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Abstract: Optimal estimation of the diffraction observations over the object reliably detects periodicity in the dislocation 
structure of martensitic transformation as an exhibition of its wave nature. The period along normal to the slip planes is 
comparable with the radius of dislocation loops in crystals. The measured degree of one-dimensional long-range order in the 
arrangement of the loops is close to the upper limit equal to unity. Subject to the theory of metals, the observed structure could 
be generated by quantum lattice vibrations, which actuate a jump-like phase transition. A simple explanation exists: after a 
sharp fall in temperature, the excess energy of conduction electrons causes the crystal to expand instantly with the 
transformation of translational symmetry. Internal shifts of the crystal lattice caused by electron-phonon interactions 
concurrently trigger the wave process of formation of thin martensitic plates in the surrounding matrix, which are observed in 
metallography. Based on an in-depth analysis of the dislocation structure of martensite crystals, a physically founded concept is 
advanced in which the martensitic transformation is a macroscopic quantum phenomenon connected with the symmetry 
properties of a crystal system in metals. 

Keywords: System of Dislocation Loops, Ordering by Parallel Slip Planes, Relaxation Vibrations of Crystal Lattice, 
Quantum Nature of Martensitic Transformation 

 

1. Introduction 

The diffraction theory of dislocation systems in the 
crystals is applicable to the entire space of structures: 
disorder (chaotic network), short-range order (random 
clusters) and long-range order (regular placement) [1]. 

The main propositions of the theory that is basis of the 
method for studying the dislocation structure of highly 
distorted crystals are specified in [2]. 

Analysis of the dislocations system arising in crystals upon 
martensitic transformation reveals one's nature. 

A high concentration of fine dislocation loops indicates 
that phase transformation the microscopic shifts carry out, 
together transforming the symmetry of crystals [2]. 

With the discovering of a strong long-range order in the 
system of dislocation loops, it becomes cleared that 
microscopic shifts are generated by relaxation vibrations of 
the crystal lattice at the moment of equilibrium disturbance. 

The observability of the long-range order in the dislocation 
structure of crystals is substantially restricted. Information is 

available on the one-dimensional long-range order in the 
system of small dislocation loops, which is existed in the 
lower harmonics of diffraction line with large reflection 
indices {HKL}. 

Measuring the order parameters in the dislocation structure 
of crystals by method created is presented using the example 
of carbon steel tetragonal martensite. 

2. Identification of the Ordered System 

of Dislocations in Crystals 

2.1. Diffraction Mapping of the One-Dimensional Order by 

Arrangement of Dislocation Loops 

The equation of diffraction theory for deformed crystals 
includes averaging over a large statistical ensemble of random 
dislocation systems with all possible values of the parameters 
describing the system under given macroscopic parameters, 
being the density of defects in crystal, the measure of correlation 
and degree of order in their arrangement [1]. 
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2.1.1. General Form of the Diffraction Equation for the 

Real Crystal Structure 

Let there be a correlation in the system of dislocations and 
a long-range order in the arrangement of loops along the 
normal to the slip planes nα (α = 1, …, p). The type of loops 
α is specified by the slip system, the number of them is p. 
The fraction of all ordered loops with random radii of ξ of 
their total number in a crystal is a degree of order ofη. 

The periodic component will appear in the equation of the 
diffraction line harmonics [1]: 
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Here, T0 corresponds to a random distribution of defects, 
T1 takes into account the correlation, T2 represents the long-
range order. Angular brackets denote averaging over a 
statistical ensemble of dislocation systems. An observed 
fraction of theoretical interval in the diffraction space is æ. 

When calculating the periodic component T2 (η), the 
summation is carried out over the basis vectors of the 

reciprocal lattice of ordered defects ( )2g jπ=
ℓ

, where ℓ is 

the period of the main translations, j is the unit vectors in the 

directions of translation. The terms have a factor ( )3
a
ℓ

, 

which takes into account the number of cells of the reciprocal 
lattice of ordered defects per unit volume of the reciprocal 
space of a crystal with a lattice period of a. 

It is assumed that the distribution of loop sizes of ξ and the 
distribution of order periods of ℓ in the statistical ensemble of 
dislocation systems are mutually independent and the same 
for all loops. 

2.1.2. Reciprocal Lattice of Ordered Loops by Normal to 

Slip Planes 

In the model of ordered placement of loops along parallel 
slip planes, for each type of loop α there is only one 
translation vector j || nα (α = 1, …, p). 

