR1 

OSI-930 OSI 930 OSI930 RTK signaling KIT 

Masitinib AB1010, Masivet RTK signaling KIT, PDGFRA, PDGFRB 
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Drug_name Synonyms Drug targets pathway Drug targets 

Linifanib ABT-869, ABT 869 RTK signaling 
VEGFR1, VEGFR2, VEGFR3, CSF1R, 

FLT3, KIT 

Foretinib GSK1363089, XL-880, EXEL-2880, GSK089 RTK signaling 
MET, KDR, TIE2, VEGFR3/FLT4, 

RON, PDGFR, FGFR1, EGFR 

Lestaurtinib CEP-701, SP-924, SPM-924, A-154475, KT-555 Other, kinases FLT3, JAK2, NTRK1, NTRK2, NTRK3 

NVP-BHG712 BHG712 RTK signaling EPHB4 

Quizartinib AC220, AC 220, AC-220, Asp-2689 RTK signaling FLT3 

Alectinib CH5424802, CH 542802, Alecensa RTK signaling ALK 

UNC0638 UNC-0638, UNC 0683 Chromatin histone methylation G9a and GLP methyltransferases 

THZ-2-49 - Cell cycle CDK9 

THZ-2-102-1 - Cell cycle CDK7 

PHA-793887 PHA793887, PHA 793887 Cell cycle CDK2, CDK7, CDK5 

AT-7519 AT7519 Cell cycle CDK1, CDK2, CDK4, CDK6, CDK9 

XMD13-2 - Apoptosis regulation RIPK1 

TPCA-1 - Other, kinases IKK2 

TL-1-85 - Other, kinases TAK 

STF-62247 STF62247 Other Autophagy inducer 

SNX-2112 SNX 2112 
Protein stability and 

degradation 
HSP90 

QL-XII-61 - Other, kinases BMX, BTK 

QL-XII-47 - Other, kinases BTK, BMX 

QL-X-138 - Other, kinases BTK 

NG-25 NG25 Other, kinases TAK1, MAP4K2 

KIN001-260 Bayer IKKb inhibitor, ACHP Other, kinases IKKB 

KIN001-236 - RTK signaling Angiopoietin-1 receptor 

JW-7-24-1 - Other, kinases LCK 

CX-5461 CX5461, CX 5461 Other RNA Polymerase 1 

BX795 BX-795 Other, kinases 
TBK1, PDK1 (PDPK1), IKK, AURKB, 

AURKC 

BMS-345541 BMS345541, IKK Inhibitor 3 Other, kinases IKK1, IKK2 

BIX02189 BIX 02189 ERK MAPK signaling MEK5, ERK5 

BAY-61-3606 Syk Inhibitor, BAY-613606 Other, kinases SYK 

Tretinoin ATRA, Vesanoid, Renova, Atralin, Tretin-X, Avita Other Retinoic acid 

ZG-10 - JNK and p38 signaling JNK1 

YM201636 YM-201636, YM 201636 PI3K/MTOR signaling PIKFYVE 

XMD8-92 XMD 8-92 ERK MAPK signaling MAPK7 

Ruxolitinib INCB-18424, Ruxolitinib Phosphate, Jakafi Other, kinases JAK1, JAK2 

Enzastaurin LY317615 Other, kinases PKCB 

DMOG Dimethyloxalylglcine Metabolism HIF-PH 

XMD15-27 - Other, kinases CAMK2 

Navitoclax ABT-263, ABT263, ABT 263 Apoptosis regulation BCL2, BCL-XL, BCL-W 

PAC-1 GTPL5238 Apoptosis regulation Procaspase-3, Procaspase-7 

OSI-027 A-1065-5 PI3K/MTOR signaling MTORC1, MTORC2 

AZD8055 AZD-8055 PI3K/MTOR signaling MTORC1, MTORC2 

CP466722 CP-466722, CP 466722, 1080622-86-1 Genome integrity ATM 

AZD7762 SN1031853762 Cell cycle CHEK1, CHEK2 

TL-2-105 - Other not defined 

FR-180204 FR 180204, FR180204, ERK Inhibitor II ERK MAPK signaling ERK1, ERK2 

FMK KIN001-242 Other, kinases RSK 

Trametinib GSK1120212, Mekinist ERK MAPK signaling MEK1, MEK2 

Ponatinib AP24534, AP-24534, KIN001-192, Iclusig Other, kinases 
ABL, PDGFRA, VEGFR2, FGFR1, 

SRC, TIE2, FLT3 

Nilotinib Tasigna, AMN 107 ABL signaling ABL 

Y-39983 - Cytoskeleton ROCK 
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Drug_name Synonyms Drug targets pathway Drug targets 

GSK429286A - Cytoskeleton ROCK1, ROCK2 

TAK-715 KIN001-201, TAK 715 JNK and p38 signaling p38alpha, p38beta 

Methotrexate Abitrexate, Amethopterin, Rheumatrex, Trexall, Folex DNA replication Antimetabolite 

5-Fluorouracil 5-FU Other Antimetabolite (DNA & RNA) 

Pelitinib EKB-569 EGFR signaling EGFR 

 

Figure 7. The expression analysis of MAP2K3, LST1, and CYTH4 in AML patients. *P<0.05. 

