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Abstract: Predictive inferences (predictive distributions, prediction and tolerance limits) for future outcomes on the basis of 

the past and present knowledge represent a fundamental problem of statistics, arising in many contexts and producing varied 

solutions. In this paper, new-sample prediction based on a previous sample (i.e., when for predicting the future outcomes in a new 

sample there are available the observed data only from a previous sample), within-sample prediction based on the early data from 

a current experiment (i.e., when for predicting the future outcomes in a sample there are available the early data only from that 

sample), and new-within-sample prediction based on both the early data from that sample and the data from a previous sample 

(i.e., when for predicting the future outcomes in a new sample there are available both the early data from that sample and the 

data from a previous sample) are considered. It is assumed that only the functional form of the underlying distributions is 

specified, but some or all of its parameters are unspecified. In such cases ancillary statistics and pivotal quantities, whose 

distribution does not depend on the unknown parameters, are used. In order to construct predictive inferences for future outcomes, 

the invariant embedding technique representing the exact pivotal-based method is proposed. In particular, this technique can be 

used for optimization of inventory management problems. A practical example is given. 

Keywords: Future Outcomes, Parametric Uncertainty, Predictive Inferences 

 

1. Introduction 

Prediction of future outcomes based on the past and current 

data is the most prevalent form of statistical inference. 

Predictive inferences for future outcomes are widely used in 

risk management, finance, insurance, economics, hydrology, 

material sciences, telecommunications, and many other 

industries. Practical problems often require the computation of 

predictive distributions, prediction and tolerance limits for 

future values of random quantities. Consider the following 

examples: 1) A consumer purchasing a refrigerator would like 

to have a lower limit for the failure time of the unit to be 

purchased (with less interest in distribution of the population 

of units purchased by other consumers); 2) Financial 

managers in manufacturing companies need upper prediction 

limits on future warranty costs. A large number of problems in 

inventory management, production planning and scheduling, 

location, transportation, finance, and engineering design 

require that decisions be made in the presence of uncertainty. 

Most of the inventory management literature assumes that 

demand distributions are specified explicitly. However, in 

many practical situations, the true demand distributions are 

not known, and the only information available may be a 

time-series of historic demand data. When the demand 

distribution is unknown, one may either use a parametric 

approach (where it is assumed that the demand distribution 

belongs to a parametric family of distributions) or a 

non-parametric approach (where no assumption regarding the 

parametric form of the unknown demand distribution is made). 

Under the parametric approach, one may choose to estimate 

the unknown parameters or choose a prior distribution for the 

unknown parameters and apply the Bayesian approach to 

incorporating the demand data available. Scarf [1] and Karlin 

[2] consider a Bayesian framework for the unknown demand 

distribution. Specifically, assuming that the demand 
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distribution belongs to the family of exponential distributions, 

the demand process is characterized by the prior distribution 

on the unknown parameter. Further extension of this approach 

is presented in [3]. Parameter estimation is considered in [4]. 

Liyanage and Shanthikumar [5] propose the concept of 

operational statistics and apply it to a single period 

newsvendor inventory control problem. In this paper we 

consider the case, where it is known that the demand 

distribution function belongs to a parametric family of 

distribution functions. However, unlike in the Bayesian 

approach, we do not assume any prior knowledge on the 

parameter values. Conceptually, it is useful to distinguish 

between “new-sample” prediction, “within-sample” 

prediction, and “new-within-sample” prediction. For 

new-sample prediction, data from a past sample are used to 

make predictions of future outcomes from the same process or 

population. For within-sample prediction, the problem is to 

predict future outcomes in a sample or process based on early 

data from that sample or process. For new-within-sample 

prediction, the problem is to predict future outcomes in a 

sample or process based on early data from that sample or 

process as well as on past sample data from the same process 

or population. Various solutions have been proposed for the 

prediction problem, that is, the problem of making inferences 

on a random sample {Yj; j = 1, …, m} given independent 

observations {Xi; i=1, …, n} drawn from the same distribution. 

The Yj’s and the Xi’s are commonly featured as "future 

outcomes" and "past outcomes" respectively. Inferences 

usually bear on some reduction Z of the Yj’s − possibly a 

minimal sufficient statistic − and consist of either prediction 

intervals or likelihood or predictive distribution for Z, 

depending on different authors. Kaminsky and Nelson [6] 

discussed point and interval prediction of order statistics. Best 

linear unbiased predictors based on location-scale family of 

distributions are reviewed. Prediction intervals based on such 

predictors as well as those based on pivotals are studied. A 

brief discussion of Bayesian prediction is also given. 

Predictive distributions are found in the Bayesian framework 

(see Aitchison and Sculthorpe [7]). Lawless [8] applied the 

conditional method, which was first suggested by Fisher [9] 

and promoted further by a number of others (Nechval et al. 

[10]; Murthy et al. [11]), to different problems relating to the 

Weibull and extreme value distributions. In practice the 

proposed methods have limited applications and it is the 

purpose of this paper to obtain predictive inferences 

concerning Z via the simple invariant embedding technique 

[12−16]. The obtained results are given below.  

