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Abstract: The main goal of the work is to choose the theoretical distribution function most consistent with the empirical 
function of fault distribution based on the analysis of statistical information of previous replenishment periods about the 
failures of details of each type of par value. This information should be accumulated on daily information about the 
replacement of spare parts of failed parts in vehicles that arrived during the entire period of replenishment for maintenance at 
this service station. The choice of the best theoretical distribution function in this sense is made from a set of a finite number of 
competing parametric distributions (exponential, normal, log-normal, We bull, monotonic and no monotonic diffusion) by 
Kolmogorov-Smirnov's test. The advantage of this criterion in comparison with other consent criteria is that, along with an 
estimate of the accuracy of the approximation of the empirical failure distribution function. The mutual reversibility of the 
processes of distribution of the operating time to failure (to failure) and the number of failures is established, the relationship 
between the expressions for the distribution function of the operating time to a fixed number of failures and the function of the 
distribution of the number of failures for a fixed operating time to failure is obtained. This ratio allows you to choose the best 
distribution model based on the available fault statistics of parts (and replacing them with the corresponding spare parts) in the 
previous planning periods. 

Keywords: Poisson Flow, Distribution Function, A Set of SPIA, Operating Time Until Failure, Diffusive Distribution, 
Critical Value of Statistics, Importance Level of the Hypothesis 

 

1. Introduction 

The SPİA kit must include the spare parts needed to repair 
and maintain the product's performance for a certain period 
of time (SPİA replenishment period) and ensure the required 
level of reliability of the latter. Recently, in service stations, 
the problem of determining the need and providing spare 
parts necessary for the continuity of the maintenance (TS) 
and car repair process is acute. In this regard, studies relevant 
to identifying factors affecting the need for (CTSS) in spare 
parts and developing methods for determining their needs are 
relevant [1, 2, 3, 4, 5]. Conditionally, all methods for 
determining the demand for demand in automotive spare 
parts can be divided into three groups [2]: 

- according to the nomenclature norms, which establish 
the average annual consumption of a particular component 
per 100 vehicles per year. The bases for the determination 
of nomenclatural norms are data on the reliability of parts  

and the method of their conversion into demand [6]. As a 
rule, the nomenclature rate is calculated for certain 
reference conditions. This method is used by automakers to 
determine the volume of production of spare parts for the 
entire fleet of vehicles in operation. CTSS (service stations) 
can also use this method to calculate the need for spare 
parts, and in the absence of such norms, according to actual 
requirements; 

- on the actual market demand for spare parts (the flow of 
claims), which are properly collected and analyzed. Such 
methods allow obtaining the most accurate results on the 
actual need for automotive spare parts; - mixed method, 
providing a combination of the first two. 

As a result of the analysis of previous works carried out in 
[2], it has been established that recently the majority of 
Russian auto dealers use in their work the system for 
determining the need for spare parts, which is based on the 
actual market demand for individual parts for the previous 
period of work. Further calculation of the size of the optimal 
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batch of ordered parts is carried out on the basis of the 
Wilson mathematical model of deliveries used abroad [1]. 

Thus, the accuracy of determining the need for spare parts 
of CTSS according to the methods developed earlier and 
currently used is not sufficient. Therefore, there is a need to 
develop a better methodology for determining the need for 
spare parts in service stations. 

Classification of the basic models of inventory 
management makes it possible to use them in conditions of 
unstable consumption. Examples of models of inventory 
management in the presence of fluctuations in demand are 
given in [7]: it is a model with a set periodicity of 
replenishment of the reserve to a constant level and a model 
of "Minimum-maximum". These models are based on the use 
of elementary mathematical actions in the calculation of the 
basic parameters. The classical formula for calculating the 
optimal order is the Wilson formula and its various 
modifications [1, 7]. Meanwhile, probability theory makes it 
possible to significantly expand the apparatus for calculating 
the parameters of classical models. 

For the incoming stream of applications, we denote by ����, �� the event consisting in the appearance of exactly k 
applications on the half-open interval ��, � + �
  under the 
application we will understand the next arrival in the car 
service center of a car with faulty parts, generally speaking, 
of different types. The properties of the flow of applications 
can be characterized by the probabilities �����, ��
 of such 
events. A flow is called stationary if these probabilities are 
determined only by the length of the interval τ and do not 
depend on its position on the time axis t. A stream is called a 
stream without aftereffect if the events ������, ���  and ������, ���  are independent for non-overlapping time 
intervals. The flow is assumed to be ordinary if the 
probability of occurrence of more than one event on the 
elementary section [t, t + ∆t] is of the order of smallness of 0 
(∆t), i.e. Above ∆t. 

