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Abstract: Diabetes mellitus, a metabolic disease that features high glucose levels in the body with the inability of the body to 

secret enough insulin to breakdown glucose, or such a body is resistant to the effects of insulin. Nigeria and other nations of the 

world have become aware of the inherent threats to life of gestational diabetes in mothers with or without previous cases and its 

tendencies to metamorphose into Type-II. Our study presents a comparative study of classification models using both the 

supervised (K-nearest neighborhood and Quadratic Discriminant Analysis) and unsupervised (Profile Hidden Markov Model 

and Memetic algorithm) methods – which aims at early detection as well as improve early diagnosis via data-mining tools. 

Adopted dataset is split into: training (in some cases, retraining) and testing to aid model validation. Results show that age, 

obesity and family ties to the second degree, environmental conditions of inhabitance are critical factors that can increase 

likelihood. Gestational diabetes in mothers with or without previous cases were confirmed if: (a) history of babies weighing > 

4.5kg at birth, (b) insulin resistance with polycystic ovary syndrome, and (c) abnormal tolerance to insulin. Also, PHMM 

outperforms Memetic algorithm in some cases; while memetic algorithm outperforms PHMM in some cases. 
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1. Introduction 

Diabetes mellitus has now become a general chronic 

disease that affects about 6% of the global population – so that 

its avoidance and early detection for effective treatment has 

become imperative and undoubtedly a critical task for health 

and economic issue in 21st century (Khashei et al, 2012). 

Diabetes is a metabolic disease that is characterized by the 

presence of hyperglycemia or high blood glucose. This result 

from the body’s inability to secrets enough insulin that the 

body requires for glucose processing as a byproduct of the 

carbohydrate that we eat, or that the body is resistant to the 

effects of insulin. Thus, the reason why it is popularly named 

the silent killer. Glucose, as a main source of energy for cells 

that makes up the muscles and other tissues, is produced from 

the food we eat and in our liver. Sugar (or glucose) is absorbed 

in the bloodstream and enters into a cell by the help of insulin. 

Liver stores glucose as glycogen so that if glucose becomes 

low, the liver reconverts the stored glycogen into glucose to 

normalize the glucose level (Ojugo et al, 2015). Diabetes is a 

diagnosis from glycemia that is associated with microvascular 

disease (Goldenberg and Punthakee, 2013). 

Diabetes is associated with range of complications such as 

risk of blindness, blood pressure, heart and kidney diseases, 

and nerve damage to mention a few (Temurtas et al, 2009; 

Ojugo et al, 2016). Its early detection is extremely difficult by 

experienced physicians, and thus – led to a continued quest for 

methods to effectively and precisely classify the disease. 

Khashei et al (2013). Ojugo et al (2015) Various models have 

been used for its early detection and identification to include: 

(a) supervised classification in which its input variables for the 

diagnosis are known), and (b) unsupervised classification in 

which the variables used for diagnosis and classification are 

unknown). In both instance, a critical feat in selecting the 

appropriate classification model to use is, its accuracy and 

precision ability in classifying the task at hand. 

1.1. Types of Diabetes 

Diabetes is generally classified into (Ojugo et al, 2015): 

a. Type-1 is a chronic condition/state, in which the 

pancreas secrets little or no insulin, allowing sugar to 

build up in the bloodstream and cause some real life 
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threats. Type-1 has no cure as it is insulin-dependent and 

its causes are unknown. Its symptoms include: blurred 

vision, extreme hunger, increased thirst, irritability, 

incessant urination, fatigue, mood changes, unintended 

weight loss, vaginal yeast infection (in females), 

bedwetting etc; Some of its known risk factors include: 

genetics, family history, age, geography, exposure to 

bacteria and Epstein-Barr virus in environ, early 

exposure to cow milk, low vitamin D, early or late 

introduction to cereal/gluten in baby diet, intake of 

nitrate-contaminated water, mothers with preeclampsia 

at pregnancy and babies born with jaundice (American 

Diabetes Association, 2009; Ojugo et al 2016). 