 
Figure 8. The expression of MAP2K3, LST1, and CYTH4 in AML cell lines. 
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Figure 9. The expression differences of the genes in AML subtypes and their relationship with AML patient’s age, and gender. (a) Gene expression in AML 

patients of different subtypes. (b) Gene expression in AML patients of different ages. (c) Gene expression in AML patients of different genders. *P<0.05; 

**P<0.01; ***P<0.001. 

 

Figure 10. (a) The relationship between the three genes in AML, analyzed by LinkedOmics (p <0.05). (b) The relationship between the three genes in AML, 

analyzed by GEPIA (p <0.05). 
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Figure 11. Drug sensitivity analysis of the candidate genes in AML (GSCALite). The relation between gene expression and drugs was detected by Spearman 

correlation. The negative correlation suggests that the gene high expression is sensitive to the drug, vise verse. 
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3.7. The Relationship Between Genes Expression and Drug 

Sensitivity in AML Cells 

We next analyzed the correlation between the three genes 

expression (MAP2K3, LST1, and CYTH4) and 

small-molecule drugs sensitivity in AML cells using the 

GDSC IC50 drug data from the GSCALite database (Figure 

11). Drug sensitivity analysis showed that AML cells with 

over-expression of MAP2K3, LST1, and CYTH4 were 

sensitive to certain small molecule drugs (including targeted 

drugs and non-targeted drugs). For example, we found that the 

sensitivity to the anti-metabolite methotrexate was associated 

with the over-expression of LST1 and CYTH4 in AML cells. 

Similarly, AML cell lines with overexpressing LST1 and 

CYTH4 also showed sensitivity to sorafenib (Nexavar), which 

drug targets were PDGFR, KIT, VEGFR, RAF. However, 

AML cells with high MAP2K3 expression showed sensitivity 

only to trametinib, which mainly acting on ERK MAPK 

signaling pathway. Detailed information about clinical 

small-molecule drugs were presented in Table 2. 

4. Discussion 

Despite advances in understanding the molecular 

mechanism of the disease initiation and progression, AML is 

still the hematopoietic tumor with high morbidity and 

mortality [24]. Therefore, investigating the AML pathogenesis 

and exploring new biomarkers have emerged as a hot research 

field. Microarray technology, as a newly developed molecular 

biology technology in recent years, could enable us to 

discover the nature of diseases, and it has proven to be a 

reliable way to research for potential human tumor biomarkers, 

including AML. 

In the current study, the gene expression profiles of 

GSE65409 and GSE67936 were acquired from the GEO dataset 

to screen the DEGs between AML patients and healthy donor 

samples. Ultimately, 181 up-regulated genes were selected. 

Then, the interactions among the top 100 up-regulated genes 

were analyzed through DAVID database. GO enrichment 

analyses manifested that the up-regulated genes mainly 

participated in immune response, cell adhesion, and cell 

proliferation. Similarly, it has been reported tumor cells could 

accelerate cancer progression by down-regulating the 

expression of immunogenic molecules to avoid immune 

response [25, 26]. KEGG pathway enrichment results revealed 

that the overlapped DEGs participated in multiple pathways, 

such as the T cell receptor signaling pathway, TNF signaling 

pathway, and chemokine signaling pathway. Numerous 

researches disclosed that these pathways play a critical role in 

human cancer progression [27-29]. Therefore, the results 

suggested the up-regulated DEGs might be closely related to 

tumorigenesis and progression of AML, which was in 

agreement with the previous studies. 

After a sequence of screening, analysis, and confirmation, a 

total of 3 candidate genes (MAP2K3, LST1, and CYTH4) 

were screened in connection with the poor outcome of AML 

patients, which was not reported in previous studies. 

BloodSpot database analysis showed that over-expression of 

the three candidate genes in AML patients may indicate 

high-risk groups at the level of genetic stratification. 

