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Abstract: Polyomavirus virions such as simian virus 40 (SV40), antinuclear antibodies such as immunoglobulin G (IgG) and 

steroid hormones all enter the nucleus from the extracellular environment. Testosterone-bovine serum albumin conjugate labeled 

with 2 nm colloidal gold (testosterone-BSA-gold) is taken up by endocytosis into target cells, and enter the nucleus through a 

similar route as SV40 nuclear migration. Upon injection into the vascular system of rats, IgG coupled with hydrocortisone also 

enters the hormone-target cell nuclei with intact antigenicity. These results suggest that steroid hormones could act as 

transporters to deliver exogenous macromolecules, e.g. drugs, into their target cell nuclei in vivo, although further studies are 

required on whether steroid hormones coupled with proteins exert genomic actions in the nucleus, etc. Finally, 

testosterone-BSA-gold seems to be isolated from the cytosol in the processes of nuclear entry. Together, these findings 

challenge the popular belief that steroid hormones mostly enter the cell in unbound form via uncontrolled passive diffusion.  
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1. Introduction 

Various large molecules destined for cell nucleus arrive 

from the extracellular environment. Many of the mechanisms 

by which such molecules enter the cell and its nucleus are still 

unclear. For example, antinuclear antibodies can enter the 

nucleus from the exterior of a cell. However, native IgG does 

not pass freely the cell- or nuclear membrane; IgG introduced 

to the cytoplasm did not enter the nucleus [1, 2]. Polyomavirus 

virions such as simian virus 40 (SV40) comprise proteins and 

DNA, and are able to enter the nucleus from the extracellular 

environment [3]. Substances such as SV40 tumor antigen and 

nuclear proteins migrate into the nucleus from the cytoplasm 

[4, 5]. IgG with synthetic peptides containing nuclear 

localization signal such as that of SV40 tumor antigen could 

enter the nucleus from the cytoplasm by active transport 

through nuclear pore complexes (NPCs) [2, 6]. This review 

reports about vesicular trafficking of macromolecules to the 

nucleus from extracellular environment. 

2. Transportation Course of 

Macromolecules to the Nucleus from 

the Extracellular Environment 

In some infectious processes, virus-containing vesicles fuse 

with the outer nuclear membrane, delivering the virus 

particles into the perinuclear cisterna (Figure 1a) [7, 8]. In our 

search for other entryways to the nucleus, migration of SV40 

was pursued in cultured cells, using ferritin and concanavalin 

A as cell membrane markers. Ferritin particles introduced into 

the cytoplasm did not enter the nucleus by themselves. In 

contrast, SV40-containing vesicles with ferritin particles were 

observed close to a single-bilayer nuclear membrane or a 

diaphragm (Figure 1b, c) [9, 10]. The nucleoplasmic side of 

the diaphragm was covered with electron-dense materials, and 

cell membrane markers were localized along the 
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nucleoplasmic side of the inner nuclear membrane [9, 10]. 

These results suggest that SV40-containing vesicle membrane 

fuses to a single-bilayer diaphragm in the nuclear envelope in 

order to transport virus particles into the nucleoplasm, and that 

the exogenous macromolecules used here as cell membrane 

markers were transported into the nucleus in this manner 

(Figure 1b) [9]. 

3. Diaphragms in Nuclear Envelope 

A question then arose whether diaphragms in nuclear 

envelope are formed by hemifusion between the outer- and 

inner nuclear membrane, or by deletion of the outer membrane. 

Complete fusion of two membranes such as pore formation 

occurs through the process of hemifusion (Figure 1d) [11]. 

The hemifused area then enlarges [12]. To validate the 

presence of pores other than NPCs in the nuclear envelope, 

subacrosomal nuclear envelopes (SNEs) of spermatids were 

observed under electron microscope, as SNE is devoid of 

NPCs. Two membranes of SNE are in close apposition. The 

continuity between the outer and inner nuclear membranes of 

SNE was observed successfully [13], indicating the possibility 

that there is hemifusion membrane in the SNE. Earlier, we 

found pores that are different from NPCs in nuclear export of 

baculovirus nucleocapsids. Recombinant baculovirus 

nucleocapsids (45 nm x 280-300 nm) are formed in the 

nucleoplasm, and migrate into the cytoplasm to bud through 

cell membrane. In the study using rapid cryofixation, we 

proposed that the nucleocapsids pass through small pores 

formed in the protrusion of double membranes derived from 

the nuclear envelope [14]. From our study on the nuclear entry 

of testosterone-BSA-gold discussed below, the diaphragm 

seems to be formed by hemifusion of both membranes. 