A stream that simultaneously satisfies all three of the listed 
requirements is called the simplest one [1]. 

From probability theory it is known that for the simplest 
flow the probability of coming to [0, t] is exactly to the 
requirements (requests) 

	����� = ������! 	 , � = 0,1, … ,,	 
where λ = 1/a, a is the average interval between 
requirements.  

This formula defines the Poisson distribution with the 
parameter λt, which is why the simplest flow is also called 
Poisson flow. 

When forming the need of car service enterprises in spare 
parts, it is usually assumed [1, 2] that the random flow of 
claims for spare parts consumed at car service stations 
(CTSS) is described by the Poisson distribution. Taking into 
account that for large values   of the number of spare parts k, 
the Poisson distribution with a good approximation can be 
described by the normal distribution law, in practice the 
normal distribution law is used both to determine the need for 

spare parts of the spare parts department (Q_mag) [4, 5], and 
for the need for spare parts of the auto service (Qserv) [7].  

However, in general, the flow of applications is not the 
simplest and, therefore, Poisson. In this case, all three 
requirements can be violated. In addition, the number of 
applications k in the given time period may not be large 
enough and the use of the normal distribution of the flow of 
applications becomes unreasonable. 

When developing the algorithm for calculating spare 
elements in single SPIA-S kits, the following assumptions 
are accepted [8]: the equipment under study consists of non-
renewable elements connected in series (which are replaced 
by spare ones in case of failure, and those that are refused are 
sent to the repair base); The reliability of the workers and 
spare parts of each standard is the same; During storage, 
spare parts are not refused; All operating elements are 
refused independently. 

Depending on the purpose of the equipment, its 
maintenance and repair, the reliability requirements of the 
equipment in agreement with the supplier of spare parts, the 
replenishment period (TPZ) can be taken equal to a quarter, 
half a year, to one or several years, although the proposed 
algorithm for calculating the planned SPIA volume is 
acceptable and for longer periods. 

The most important a priori information, which ultimately 
determines the amount of spare parts, is the theoretical model 
of failures, adopted in the calculation of the number of 
failures [9, 10, 11]. 

In the present paper it is proved that the time between 
failure T and the occurrence of the number of failures R are 
mutually invertible processes. As the competing hypotheses, 
we have tested six known parametric distribution functions of 
the running time T (including diffusion no monotonic (DN) 
and diffusion monotonous (DM) distributions.) For fixed t, 
each of these distributions corresponds to the distribution 
function ����� of the failure rate R and back to each fixed 
The failure rate r corresponds to the distribution function ����� of the running time T. 

Among the six corresponding distribution functions ����� 
for the best, we take the best one for the best one, which, by 
Kolmogorov-Smirnov's agreement criterion, is closest to the 
empirical distribution function of the random variable R for a 
given significance level α. 

Competitive theoretical distribution functions 
(1). Exponential distribution 
The exponential distribution function of the operating time 

T has the following form: 

���; �� = 1 − !"��−���,                           (1) 

where � = �#$, � is the intensity of the change %; &�  - is the 

mathematical expectation (ME) of the random variable (as 
abbreviated form r. v.) of the operating time T, the sample 

estimate &̂� is the average value &̂� = �(∑ ��(�*� , �� = �, � in 

our case is the number of the working days, + = 27 –is the 
number of working days in the period of %�. = 1 month. In 
the designation &� = 1 �⁄  expression (1) takes the form: 
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	���; 	&�� = 1 − !"� 0− 1#$2	                        (2) 

(2). Normal distribution �3� 
The normal distribution function: 

	3��; &� , 4�� = Φ 0− 16#$7$ 2	                         (3) 

where Φ�8� = �√�: ; !"� 0− <�� 2 =">6?  standardized normal 

distribution with & = 1 and dispersion @ = 1; 4� = A@� , @�  

is the dispersion of r. v.,	%, with a sample estimate; ; @B� =�(∑ ��� − &���((*�  

In this expression + is replaced by +-1 for great +.  
For suitable use, the distribution function is parameterized. 