b. Type 2 (adult onset or noninsulin-dependent) diabetes is 

a chronic condition that affects how the body 

metabolizes sugar (glucose). It often develops slowly 

since the body either resists the effects of insulin as 

produced or does not produce enough insulin to maintain 

a normal glucose level. Though common in adults, this 

type is increasingly common now to children with 

obesity issues. While, there is also no cure for type-2, it 

can however be managed through proper eating habits, 

exercising, maintaining a healthy weight and sometimes, 

diabetes medications or insulin therapy. Its symptoms 

are increased thirst/hunger, weight loss, frequent 

urination, fatigue, blurred vision, acanthosis nigricians 

(areas of darkened skin) amongst others (Peter, 2012; 

Canadian Diabetes Association, 2014; Ojugo et al, 2016). 

Chinenye and Young (2011) Type-2 diabetes has 

asymptomatic preclinical phase which is not benign and 

thus, underscores the need for primary prevention and 

population screening in order to achieve early diagnosis 

and treatment. The prevalence of undiagnosed diabetes is 

been found to range from 4.76% of outpatients attending 

a family practice clinic, to as high as 18.9% in Nigeria. 

And such prevalence is higher by 68% in persons of 

higher socioeconomic status. 

c. Gestational diabetes represents glucose intolerance from 

onset, and is first recognized during pregnancy. It causes 

high blood sugar that can affect pregnancy and the 

baby’s health, though the blood sugar usually returns to 

normalcy soon after delivery. A patient with gestational 

diabetes is at the risk of type-2 diabetes with each 

pregnancy and it does not cause any noticeable signs 

(Canadian Diabetes Association, 2014; Chinenye and 

Young, 2011). 

1.2. Gestational Diabetes Diagnosis: The Nigerian Scenario 

Gestational Diabetes Mellitus (GDM) is defined as disorder 

of glucose tolerance occurring first in pregnancy in mothers – 

whereas, some experts have viewed and believe GDM to be of 

same entity with Type-II – wherein the former constitutes the 

early signs and manifestation of the latter. GDM is endemic 

around the world and its prevalence differs from one region to 

another. Its risk factors include: family history of DM in 

first-degree relatives, child bearing with congenital anomaly, 

baby weighs more than 4000g or more, dying of unknown 

causes at birth, obesity, age greater than 35years amongst 

other. Various techniques are available to diagnose GDM as to 

what to test, when to perform such tests and what method is 

best. Most authors continually favor the early weeks of third 

trimester (between 26-to28 weeks) of pregnancy as best time 

to screen for GDM. Its investigations can be divided into 

screening and definitive tests (Adebisi et al, 2012). The risk 

factors can be seen in the table 1. 

It is a known fact that type-II diabetes has an asymptomatic 

preclinical phase that is not benign and underscores the need 

for primary prevention and population screening in order to 

achieve early diagnosis and treatment. The prevalence of 

undiagnosed diabetes has been found to range from 4.76% in 

one study of outpatients attending a family practice clinic to as 

high as 18.9% in another study. Prevalence of diabetes was 

found to be higher by as much as 68% in persons of a higher 

socioeconomic status were earlier studies had reported lower 

prevalence rates for undiagnosed diabetes in the population – 

whereas Nyenwe et al (2003) reported a 2.8% rate of disease 

in Port Harcourt and 1.7% in Lagos metropolis in 1988. Arije 

et al (2007) concurred with a satisfactory systolic and diastolic 

blood pressure control was obtained in only 38.5% and 42.2% 

of some Nigerian patients attending a tertiary health facility, 

respectively. 