Meanwhile, the GEPIA and EMBL-EBI datasets confirmed 

the high expression of MAP2K3, LST1, and CYTH4 in AML 

patients and AML cell lines. Subsequently, in the UALCAN 

database, the expression differences of the three genes in the 

AML different subtypes were presented. It is worth noting that 

the three genes showed relatively low expression levels in M3 

type AML, which may be due to the pathogenesis of M3 being 

inconsistent with other subtypes, and it was related to the 

formation of PML/RARA fusion genes. Moreover, we found 

that expression levels of the three genes was highest in elderly 

patients (especially patients over 60 years old), but the 

difference between genders had not statistically significant. To 

comprehensively analyze the biological role of MAP2K3, 

LST1, and CYTH4 in AML, the correlation analysis of the 

genes in AML were carried out by the LinkedOmics and 

GEPIA database. The results suggested that there was a 

positive correlation between MAP2K3, LST1, and CYTH4 in 

AML. The treatment of traditional drugs leads to adaptive 

resistance of patients, which is the main reason for the poor 

outcome of AML patients. Drug sensitivity analysis showed 

that AML patients with high expression of LST1 and CYTH4 

were sensitive to most small-molecule drugs, while AML cells 

with high MAP2K3 expression were only sensitive to 

Trametinib. All of the evidence indicated that the three 

candidate genes might have potential application values in 

prognostic prediction and targeted drug therapy of AML. 

Mitogen-activated protein kinase kinase 3 (MAP2K3, 

MKK3) is the main member of the bi-specific protein kinase 

[30]. Increasing evidence emphasizes MAP2K3 was involved 

in the progression and invasion of human tumor cells. Some 

studies demonstrated that MAP2K3, as a transcriptional target 

of up-regulated mutant (mut) p53, could maintain the 

proliferation and existence of human tumor cells [31]. In 

wild-type (wt) and mutp53-carrying cells, MAP2K3 deficiency 

induced endoplasmic reticulum stress and autophagy, which 

was conducive to stabilizing WTP53 and degrading mutp53, 

respectively [30]. In general, MAP2K3 is expected to be a 

promising anticancer therapeutic target in mutp53- and 

wtp53-carrying tumors. Leukocyte-specific transcript 1 (also 

termed LST1, B144, SLC21A6, OATP2, or OATP-C), is a 

myeloid leukocyte-specific membrane-anchored proteins 

encoded in the histocompatibility complex, with 

comprehensive selective splicing and immunomodulatory 

functions [32, 33]. It is mainly expressed in myeloid cells and as 

a negative regulator to participated in myeloid cell signaling 

[32]. Furthermore, it is also a key regulator of self-renewal, acts 

as a carcinogen to promotes oncogenesis [34]. Currently, the 

carcinogenic effect of LST1 aberrant expression was reported 

in hepatocellular carcinoma, breast cancer, and bladder cancer 

[33, 35, 36]. The carcinogenic mechanism of cytohesin family 

proteins CYTH4 (Cytohesin-4) is still poorly understood. 

Zhang et al. revealed [37] that CYTH4 was closely relevant to 
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multiple immune cells (such as CD8
+
T cells, CD4

+
T cells, and 

neutrophils) and crucial immune checkpoints (such as CTLA4, 

CD274, and PDCD1). Meanwhile, previous researches 

revealed the protein participated in tumorigenesis and 

progression as a carcinogenic factor in ovarian cancer and 

breast cancer [37, 38]. 

To the best of our knowledge, this is the first discovery of 

the possible carcinogenic role of MAP2K3, LST1, and 

CYTH4 in AML, which may be the potential prognostic 

markers and drug treatment targets for AML. However, there 

are some limitations in our study: Firstly, the sample size of 

our expression profile analysis was small, further studies with 

larger sample sizes are necessary. Secondly, the DEGs were 

obtained from clinical case samples, and verification of 

pre-clinical trials is necessary. Lastly, drug sensitivity data 

was just derived from AML cells, and these predictions are 

worthy of animal experiment verification in future studies. 

Overall, we look forward to this research will lay a sufficient 

theoretical foundation for the following experimental 

verification and provide reliable guidance for the clinical drug 

treatment of AML patients in the future. 

5. Conclusions 

In summary, this study systematically analyzed the 

dysfunctional genes related to the tumorigenesis and 

prognosis of AML. Eventually, three up-regulated genes 

(MAP2K3, LST1, and CYTH4) were identified in connection 

with the poor outcome of AML patients and might be regarded 

as novel biomarkers for drug screening. The over-expression 

of the three candidate genes in AML patients may suggest 

high-risk population at the level of genetic stratification, 

which will provide powerful guidance for clinical 

therapeutics. 
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