The one-dimensional reciprocal lattice of ordered 
dislocations in a crystal of finite size Ξ can be represented as 
a periodic wave packet with a limited spectrum. Peaks with 

an interval of 1
ℓ  and a width of ( ) 

 

1
Ξ∆ ∼  will appear in 

the reciprocal space [3]. Angular brackets denote the 
expected values of parameters in the statistical ensemble of 
dislocation systems that are assumed the same for loops of all 
types α. 

When averaging periodic component T2 (η), the expected 
value of the function of random variable 1

ℓ , which 

probability of deviating from the center of distribution 1
ℓ  

decreases rapidly, is calculated using the expansion to the 
second central moment [4]: 
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Here, 1

2σ
ℓ
 is the variance of the unknown distribution law 

for 1
ℓ . 

It is taken into account that, in the area of the theory’s 
limitations the period of inhomogeneity of crystal distortions 
is much smaller than its size Ξ  (ξ < ℓ < 0.1 Ξ ), and the 

expected ℓ  in the ensemble coincides with the average ℓ  

over the crystal volume (according to the ergodic hypothesis 
[5]). 

2.1.3. Restrictions for Observability of Long-Range Order 

in the Dislocations System 

A state of order in the dislocation structure of crystals is 
observable if there is a region in the diffraction space where 
the parameters included in the model of the object are 
measurable. 

An approximate diffraction equation that allows the 
measurement of order parameters is obtained under the 
following assumption in the periodic component T2 (η) [1]: 
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As a result, the long-range order parameters in the 
dislocation loops system are, in principle, measurable by the 
lower harmonics of the diffraction line, i.e., at k close to zero, 
with a large observing interval in æ and large reflection 
indices in Q{HKL}. 

2.2. Model of Diffraction Observations Providing Optimal 

Estimating the Parameters of Studied Object 

Having a limited amount of reliable information in the 
observational data, it is necessary to select in the parameter 
vector the main parameters to be estimated, the remaining 
parameters to be only restricted in the region of allowable 
values. 

2.2.1. The Equation of the Model of the Best Measurement 

Accuracy of the Main Parameters 

General equation of the diffraction line harmonics has 
reformed into a model of observations, which makes it 
possible to measure both the dislocation density and order 
parameters in the distribution of loops over the slip planes: 
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The area of definition of the observation model, within 
which the approximation of the diffraction theory equation is 
valid, is limited by the harmonics order of klim. 

Numerical values of the crystal-geometry coefficients 
involved in the equation depend on the type of lattice and the 
slip set [2]. In particular, for 〈111〉 {110} bcc C0 = 16.278295, 
C1 = 8.769899, C2 = 5.411616. 

In the diffraction observations model (1), the vector of 
parameters Θ has two components: θ – determined 
parameters of the object; ϕ – other parameters of the 
dislocations system to modeling an object, performing an 
auxiliary role in optimization. 

Both components θ and ϕ of the vector Θ being estimated 
include the average loops concentrationc and their average 

radiusξ. The vector of parameters of a random system of 
dislocation loops as well contains the parameters of volumetric 
and normal correlation (υ,µ) [1] and the coefficients of variation 

both of loop size ξσ ξ  and inverse period of the order 

( )1
1σ

ℓ ℓ . All of them fell into the auxiliary component ϕ. 

2.2.2. Test the Observational Model Allowability Using 

Linear Regression Estimates 

For crystals with small dislocation loops, the number of 
harmonics in the region of all limitations of the diffraction 
observations model (1) can fall to minimum required; 
therefore, put klim = 3. 

Let reduce model (1) to the equation for approximation of 
observations Yk = − ln Ak. Taking into account the stability 
requirement for sample data fluctuations, we construct the 
regression equation for the lower harmonics {Ak} (k < klim), 
excluding the term quadratic in k that is insignificant here: 
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For a sample of data of volume n, it is calculated the 

weighted (with weight ( ) 1
2 2

kA kkw Aσ
−

= , where 2

kA
σ  is the 

variance of the measured Ak) the sum of the squared 
deviations from the regression equation of U. If by residual 

deviations the minimal ( ) ( )* 12 2U Pn> −− , then the 

applicability of model (1) is rejected with a confidence of at 
least P [6]. 

If the regression equation approximates the data well, the 
coefficients (h0,  h1) are positive and statistically 
significant then the model of observations is applicable for 
estimating the parameter vector of Θ. 

Estimates of the regression coefficients, being the best in 
accuracy and stability, give initial approximations for 
auxiliary component ϕ of the vector Θ. 