Diabcare Nigeria in 2008 took a sample study conducted 

across 7-tertiary health centers in Nigeria with the objective of 

assessing clinical and laboratory profile, evaluating the quality 

of care of Nigerian diabetics with a view to planning improved 

diabetes care. Clinical parameters studied include: diabetes 

types, anthropometry, blood pressure, chronic complications 

of diabetes and treatment types. Laboratory data assessed 

include: fasting plasma glucose (FPG), 2 Hour post-prandial 

(2-HrPP), glycated haemoglobin (HbA1c), urinalysis, serum 

lipids, electrolytes, urea and creatinine. A total of 531 patients, 

209(39.4%) males and 322(60.6%) females enrolled. Results 

indicate the mean age of the patients was 57.1±12.3years with 

mean duration of diabetes of 8.8±6.6years. A majority (95.4%) 

had Type-II 2 diabetes compared to Type-I (4.6%) using a p < 

0.001 significance. Mean FPG, 2-HrPP glucose and HbA1c 

were noted at 8.1±3.9mmol/L, 10.6±4.6mmol/L and 8.3±2.2% 

respectively. Only 170 (i.e. 32.4%) male and 100 (i.e. 20.4%) 

female patients achieved the ADA and IDF glycaemic targets 

respectively. About 72.8% patients did not practice 

self-monitoring of blood glucose and hypertension is found in 

322 (i.e. 60.9%) patients, with a mean systolic BP of 

142.0±23.7mmHg and mean diastolic BP of 80.7±12.7mmHg 

(Chinenye and Young, 2011). 

Its complications include: peripheral neuropathy 59.2%, 

cataracts 25.2%, cerebrovascular disease 4.7%, retinopathy 

35.5%, nephropathy 3.2% and diabetic foot ulcer 16.0%. It is 

obvious that the status of Diabetes Care in terms of glycaemic 

control, control of cardiovascular risk factors, management 

practices and presence of late complications of diabetes were 

below the optimum expected; And most screening conducted 

in pursuance of early detection that are based on risk factors 

have been found to be insensitive as well as resulted in an 

increased false positives rates of methods adopted for these 



 Clinical Medicine Research 2017; 6(6): 192-200 194 

 

test as a little above 40% of these cases are missed. Also, no 

screening method is consistently reliable. Thus, the rationale 

for this study to early detect GDM in mother as maternal 

mortality has been seen to be on increase (Ojugo et al, 2015). 

The idea is to advance for early diagnosis and detection of 

GDM and Type-II in mothers (with or without previous cases) 

using intelligent classification (supervised and unsupervised) 

model. This task seeks to allow model to propagate observed 

data as input – as the model seeks to uncover the underlying 

probability of data feats of interest, even with the data fed in as 

input consisting of ambiguities, noise and impartial truth. The 

model will seek to yield an output that is guaranteed of high 

quality and void of ambiguities. These models, further tuned 

can become robust and perform quantitative processing to 

ensure qualitative knowledge and experience, as its new 

language (Ojugo et al, 2013, Heppner and Grenander, 1990). 

2. Materials 

2.1. Dataset Used 

Table 1. Risk factor for GDM and Clinical Parameters for Encoding Dataset 

Schema Used. 

Attribute Name Clinical Associates 

Family Relatives Type-2 DM in 1st-Degree Relatives 

Number of Pregnancy 1 or more 
Plasma Glucose Tolerance History of abnormal glucose tolerance 

Diastolic Blood Pressure  

Triceps skin fold thickness Body Mass Index > 30kg 

Diabetes Pedigree Function Type-2 or GDM in previous pregnancy 

Age 35years and above 

Obesity BMI > 30.0kg/m2 

Ethnicity 
African-American, Hispanic, 

Asian-American, Pacific Islander etc 

Insulin Resistance Polycystic ovary syndrome 

Large Babies History of babies >4.5kg at birth 

Malformation Birth of a malformed child 

Perinatal Events Unexplained perinatal loss 

Maternal Birth/Large Babies < 2.5kg or >4.5kg 

Some statistical information of attributes is given in 

Table 1. 

The data set consists of 768 samples, about two third of 

which have negative diabetes diagnosis and one third with a 

positive diagnosis. The data set is randomly split into equal 

size of training and test sets of 384 samples each. 