In the parameters as &�  and C� = A@� &�D , where C�  is the 
coefficient of variation for r. v. T, the normal distribution 
function is written in the following form; 

	����; &� , C�� = Φ016#$#$E$2	                        (4) 

(3). Logarithmic normal distribution (LN) 
The logarithmic normal distribution function 

	F3��; &, 4� = Φ0G(	16#7 2	                          (5) 

where 

& = ln &� − 12 ln J1 + @�&��K = ln &� − 12 ln�1 + C��� 

4 = LMJN + OPQPRK
N R⁄ = LMSTN + UPRVWN R⁄ 	 

In parameters QP, UP , expression (3) takes the following 
form 

	XP�Y; QP, UP� = Z
[
\]LM^

Y0N_UPR2N R⁄
QP `

SLMTNaUPRVWN R⁄
b
cd	                 (6) 

(4). Waybill distribution (W) 
Distribution function 

	e�Y; 	f, g� = N − hij k− 0Yf2gl	                  (7) 

Where g ≈ NUP (witherror n ≤ p, Nq); r�s� is gamma function. 
In parameters QP and UP expression (4) takes the following 

form; 

	XP�Y; QP, UP� = N − hij t− uYr�NaUP�QP vN UP⁄ w	          (8) 

(5). Diffusive non-monotonic distribution (DN) 

XP�Y; QP, UP� = Ox�Y; QP, UP� = Z0 Y6QPUP√Y∙QP2 +	+hij z RUPR{ ∙ Z0− YaQPUP√Y∙QP2                              (9) 

(6). Diffusive monotonic distribution (DM) 
Distribution function  

	XP	�Y; QP, UP� = O|�Y; QP, UP� = Φ 0 Y6QPUP√YQP2	        (11) 

To establish the connection between the distributions of 
the operating time until the failure T , and the number of 
failure, R , random varieties P}p  and ~}p  (abbreviated as r. 
v.) are introduced for the arbitrary detail, and the random 

varieties P�,}p  and ~�,}p  are introduced for the i -th type. In 

this case, r. v. with values	Y, Y ≤ Y}p where Y}p = }p ∙ Pp, Pp - 
is the mathematical expectation of the operating time until 
failure for any part; ~}p is a r. v. of failures number with the 

values }, } ≤ }p, }p = Y}p Pp⁄ . The validity of the equalities 
is provided as follows:  

QP}p = Pp ∙ Q~}p 	                              (12) 

 UP}p = U~}p 	                                     (13) 

for any part and equality, the followings are taken:  

 QP}�,p = Pp,� ∙ Q~}�,p 	,	                           (14) 

 UP}�,p = U~}�,p 	,	                                  (10) 

this expression is for the parts of the i -the nominal type 
standard, where P}�,p  is r. v. with the values Y, Y ≤ Y}�,p , Y}�,p = }�,p ∙ Pp,� , Pp,�  -- is the mathematical expectation of 

the operating time until failure for any part of i -th nominal 
type r. v. failures with values ~}�,p , }� , }� ≤ }�,p , }�,p =Y}�,p Pp,�⁄ . 

The distribution functions of the varieties P}p and ~}p are 
related by the following correlation: 

XP}p 0Y; QP}p , UP}p2 = X~}p 0}; Q~}p , U~}p2 
which allows us to pass from the distribution functions 10-60 
of the variety T  to the distribution functions of the variety R . 

Such a relationship of the random variates P}p and ~}p is 
of great importance because, as a rule, an auto-service 
enterprise has a database on the number of failures (i.e. 
replaced) of each type on the base of cars incoming on the 
service on working days (see, for example, table 1). 
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2. Selection of the Most Appropriate 

Model for the Distribution of the Part 

Failures 

For the selection of the most appropriate model among the 
above six theoretical models of distribution we use the 
Kolmogorov-Smirnov agreement criterion, the essence of 
which is as follows. 

Assume, iN, … , i�p  is a given sample of �p  independent 
observations and i�N�, i�R�, … , i���	�� ≤ �p�  are sequenced 
in ascending order of different sampling values. The 
cumulative (accumulated) distribution function (the sample 
function of distribution) is defined as follows: 

	���i� = � p, i < i�N�;	}� , i�}� ≤ i < i�}aN�	�N ≤ } ≤ � − N�;	N	, i��� ≤ i	 	    (15) 

Kolmogorov statistic has the following form: 

O� = ��ji|���i� − Xp�i�|	,	                    (16) 

where Xp�i� is the hypothetical distribution function.  
Critical values ��  of statistics O�  for the levels � =p, pq; p, pN; p, pN  with � ≤ qp  are given in table 

12.12.1[10]. For 50>n , the critical value ��  can be 
approximately calculated as [10]. 