2.3. Method of Statistical Estimating the Model of 

Diffraction Observations 

Different approximations of the theory variously distort 

the calculated lower harmonics Ak with respect to the true 
harmonics Âk. It can be assumed that in reality, on a 
substantially limited interval (1 ≤ k ≤ klim), systematic errors 
of the predicted harmonics of Ak are close to uniform. 

2.3.1. The Objective Function of the Maximum Likelihood 

of the Data Sample 

Suppose that the squares of variations from true harmonics 
Âk, which are added of data errors and model errors, are 
proportional to the variance of measurements 2

k
σ  with a 

roughly constant unknown factor ζ. Let's redefine the 
problem as estimation by sampling {Ar} (r = 1, …, n) with a 
covariance matrix 
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When a normal distribution of the sample with a 
covariance matrix proportional to unknown factor, the 
maximum likelihood method leads to the following objective 
function of model optimization [6]: 
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Here, n is the sample size of original data; m = klim is 
dimension of the limited observations vector {Ak}. 

2.3.2. The Optimizing Sequence in the Allowable Region of 

Parameters 

The matrix of the second derivatives of the objective 
function – H and the gradient vector – g  are calculated at 
once with the coefficient ζ, which adjusts the model in the 
process of approaching the optimum point Θ∗ [6]: 
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The search for optimum is carried out in the region of 
allowable values of the parameters of the object model that 
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are uniquely associated with the vector θ: 
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This includes information from the theory that the 
diffraction line is detectable when the period of ordered 

placement of the loops is in the  0.1ξ < < Ξℓ  interval, under 

the assumption of a weakly inhomogeneous distortions field 
in a crystal of size Ξ [1]. 

To remain within the allowable region, moving from a 
random starting point θ0, we introduce a parameter 
transformation: 
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Operating vector of parameters ω can vary in infinite 
limits. 

For starting point ϕ0, we choose random variables in 
intervals of deviations against the regression coefficients: 

0 10 1,  h hh hσ σ± ± . 

Having a good approximation, it is possible to optimize ϕ 
without limitations since the objective function (2) will start 
to grow earlier than the step regulated by the coefficient 

( )0 1iγ< ≤  (i = 0, 1, …) [6] will reach boundary of the 

allowable region: 0 10,  0e e
ϕ ϕ> > . 

2.3.3. Statistical Decisions on Optimization Results 

When the optimum point Θ∗ will reached, it is necessary 
testing that the model is consistent with the data and that the 
model parameter estimates are statistically significant. 

The criterion for testing residual deviations of the data 
from the model predictions includes correction on bias: 
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Since in (n×m) model equations there are ( l + 1) fitting 
coefficients (l is the dimension of the vector of estimated 
parameters Θ), the minimum required data sample size is 

( )1n l m> + . 

The model will be rejected as not corresponding to the data 

with a reliability of at least P if ( )1m P> −η  [6]. 

At a good agreement of the model with observational data, 
the matrix H−1 (Θ∗) approaches the covariance matrix of the 
parameters VΘ [6] suitable for testing the statistical 
significance and uncorrelation of estimates in the vector Θ∗. 
Acceptable estimates are considered as measured values of 
the object model parameters. 

Running computational experiments with a random choice 
of an allowable starting point Θ0, we accumulate a sufficient 
sample of measurements to produce the confidence intervals 

for the dislocation density   1

2d

2

a
e

θ πρ = ⋅  and a degree of 

order 2η θ= , as well as the lower confidence limit for the 

period of order, since ( )    

 

3 3
e< θξ ℓ . 

Approximate confidence intervals, self-corrected over a 
sample of parameter measured values, are constructed using 
the method described in [1]. 

2.4. Verification of Accuracy of the Parameter Estimates 

Using Simulation Experiments 

The diffraction line {112}, best on observability of the 
long-range order in bcc crystals, was chosen, that interval is 
æ = 0.2 from the theoretical period. The main parameters of 
the model crystal are given in Table 1. 

The measured harmonic values of the diffraction line of Ak 
are simulated by independent normally distributed random 
variables with theoretically calculated expectation Âk and 
with the equal standard variation σ = 0.01. When generating 
data for model crystals using exact diffraction equations [1], 
the averaging over an ensemble of dislocation systems is 
carried out using the Monte Carlo method. For simulation 
tests, a sample of the smallest possible volume in a real 
experiment of n = 4 was generated. 

Table 1 represents the results of measuring the 
parameters of model crystals by lower harmonics of the 
diffraction line (klim = 3). There are given the average 
confidence intervals for parameters being determined, 
which constructed along 60 independent random samples of 
volume 60, extracted from a total sample of 900 measured 
values of the vector Θ∗. 