2.2. Statement of Problem 

The problem statements are as follows: 

1. Being a silent killer makes its early detection, critical and 

imperative – as an unchecked scenario leads to increased 

maternal mortality. The use of supervised diagnosis is 

becoming redundant as it sometimes yields inconclusive 

results due to unknown inputs. Studies show conditions 

not even related to diabetes (but with symptoms similar 

or mimics type of diabetes class). Such classification 

results in increased rate of false-positives (unclassified 

symptom) and true-negatives (to classify symptom as 

diabetes when it is not). Proposed model seek to 

effectively group data into definitive classes of diabetes 

(GDM) via evolutionary unsupervised models that 

employs predictive data-mining rules and reinforcement 

learning (Section III). 

2. Hybrid models have been employed in many studies on 

diabetes. However, there are tradeoffs to be made as well 

as conflicts that needs to be resolved such as the conflict 

imposed on the model by the various underlying 

statistical dependencies that exist between the various 

heuristic method being adopted by the hybrid as well as 

the conflict imposed on the hybrid model by the dataset 

used. The proposed model resolves this (Section III) via 

the creation of profiles that assigns scores to rules that 

effectively classifies data into various types or classes of 

diabetes. 

3. Many datasets often consist of ambiguities, imprecision, 

noise and impartial truth that must be resolved via robust 

search. Also, speed constraint that often gets such 

solution trapped at local minima (resolved in Section 

III). 

4. Parameter(s) selection can be quite a daunting task when 

searching a solution space for a complete and optimized 

solution that will aid effective and efficient classification 

in a certain domain. Careful selection is required so that 

the system does not result in model over-fitting of data as 

well as overtraining cum over-parameterization 

(resolved in Section III) as the model seeks to discover 

underlying probability of the data feat(s) of interest. 

3. Intelligent Proposed Model 

We seek to compare various supervised model (LDA and 

Support Vector Machine) against the unsupervised models 

(Hidden Markov Model and Fuzzy Genetic Algorithm 

Trained Neural Net Model) to measure their comparative 

performance. 

3.1. Linear Discriminant Analysis (LDA) 

LDA is a very simple and effective supervised classification 

method with wide range of applications. Its basic theory is to 

classify compounds (rules) dividing n‐dimensional descriptor 

space into two regions separated by a hyper‐plane that is 

defined by linear discriminant function. Discriminant analysis 

generally transforms classification tasks into functions that 

partitions data into classes; Thus, reducing the problem to an 

identification of a function. The focus of discriminant analysis 

is to determine this functional form (assumed to be linear) and 

estimate its coefficients. LDA was first introduced in 1936 by 

Ronald Aylmer Fisher and his LDA function works by finding 

the mean of a set of attributes for each class, and using the 

mean of these means as boundary. The function achieves this 

by projecting attribute points onto the vector that maximally 

separates their class means and minimizes their within-class 

variance as expressed in Eq. 1 as follows: 

�������� − ��
 −	�� ��� + ��
������� − ��
 > �	     (1) 
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where X is vector of the observed values, Xi (i = 1, 2…) is the 

mean of values for each group, S is sample covariance matrix 

of all variables, and c is cost function. If the misclassification 

cost of each group is considered equal, then c = 0. A member 

is classified into one group if the result of the equation is 

greater than c (or = 0), and into the other if it less than c (or = 

0). A result that equals c (set to 0) indicates such a sample 

cannot be classified into either class, based on the features 

used by the analysis. LDA function distinguishes between two 

classes – if a data set has more than two classes, the process 

must be broken down into multiple two‐class problems. The 

LDA function is found for each class versus all samples that 

were not of that class (one‐versus‐all). Final class membership 

for each sample is determined by LDA function that produced 

the highest value and is optimal when variables are normally 

distributed with equal covariance matrices. In this case, the 

LDA function is in same direction as Bayes optimal classifier 

(Billings and Lee, 2002), and it performs well on moderate 

sample sizes in comparison to more complex method (Ghiassi 

and Burnley, 2010). Its mathematical function is simple and 

requires nothing more complicated than matrix arithmetic. 

The assumption of linearity in the class boundary, however, 

limits the scope of application for linear discriminant analysis. 

Real‐world data frequently cannot be separated by linear 

boundary. When boundaries are nonlinear, the performance of 

the linear discriminant may be inferior to other classification 

methods. Thus, to curb this – we adopt a decimal encoding of 

the data to give us a semblance of linear, continuous 

boundaries. 