 

Figure 1. Schema of fusion between nuclear membranes and vacuole membrane. 

a. Nuclear entry of SV40 proposed by Maul. (1, 2) Vacuoles containing SV40 fuse with outer nuclear membrane. (2) Virus particles enter perinuclear cisterna. (3) 

Virus particles are enveloped by inner nuclear membrane. (4) Membrane envelopes free SV40 in the nucleus.  

b. (1) Vacuoles containing cell membrane markers and SV40 are located close to single membrane-like envelopes, or diaphragms. (2) Fusion between vacuoles’ 

membrane and diaphragms. (3, 4) Cell membrane markers and SV40 enter the nucleus. 

c. (1) Large vacuoles containing cell membrane markers and SV40 are located near the nucleus. (2) Parts of vacuoles’ membrane fuse with diaphragms, while 

other parts fuse with the outer nuclear membrane. (3, 4) Cell membrane markers and SV40 enter the nucleus, and some markers remain in the perinuclear 

cisterna.  

d. (1, 2) Invagination of the outer nuclear membrane toward the inner nuclear membrane. (3) Formation of hemifusion diaphragm. (4) Formation of pore. 

e. (1) Invagination of the outer nuclear membrane of rat spermatogenic cells where testosterone-BSA-gold was injected. (2) A double-membrane-like vesicle 

with testosterone-BSA-gold in the nuclear envelope. 

N: nucleus; NE: nuclear envelope; NP: nuclear pore; ONM: outer nuclear membrane; INM: inner nuclear membrane. 
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4. Steroid Hormones as Carriers to 

Deliver Exogenous Proteins into the 

Target Cell Nuclei 

Steroid hormones circulate in blood plasma in three 

different forms: albumin-bound, steroid hormone-binding 

globulin (SHBG)-bound, and free [15]. In the classical model 

of genomic steroid hormone action, lipophilic hormones are 

first released from their carrier proteins and cross the cell 

membrane by passive diffusion in their free form [16, 17]. 

Contrary to this belief, SHBG coupled with [
3
H]-testosterone 

(testosterone-SHBG) is internalized by receptor-mediated 

endocytosis in spermatogenic cells, which are target cells of 

testosterone, and then enters their nuclei in vitro [18, 19]. 

Colloidal gold embedded in epoxy resin becomes visible as 

silver deposits on the sections after silver enhancement [20]. 

Upon injection into the vascular system of rats, 

testosterone-bovine serum albumin conjugate labeled with 2 

nm colloidal gold (testosterone-BSA-gold) is taken up by 

endocytosis into the target cells of testosterones such as round 

spermatids, and then enters the nucleoplasm [10, 20, 21]. In 

contrast, the nuclei of cells that are not targeted by 

testosterone such as thymocytes and hepatocytes showed very 

few silver deposits implying the presence of 

testosterone-BSA-gold [20]. These results suggest that the 

nuclear entry of testosterone-BSA-gold is specific to the target 

cells of testosterone. From the distribution of silver deposits, it 

has become clear that hydrocortisone-BSA-gold conjugates 

injected into rats enter the target cell nuclei such as 

hepatocytes and thymocytes [22]. The target-specificity 

suggests that the fate of gold labeled-steroid-BSAs may be 

decided at the cell membrane level. 

In the spermatogenic cells of rat injected with 

testosterone-BSA-gold, the silver deposits were present on the 

cell membrane, vesicles, Golgi region, acrosome, 

subacrosomal space, both the post-acrosomal and the 

subacrosomal nuclear envelope, and the nucleoplasm [10, 21]. 

In observations without silver enhancement, a single-bilayer 

nuclear membrane or a diaphragm was visible in the SNE [10, 

13]. In post-acrosomal nuclear envelope, the outer nuclear 

membrane was invaginated toward the inner nuclear 

membrane, and was likely to interact with the latter (Figure 1e) 

[10, 21]. Furthermore, a double-membrane-like vesicle 

containing gold particles was observed in the pit formed by 

the invagination of the outer nuclear membrane (Figure 1e) 

[10, 21]. These results suggest that testosterone-BSA-gold is 

transported by vesicles from the extracellular environment to 

the nucleoplasm. This route resembles the entryway proposed 

for nuclear migration of SV40 (Figure 1b) [21]. 

We also investigated whether BSA in the steroid-BSAs 

remains intact in the cell nuclei. For this purpose, 

testosterone-BSA, hydrocortisone-BSA or 

corticosterone-BSA was injected into rats; it showed that 

BSA-steroid hormone conjugates enter the hormone-target 

cell nuclei while maintaining antigenicity [23]. Steroid-BSA 

binds to nuclear receptors [24, 25]. Bovine IgG coupled with 

hydrocortisone injected into adrenalectomized rat vascular 

system enters the hormone-target cell nuclei in the liver, 

maintaining the antigenicity [26]. Together, these findings 

support the idea that steroid hormones could be useful as 

target cell-specific carriers to deliver exogenous 

macromolecules into cell nuclei. 

5. Conclusion 

Cells have various mechanisms to control the substances 

and their quantity that can pass through the cell- and nuclear 

membrane, and countermeasures have been developed by 

viruses such as SV40. The popular belief that lipophilic 

molecules such as steroid hormones can simply diffuse into 

cells uncontrolled seems to go against this controlling nature. 

Moreover, why do steroid hormones not remain in the lipid 

layer of biomembrane like their precursor cholesterol, if they 

enter cells by simple diffusion? Mounting evidences such as 

those mentioned above and others indicate that the passage of 

steroids into cells and their nuclei is better regulated than 

previously believed. In addition, the notion that steroids only 

traverse the cell membrane in unbound form is also challenged. 

In the process of nuclear entry, steroid-BSAs seem to be 

isolated from the cytosol. It is unknown whether steroid 

hormones coupled with proteins exert genomic actions in the 

nuclei. Further studies are required to elucidate these 

processes. 
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