	�� 	= NR� �LM 0R�2�N R⁄ 	                         (17) 

Statistic O�  is free from distribution, in this case, it is 
taken as follows: 

��O� ≤ ��
 = �                             (18) 

Where from we find the confidence interval for Xp�i� �����i� − �� ≤ ���i� + ��	при	всех	i
 = N − � 

i.e. with a confidence probability � = N − �, distribution 
function Xp�i� is located in the following interval: 

���i� − �� ≤ Xp�i� ≤ ���i� + ��	             (19) 

No other agreement criterion gives such a conversion of 
criterion in the confidence interval.  

In the calculations, the Kolmogorov-Smirnov’s criterion 
will be used and the agreement ���i�  with Xp�i�  will be 
verified with three test values = ��	�� = N, R, ��:  �N =p, pq;	�R = p, pN;	�� = p, pN . Since the critical value �� 
of the statistic O�  of the values of � = ��  и � =��aN	�� = N, R�  differ by the quantity not less than � =p, p�,, the following decisive rule is accepted: 
if O� < ��N − �, then the hypothesis �p is accepted with a 
sign importance level � = �N; 
if ��N < O� < ��R − �, then hypothesis �p is accepted with 
a importance level � = �R; 
if ��R < O� < ��� − �,, then hypothesis �p is accepted with 
a importance level � = ��; 

if O� > ��� , then hypothesis �p  is deviates; in this case it 
can be agreed that the hypothesis H0 is accepted with a 
importance level �p = N, i.e. with a confidence probability � = N − �p = p. 

The initial data on the failures of the replaced parts an 
auto-service enterprise in the order of incoming cars in each 
of the 27 working days are given in table 1. 

Table 1. Initial data on the failures of the replaced parts. 

Days Engine Suspension Body Total 
the number of 

incoming cars 

1 35 2 2 39 13 
2 18 3 2 23 8 
3 33 10 4 47 16 
4 33 5 5 43 18 
5 28 5 3 36 13 
6 28 3 6 37 17 
7 37 7 3 47 21 
8 66 3 9 78 28 
9 26 8 3 37 15 
10 38 6 4 48 17 
11 17 9 2 28 8 
12 32 3 8 43 19 
13 37 27 3 67 38 
14 40 8 80 128 36 
15 48 15 10 73 34 
16 41 9 77 127 35 
17 25 4 3 32 11 
18 25 13 8 46 26 
19 14 3 1 18 12 
20 48 4 4 56 25 
21 37 7 7 51 22 
22 50 10 7 67 38 
23 20 2 10 32 13 
24 14 3 13 30 11 
25 58 15 71 144 61 
26 37 7 17 61 25 
27 34 13 14 61 31 

On the base of original date from Table 1 for failure parts }�  �� = N,… , �p; 	�p = R��  in i -th working day we 
calculate cumulated sun of the failure parts to � : }�� =∑ }�����*N  time moment, Y : }��Y� = ∑ }���Y  and stepwise 
function of the continuous time is introduced on the time 
scale t with a measurement unit of one working day. 

A sample of values is taken from table 1   �}���	�� =N,… , �p; 	�p = R��. 
Assume }�N�� , … , }���� 	�� ≤ �p�  is a variation series 

corresponding to the sample. 

	��� �}�� = � 
¡	 p, }� < }�N�� ;	�� , ����¢ ≤ �¢ < ���a��¢ 	�1 ≤ � ≤ + − 1�;	1	, ����¢ ≤ �¢ .    (20) 

The theoretical distribution functions determined by the 
markers (10) – (60): exponential �¤ = 1� , normal �¤ = 2� , 
logarithmic normal �¤ = 3�, Weibull �¤ = 4� , diffusivenon-
monotonic �¤ = 5� , and diffusive monotonic distribution �¤ = 6� may be denoted by �©��¢�. 