3.2. K-Nearest Neighbourhood (KNN) 

The K‐nearest neighbour (KNN) model is a well-known 

supervised learning algorithm for pattern recognition that 

first introduced by Fix and Hodges in 1951, and is still one 

of the most popular nonparametric models for classification 

problems (Fix and Hodges 1951; 1952). K‐nearest 

neighbour assumes that observations, which are close 

together, are likely to have the same classification. The 

probability that a point x belongs to a class can be estimated 

by the proportion of training points in a specified 

neighbourhood of x that belong to that class. The point may 

either be classified by majority vote or by a similarity 

degree sum of the specified number (k) of nearest points. In 

majority voting, the number of points in the neighbourhood 

belonging to each class is counted, and the class to which 

the highest proportion of points belongs is the most likely 

classification of x. The similarity degree sum calculates a 

similarity score for each class based on the K‐nearest points 

and classifies x into the class with the highest similarity 

score. Its lower sensitivity to outliers allow majority voting 

to be commonly used other than the similarity degree sum 

(Chaovalitwongse, 2007). We use majority voting for the 

data sets to determine which points belongs to 

neighbourhood so that distances from x to all points in the 

training set must be calculated. Any distance function that 

specifies which of two points is closer to the sample point 

could be employed (Fix and Hodges, 1951). The most 

common distance metric used in K-nearest neighbour is the 

Euclidean distance (Viaene, 2002). The Euclidean distance 

between each test point ft and training set point fs, each with 

n attributes, is calculated via Eq. 2: 

� = ����� − ���
� + ���� − ���
�…+ ���� − ���
��
�
�	    (2) 

In general the following steps are performed for the 

K-nearest neighbour model (Yildiz et al., 2008): (a) chosen of 

k value, (b) distance calculation, (c) distance sort in ascending 

order, (d) finding k class values, (e) finding dominant class. 

A challenge in K‐nearest neighbour is to determine optimal 

size of k that acts as a smoothing parameter. A small k is not 

sufficient to accurately estimate population proportions 

around test point. A larger k will result in less variance in 

probability estimates (but for risk of introducing more bias). K 

should be large enough to minimize probability of a non‐
Bayes decision, and small enough that all the points included, 

gives an accurate estimate of the true class. Enas and Choi 

(1986) found optimal value k depends on sample size and 

covariance structures in each population and on the 

proportions for each population in the total sample. For cases 

where the differences both in covariance matrices and 

between sample proportions are both small or both large, it is 

found that optimal k is N
3/8

 (N is number of samples in the 

training set). If and when there is a large difference between 

covariance matrices, and a small difference between sample 

proportions (or vice-versa), the optimal value k is determined 

by N
2/8

 (Enas and Choi, 1986). 

This model presents several merits (Berrueta et al., 2007) in 

that: (a) its mathematical simplicity does not prevent it from 

achieving classification results as good as (or even better than) 

other more complex pattern recognition techniques, (b) it is 

free from statistical assumptions, (c) its effectiveness does not 

depend on the space distribution of the classes, and (d) when 

the boundaries between classes are not hyper‐linear or hyper‐
conic, K-nearest neighbour performs better than LDA. 

However, Enas and Choi (1986) found that LDA performs 

slightly better than K‐nearest neighbour when the population 

covariance matrices are equal, a condition that suggests linear 

boundary. As the differences in covariance matrices increases, 

K‐nearest neighbour performs increasingly better than the 

linear discriminant function. However, despite these merits of 

the model, the demerits of the K-nearest neighbour models 

includes that model does not work well if large differences are 

present in samples in each class. K‐nearest neighbour provides 

poor information about the structure of the classes and of the 

relative importance of each variable in the classification. Laos, 

it does not allow a graphical representation of the results, and 

in the case of large number of samples, computation become 

excessively slow. In addition, K‐nearest model requires more 

memory and processing requirements than other methods. All 

prototypes in the training set must be stored in memory and 

used to calculate Euclidean distance from every test sample. 