Table 1. Parameter estimates for the system of dislocation loops with the long-range order by simulation measurements data. 

Model crystal Specified order parameters 
Approximate 90% confidence intervals of estimates 

Dislocation density, ρd [cm−²] Degree of order,η 

bcc (Fe) η = 0.2, ℓ = 3ξ [1.5; 2.2]⋅1011 [0.22; 0.36] 

〈111〉{112} η = 0.5, ℓ = 2ξ [1.7; 2.6]⋅1011 [0.45; 0.61] 

ρd = 1011 cm−² η = 0.8, ℓ =ξ [2.5; 4.1]⋅1011 [0.71; 0.82] 

ξ/a = 25  “  [1.0; 1.4]⋅1011+  

+ Estimation of dislocation density in neglect of long-range order by the higher harmonics of the diffraction line {110} (æ = 0.1). 

The order states in the dislocation structures of model crystals are distinguishable, despite bias of estimates. Just 
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because of the estimates bias, the lower confidence limits to 
periods of the order overlap whenℓ > 2ξ. 

2.5. Notes on the Identifiability of a System of Dislocations 

with Ordering 

Method of determining the long-range order better fit for 
real crystals. In actuality, the deviations of the predictions 
according to model (1) with respect to the true lower 
harmonics of the diffraction line are made more uniform. 

For small k /æ, the approximation error of the exact 
diffraction equation constructed by the model of object is 
smaller. But there the errors of the object model itself, with 
an approximate description of the displacement field created 
by dislocation loops in the crystal, have a greater action. 

With split dislocations, the errors of the object model 
become unacceptable for calculating the lower harmonics of 
the diffraction line of crystals. 

In a practical example of martensite of high-carbon alloyed 
steel, the effect of the split of twinning dislocations is so 
significant that a regression analysis of the data rejects the 
observations model (1). The regression curve shows that with 
the occurrence of micro-twins, the harmonics of the 
components of {112} multiplet for k < 3 (æ = 0.22) decrease 
steeply, then the harmonics attenuation slows down, as in 
model crystals with a long period of order (ℓ /ξ > 3). 

Parametric identification of long-range order in the 
dislocation structure of martensitic crystals with micro-twins 
is not realizable. 

When the method of identifying a system of dislocations 
by the higher harmonics of the diffraction line described in 
[1], the effects of long-range order, if they are significant, are 
added to the systematic errors of the observations model, and 
identification is adapted to them, which is confirmed by the 
estimate of the density of dislocations in Table 1. 

3. Dislocations System Determined in 

Tetragonal Crystals of Steel 

Martensite 

3.1. Object Parameters Measurable in Different Areas of 

Diffraction Space 

When a tetragonal lattice of crystals, in the diffraction 
observations model (1) the independent variables are 
transformed: 

[ ]

[ ] ( )

[ ] ( )

  

 ?  

   

  

 

 

2 2
   0 0 0

1 1 1

2
 2 2 2

,           12.4 7.75 ,

æ ,   1.26 ,

1 æ ,  5.20 ;4

HKL

k HKL

k

c
t C C Q C

a

c
x C C Q k C

a

c
y C C k C

a

 = − ∆ =+ ∆

+

+

 = ∆ =

 = ∆ =

∆

+ ∆


r r

r

r

 

( ) ( ) ( ) 

2
2 2 2

 0
0

 ,   ? æ ,
HKL

a aQ H K L
c a

a= + + =  

( )    0 1 0.09.c
a

< = − <r  

Here, ( )c
a

 is the degree of tetragonality, and a0 is the 

period of cubic lattice of crystals. Numerical values of the 
crystal-geometry coefficients for bcc crystals are given above. 
(With one more slip kind 〈111〉{112} C1 = 9.493694, ∆C1 = 
2.12 r.) 

At existing tetragonality, the measured dislocation density 

is ( )  1

2d

2

a

a
c

eθ πρ = ⋅ , where θ1 is component of the parameters 

vector Θ in the model of observations (1). 
In [2], the method of optimal estimation of harmonics of 

an approximate shape of lines forming a diffraction multiplet 
is presented. 

Higher harmonics of the identified components of the {110} 
multiplet make it possible to measure the dislocation 
densityρd and determine the upper confidence limit of the 

average loops radiusξ [2]. 
By lower harmonics of the components of the multiplet 

{112}, together with the dislocation density, the degree of 
orderη is estimated and the lower confidence limit of the 
order periodℓ /ξ is determined. 

3.2. The Received Information on the Parameters of the 

Object under Study 

The optimal diffraction experiment for structural analysis 
is described in [1]. X-ray parameters of the test steel sample 
with a carbon concentration of ≤ 1.0 wt.% are the same as in 
[2]. 