For each ¤	�¤ = 1,… , 6� , we compute one’s own ª�©� ∈



 American Journal of Traffic and Transportation Engineering 2017; 2(3): 26-31 30 
 

�=©�©*¬,�…,­ , by which the null hypothesis ®¬: ���¢� =�©��¢� is accepted with a importance level ª�©� (i.e., with a 

confidence probability ©̄ = 1 − ª�©� ). If hypothesis ®¬  is 
accepted for several distributions with the same level of 
importance ª ≠ ª¬, then for the most appropriate distribution 
model, one of them is chosen for which @(  most of all 
deviates from =±. 

To describe the distribution function of the failures of 
particular type of parts in the expression for ��¢  it is sufficient 
to replace ��� to �²,��, where �²,�� is the number of failures (i.e. 

replaced) part of i -type in � working day. 
The corresponding computer programs are developed to 

determine the best failure distribution of any part �∗��´� and 

the parts of each i -th nominal type of the standard �²∗��²́ �. 
The results of the calculations are given in table 2 and 3. 

Table 2. The critical values =± of the statistics @(. 

 min max � 

1 0 0,294 0,05 
2 0,294 0,352 0,01 
3 0,352 0,421 0,001 
4 0,421 1 0 

Table 3. Determination of the best failure distribution of any part and parts 

of each model. 

Method Engine Suspension Body Total 

 O � O � O � O � 

1 0,172 0,95 0,196 0,95 0,32 0,95 0,198 0,95 
2 0,89 0 0,899 0 0,99 0 0,923 0 
3 4,27 0 14,3 0 8,3 0 4,5 0 
4 0,675 0 0,5 0 0,32 0,99 0,53 0 
5 0,16 0,95 0,182 0,95 0,29 0,95 0,172 0,95 
6 8,9 0 79,1 0 47,1 0 11 0 

It is seen from tables 2 and 3 that, for any part, the best 
distribution function is ���´� = �µ��´�) and for the parts of 
the nominal type the best distribution function is �∗��²́ � =�µ��´�, with ¶ = 1,2 and �∗��²́ � = �·��²́ � with ¶ = 3.  

The calculation of the number of the elements in a set of 
SPIA based on more appropriate failure models leads to more 
effective planning of SPIA. 

3. Conclusion 

Identification of an adequate model of the distribution of 
failures of car parts that have to be replaced by spare parts in a car 
service company plays an extremely important role in improving 
the accuracy of calculating the demand for spare parts. 

In reliability theory, the calculation of the failure 
distribution function usually uses their main characteristic - 
the time between failures, and in the absence of such 
information, information on the number of failures at certain 
points in time is used. Auto service enterprises have, as a 
rule, information about failures. In this connection, the work 
shows that the time between failures T and the occurrence of 
the number of failures R are mutually invertible processes 
and, as the main result, the relationship between the 
distribution function of the operating time to a fixed number 

of failures and the function of the distribution of the number 
of failures for a fixed operating time to failure. This makes it 
possible to select the best model for the distribution of the 
demand for spare parts by Kolmogorov-Smirnov's consent 
criterion based on the available failure statistics (with the 
corresponding replacement of the parts that failed in service 
for vehicles) in previous planning periods. 

Since the fatigue wear of one part by diffusion affects the 
performance of other parts of the car, when choosing the best 
model for the distribution of failures, along with the 
traditionally used parametric distribution models 
(exponential, normal, lognormal, We bull), the list of 
competing models of the distribution of magnitude 
(monotonous and monotonic) Diffuse distributions (DM and 
DN), which naturally increases the quality of choice. 

Unlike other criteria of agreement, the Kolmogorov-
Smirnov criterion together with the estimation of the quality 
of choice gives the confidence probability of approximating 
the empirical distribution function by a blow-out theoretical 
distribution function, i.e. In addition, it evaluates the 
reliability of the calculated need for spare parts. 

The proposed method for determining the best model for the 
distribution of failures of vehicle parts can be used in railway, 
air and water transport, as well as in other technical branches. 

The established relationship between the distribution of the 
operating time before failure T and the number of failures k 
makes it possible, when planning the need for spare parts in 
the service center, to perform all necessary calculations based 
on failure statistics in previous periods of replenishment of 
the spare parts inventory SPIA. 

Identification of an appropriate model of the failure 
distribution (and therefore replaced in a car service) of car 
parts is have great increasing in improving the accuracy of 
calculating the spare parts. The established relationship 
between the distribution of the operating time until failure T 
and the number of failures k makes it possible to carry out all 
the necessary calculations based on statistic failures in 
previous replenishment periods of SPIA, while planning the 
demand for spare parts in the auto-service enterprise.  
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