The computational complexity grows exponentially as 

number of prototypes increases (Muezzinoglu and Zurada, 

2006). 
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3.3. Bayesian Profile Hidden Markov Model (PHMM) 

Ojugo et al (2016) describes the Hidden Markov model as 

used in examination scheduling. Adapted to GDM diabetes 

classification problem, probability from one transition state 

to another is as in figure 1. The PHMM is a double embedded 

chain that models complex stochastic processes (Bhusai and 

Patil, 2011; Masoumeh, Seeja, and Afshar, 2012). Markov 

process is a chain of state probabilities associated to each 

transition between states. In n-order Markov, its transition 

probabilities depend on current and n-1 previous states. A 

HMM process determines the state generated for each state 

observation in a series (output sequence). For GDM diabetes 

analysis, a rule not accepted by the trained HMM, yields high 

probability of either a false-positive or true-negative result 

(Ojugo et al, 2016). Traditional HMM scores data via 

clustering based on profile values. Probabilities of initial set 

of rules are sampled – then classified into GDM or 

non-GDM class. HMM maintains a log in memory to help 

reduce high true-negatives (rules of symptoms with 

semblance of diabetic feats) and high-false positives 

(unclassified rules for diabetes). Thus, our HMM is initially 

trained to assimilate normal behaviour of the various types or 

diabetes class/types. It then creates a profile of the rules, 

classifying them into type-1, type-2, gestational and other 

profile ranges were possible (Tripathi and Pavaskar, 2012; 

Ojugo et al, 2016). 

 

Figure 1. Actual State Transition with P(x) 

The Profile HMM as a variant of HMM, proffers solution to 

the fundamental problems of the HMM by: (a) makes explicit 

use of positional (alignment) data contained in observations or 

sequences, and (b) allows null transitions, where necessary so 

that the model can match sequences that includes insertion and 

deletions (Ojugo et al, 2014). Used in GDM early detection, O 

is each rules contained therein to define the various symptoms 

of GDM diabetes type, T is time it takes each rule to classify 

data input, N is number of unclassified rules and those with 

symptom semblance that results in false-alarm rates, M is the 

number of rules accurately classified, π is the initial state or 

starting rule, A is state transition probability matrix, aij is the 

probability of a transition from a state i to another state j, B 

contains the N probability distributions for the codes in the 

knowledgebase from where profiles have been created (one 

rule for each state of the process); while HMM λ = (A, B, π). 

Though, parameters for HMM details are incomplete as above; 

But, the general idea is still intact (Ojugo et al, 2016). 

 

Figure 2. PHMM with 3-Match States. 

We can also align multiple codes (data) rules as sequence 

with significant relations. Its output sequence determines if an 

unknown code is related to sequence belonging to either of the 

diabetes (type class) or its variant (or those not) contained in 

the Bayesian net. We then use the profile HMM to score codes 

and make decision. Circles are delete state that detects rules as 

classified into GDM-diabetes types, rectangle are insert states 

that allows us to accurately classify rules of symptoms that 

have been previously unclassified inputs into a class type and 

consequently, update knowledgebase of the classified 

false-positives and true-negatives; diamonds are matched 

states that accurately classifies rules of symptoms into variants 

of similar symptom or unclassified rules, as in standard HMM 

(Ojugo et al, 2014; 2016). Delete and insert are emission states 

in which an observation is made as PHMM passes through all 

the states. Emission probabilities, corresponding to B in 

standard HMM model is computed based on frequency of 

symbols that can be emitted at a particular state in the model; 

But, are positional-dependent (in contrast to standard model). 

Also, the emission probabilities are derived from Bayesian net, 

which represents our training phase. Finally, match states 

allow the model to pass through gaps, existing in the Bayesian 

net to reach other emission states. These gaps prevent model 

from over-fitting and overtraining as in figure 2 (Ojugo et al, 

2016). Our forward algorithm computes (recursively) 

probabilities of all possible case by reusing scores calculated 

for partial sequences using Eq. 3 to Eq. 5 respectively as thus: 
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3.4. Fuzzy Genetic Algorithm Trained Neural Network 

Model 

The GANN is initialized with if-then rules. Individual fitness 

is computed as 30-individual are selected via the tournament 

method to determines new pool and individuals for mating. 