Figure 1 shows dispersion of measured harmonics of the 
line profile in the diffraction multiplet {112} (sample size is 
n = 20). The harmonics {Ak} (k ≤ 6) are statistically 
significant with a confidence of 99.9 % by the estimate of 

true variance 2

kAσ  [1]. The regression curve in Figure 1 

notices the interval of observability of the long-range order in 
the system of dislocations. 

 

Figure 1. The dispersion of harmonics of approximate shape of lines in the 

model of martensitic multiplet {112} of carbon steel specimen (æ = 0.18). 

Based on reliable data from the analysis of {112} 
diffraction multiplet of carbon steel specimen, well-defined 
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parameters of long-range order in the dislocation structure of 
the martensitic transformation were obtained. 

To measure parameters, computational experiments are 
performed on the model (1); they represent oneself a search 
for the optimum of the objective function (2) from random 
starting points uniformly distributed in the allowable region 
of the object's parameter space. 

Analysis of the observational data and estimation of the 
object parameters were carried out using the updated 
diffraction study automation system, which is an addition to 
the monograph [1]. 

Figure 2 shows the distribution of the measured values of 
the degree of order in the arrangement of the dislocation 
loops over parallel slip planes. The size of accumulated data 
sample is 9×103. 

 

Figure 2. Sampling distribution of measured values of the degree of order in 

the dislocation structure of martensite crystals of carbon steel. 

Table 2. Long-range order in the dislocation structure of the martensitic transformation of carbon steel. 

Measured parameter Approximate 90% confidence interval of estimates The most plausible estimates by histogram maxima 

Dislocation density,ρd [cm−²] [0. 7; 0.8]×1012 [0. 6; 0.7]×1012+ (0.6−1.0)×1012 
Degree of order,η [0.88; 0.91] [0.85; 0.88]+ (0.90−0.95) 

+ Estimates by the lower harmonics of the components within multiplet {110}. 

Table 2 presents the average confidence intervals for 
parameters being measured, which constructed on 900 
random samples of volume 60 extracted from the total 
sample of measurements. 

The estimate of the dislocation density corresponds to that 
expected from analysis of the higher harmonics of the 
diffraction multiplet {110} [2]. 

The lower harmonics of the components of {110} 
multiplet under large measuring interval (æ = 0.23) on a 
double-quenched sample with fallen the fraction of residual 
austenite to < 4%, gave close interval estimates of the order 
parameters, and the most plausible estimates are the same as 
those from the data of analysis of multiplet {112} (Table 2). 

With a reliability of at least 90%, the lower confidence 
limit of the order period in the system of dislocation loops is 

1>ξℓ ≃ . That estimate is confirmed by the lower harmonics 

of the components of multiplet {110}. 
The appearance of a long-range order along normal to the 

slip planes containing clusters of dislocation loops, in the 
continuum approximation, is clarified by a wave of 
vibrations of an elastic medium. According to the equation 
of movement of an elastic medium in a plane perpendicular 
to the direction of extension of an elastic wave, 
displacements are purely shear, just like in slip planes in a 
crystal [7]. 

4. Conclusion 

In crystals of martensite, the periodic dislocation structure 
revealed itself, giving rise to an image of a hardened wave of 
lattice vibrations. 

It is known the process of emission of long-wavelength 
phonons (quanta of lattice vibrations) by “hot” electrons in 
low-temperature relaxation of the system. [8]. 

If the observed period of order ℓ is appropriate to the 

phonon wavelength, then the dislocation loops of comparable 
radius ξ ∼ ℓ extinguish phonons, which originated them [9]. 

There arises an idea of a quantum phase transition 
associated with the transformation of the symmetry of 
crystals. And it can be verified experimentally. 

From sudden thermal disturbance in electron system of a 
crystal, quanta transitions occur inter energy levels. The 
phonons excited by them move the lattice to stable state and 
disappear. In equilibrium, surfaces of equal electron energy, 
constructed in the reciprocal space of a crystal, should have 
complete lattice symmetry [10]. 

(When interstitial carbon atoms are in the crystal lattice, 
there is a high probability of local electron-phonon 
interactions as well [11].) 

An external magnetic field rearranges the resolved under 
the symmetry requirements energy states of electrons [12]; 
therefore, it should affect the martensitic transformation in all 
metals. 

The theory of quantum martensitic transformation, to 
which analysis of arising in crystals the system of 
dislocations has led, in principle, is allowed the experimental 
verification by known method [13]. 
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