Crossover and mutation is applied to help net learn dynamic and 

non-linear feats in the dataset and feats of interest using a 

multi-point crossover. As new parents contribute to yield new 

individuals whose genetic makeup is combination of both 

parents, mutation is reapplied and are allocated new random 

values that still conforms to belief space. Number of mutation 

applied depends on how far CGA is progressed on the network 

(how fit is the fittest individual in the pool), which equals 

fitness of the fittest individual divided by 2. New individuals 

replace old with low fitness so as to create a new pool. Process 

continues until individual with a fitness value of 0 is found – 

indicating solution is reached (Ojugo et al, 2013). 

Initialization/selection via ANN ensures that first 3-beliefs 

are met; mutation ensures fourth belief is met. Its influence 

function influences how many mutations take place, and the 

knowledge of solution (how close its solution is) has direct 

impact on how algorithm is processed. Algorithm stops when 

best individual has fitness of 0 (Dawson and Wilby 2001). 

Model stops if stop criterion is met. GANN utilizes number of 

epochs to determine stop criterion. 

4. Result Findings and Discussion 

4.1. Model Performance 

Ojugo et al (2013) Performance is evaluated via computed 

values: mean square error, mean absolute error, mean relative 

error and coefficient efficiency as thus: 

Table 2. Model Convergence Performance Evaluation. 

Model MSE MRE MAE COE Class. Accuracy % 

LDA 0.87 0.79 0.75 0.581 42 

K-nearest 0.67 0.55 0.56 0.481 51 

PHMM 0.46 0.31 0.23 0.853 90 

FGANN 0.46 0.37 0.46 0.818 86 

 

Table 3. Clinical Parameters and Association. 

No Attribute Name µ σ 

1 Number of Pregnancy 3.8 3.4 

2 Plasma Glucose (2 Hours) 121 32 

3 Diastolic Blood Pressure 69.1 19.4 

4 Triceps skin fold thickness 20.5 16.0 

5 Two Hour Serum Insulin 79.8 115.2 

6 Body Mass Index 32.0 7.9 

7 Diabetes Pedigree Function 0.5 0.3 

8 Age 33.2 11.8 

4.2. Result Findings and Discussion 

To measure their effectiveness and classification accuracy, 

we adopt the misclassification rate of each model as well as its 

corresponding improvement percentages of the proposed 

model in comparison with those of other classification models 

for the diabetes data in both training and test data sets as 

summarized in Table 2 and Table 3, respectively. The 

equations for the misclassification rate and its improvement 

percentage of the unsupervised (B) model against those of the 

supervised (A) model, is respectively calculated as follows: 

).6�5(66.�.�(7.�8	9(7:	�)9
 = 	;<.<>	2�?<@@ ?�	4ABC�<�A�;<.<>	DBEFG 	� � 	     (6) 

1HIJ�K:H:87	L:J�:87(�: = 	�M�N
��M�O

�M�N
 	P	100       (7) 

Table 4. Misclassification Rate of Each model. 

Model 
Classification Errors 

Training Data Testing Data 

LDA 36.6% 34.9% 

K-Nearest Neighbourhood 43.4% 39.7% 

PHMM 18.7% 15.8% 

FGANN 19.3% 18.3% 

Table 5. Improvement Percentage. 

Model 
Improvement % 

Training Data Testing Data 

LDA 45.83% 41.16% 

K-Nearest Neighbourhood 41.79% 43.09% 

PHMM 78.78% 76.33% 

FGANN 69.30% 69.91% 

Tables 4 and 5 shows unsupervised model has lowest error 

on test portion of the data set in comparison to supervised 

models used. PHMM/FGANN had misclassification rate of 

18.7% and 19.3% respectively – with an improvement rate of 

78.78% and 69.30% respectively. Conversely, the supervised 

models in LDA and K-Nearest neighbourhood had a 

misclassification error rate of 36.6% and 43.4% respectively; 

while showing an improvement rate of 45.83% and 41.79% 

respectively. Also, it is observed that though the K‐nearest 

neighbour scores were quite sensitive to relative magnitude of 
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different attributes, all attributes are scaled by their z‐scores 

before using K‐nearest neighbour model in tandem with 

Antal et al (2003). 

4.3. Related Study 

Barakat et al (2010) adopts SVM by using an additional 

intelligent module to transform black-box SVM model to an 

intelligent SVM's diagnostic model with adaptive results that 

provides a potential model for diabetes prediction. Its logical 

rule set generated had prediction accuracy of 94%, sensitivity 

of 93%, and specificity of 94%. Extracted rules are medically 

sound and agree with outcome of relevant medical studies. 

Khasei et al (2012) adopted a feed-forward 

multi-perceptron network in their study. Such networks must 

be expanded and extended to represent complex dynamic 

patterns and/or cases such as this, since it treats all data as new 

– so that previous data signals do not help to identify data feats 

of interest, even if such observed datasets exhibits temporal 

dependence. Consequently, this has practical implementation 

difficulty as large nets are not easily implemented. However, 

Jordan net overcomes such difficulty via use of its internal 

feedbacks that also makes it appropriately suitable for such 

dynamic, non-linear and complex tasks as its output unit is 

fed-back as input into its hidden unit with a time delay, so that 

its outputs at time t−1, is also input at time t. Also, Ojugo et al 

(2015). 

The rationale for the choice of techniques adopted is to 

compare between: (a) supervised versus unsupervised model, 

(b) seek a measure to lay claims to superiority of a class of 

models (supervised/unsupervised) over the other for the task 

at hand, (c) compare clustering (profile) versus hill-climbing 

heuristic, and (d) measure the convergence behavior and other 

statistic between PHMM and FGANN. On this latter, it was 

observed that PHMM converged after 253-iterations; while 

FGANN converged after 213-iterations. And though, FGANN 

is significantly better and outperforms PHMM in some tasks; 

while PHMM have been found to outperform FGANN in 

classification accuracy. 

We note, model’s speed is traded-off for greater accuracy of 

classification, more number of rule set generated to update the 

knowledge database for optimality and greater functionality. 

5. Conclusion and Recommendations 

As for GDM, its risk factors are many and must be assessed 

regularly in all pregnant women. Placental mass and hormonal 

changes during pregnancy may contribute to the pathogenesis 

of GDM. Insidious onset of most cases of GDM necessitates a 

diligent search and screening, and while, we advise that RBG, 

FBG, and OGTT to be used in GDM diagnosis (as agreed by 

Opta and Nzeribe, 2013). A significant number of cases of 

GDM in pregnancy require insulin for treatment. There is now 

increasing evidence, that sulphonylureas and metformin are 

safe in pregnancy. The management and follow-up of GDM is 

for life. 

Furthermore, our study employed supervised (K-nearest 

neighbourhood/LDA) and unsupervised (PHMM/FGANN as 

benchmark for classification of GDM) models – and consists 

of 5-phases: (a) train models with available data, (b) determine 

minimal fuzziness via the obtained weights and same criterion, 

(c) delete outliers in data, (d) compute membership 

probability of output, and (e) assign output to appropriate class 

by largest probability. Four known intelligent classification 

models: LDA, K‐nearest neighbour, PHMM and FGANN 

are used to show their classification efficiency for early 

prognosis of GDM. The hybrid unsupervised models 

outperforms, and is better than K-nearest and LDA (alongside 

other traditional classification models). 

The unsupervised models do not assume the shape of the 

partition, unlike the linear and quadratic discriminant analysis. 

In contrast to K‐nearest neighbour model, the proposed 

model does not require storage of training data. Once the 

model has been trained, it performs much faster than K‐
nearest neighbour does, because it does not need to iterate via 

individual training samples. Proposed model does not require 

experimentation and final selection of kernel function and a 

penalty parameter as is required by the support vector 

machines. Our proposed model solely relies on a training 

process in order to identify the final classifier model. Finally, 

the unsupervised models does not need large amount of data in 

order to yield accurate results. 
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