2. Prediction Situations 

Let us assume that the random variable X follows the 

exponential distribution with the probability density function  

1( ) exp( / ),    0,f x xσ σ σ σ−= − >            (1) 

and the cumulative distribution function  

( ) 1 exp( / ),F x xσ σ= − −             (2) 

where σ is the scale parameter (σ > 0).  

2.1. New-Sample Prediction 

Theorem 1. Let X1 ≤... ≤ Xk be the first k ordered 

observations from the previous sample of size n from the 

exponential distribution (1) and Yr be the rth order statistic in a 

set of m future ordered observations Y1≤…≤Ym also from the 

distribution (1). Then the probability distribution function of 

the ancillary statistic Yr /Sk is given by 
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It is known that 

1
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is the sufficient statistic for σ. Then 

/
k k

V S σ=                   (7) 

is the pivotal quantity, the probability density function of 

which is given by 

11
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Using the invariant embedding technique [12-16], we 

reduce 
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where 

/
r k
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It follows from (10) that 
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This ends the proof.   

Corollary 1.1. A lower one-sided new-sample α prediction 

limit h on the rth order statistic Yr in a set of m future ordered 

observations Y1≤…≤Ym is given by 

 ,
k
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where η satisfies the equation 
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(Observe that an upper one-sided 1−α prediction limit h 

may be obtained from a lower one-sided α prediction limit by 

replacing α by 1−α.)  

2.2. Within-Sample Prediction 

Theorem 2. Let Y1 ≤... ≤ Yl be the first l ordered observations 

(order statistics) in a sample of size m from a continuous 

distribution with some probability density function fθ (x) and 

distribution function Fθ (x), where θ is a parameter (in general, 

vector). Then the joint probability density function of Y1 ≤... ≤ 

Yl and the rth order statistics Yr (1 ≤ l < r ≤ m) is given by 
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represents the conditional probability density function of Yr 

given Yl=yl. 

Proof. The joint density of Y1 ≤... ≤ Yl and Yr is given by 
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It follows from (18) that 
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i.e., the conditional distribution of Yr, given Yi = yi for all i = 

1,…, l, is the same as the conditional distribution of Yr, given 

only Yl = yl, which is given by (17). This ends the proof. 

Corollary 2.1. The conditional probability distribution 

function of Yr given Yl=yl is 
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Corollary 2.2. Let Y1 ≤... ≤ Yl be the first l order statistics in 

a sample of size m from the exponential distribution (1). Then 

the conditional probability distribution function of Yr given 

Yl=yl is 
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Theorem 3. Let Y1 ≤... ≤ Yl be the first l ordered observations 

(order statistics) in a sample of size m from the exponential 

distribution (1), where the parameter σ is unknown. Then the 

probability distribution function of the ancillary statistic Yr /Yl 

is given by 
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Proof. We reduce (20) to 

( )!
Pr{ } 1

( 1)!( )!
r r l l

m l
Y y  Y y

r l m r

−≤ = = −
− − −

 



52 Nicholas A. Nechval et al.:  Efficient Predictive Inferences for Future Outcomes Under Parametric Uncertainty of Underlying Models  

 

1
1

0

1 ( 1)
 exp 1 ,

1

m r j
jr l

l r

j l

r l y y

j m r j yσ

− + +
− −

=

   − −  −
 × − −      − + +       

∑  (23) 

where Yr /Yl is the ancillary statistic whose distribution does 

not depend on the parameter σ, Yl /σ is the pivotal quantity. 

Using the probability density function of Yl /σ, we eliminate 

the unknown parameter σ from the problem as 
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represents the probability density function of the pivotal 

quantity Yl /σ. This ends the proof. 

Corollary 3.1. A lower one-sided within-sample α 

prediction limit h on the rth order statistic Yr in a set of m 

future ordered observations Y1≤…≤Ym is given by 
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Theorem 4. Let Y1 ≤... ≤ Yl be the first l ordered observations 

(order statistics) in a sample of size m from the exponential 

distribution (1), where the parameter σ is unknown. Then the 

probability distribution function of the ancillary statistic (Yr 

−Yl)/Sl is given by 
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is the sufficient statistic for σ. 

Proof. Using the technique of invariant embedding [12-16], 

we reduce (20) to 
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where (Yr− Yl)/Sl is the ancillary statistic whose distribution 

does not depend on the parameter σ; Sl /σ is the pivotal 

quantity. Since the probability density function of Sl /σ is 

known, we eliminate the unknown parameter σ from the 

problem as 
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This ends the proof. 

Corollary 4.1. A lower one-sided within-sample α 

prediction limit h on the rth order statistic Yr in a set of m 

future ordered observations Y1≤…≤Ym is given by 
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2.3. New-Within-Sample Prediction 

Theorem 5. Let X1 ≤... ≤ Xk be the first k ordered 

observations from a previous sample of size n from the 

exponential distribution (1) and Y1 ≤... ≤ Yl be the first l 

ordered early observations from a new sample of size m also 

from the distribution (1), where the parameter σ is unknown. 
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Then the probability distribution function of the ancillary 

statistic (Yr −Yl)/(Sk+Sl) is given by  
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Proof. For the proof we refer to Theorems 1 and 4. 

Corollary 5.1. A lower one-sided within-sample α 

prediction limit h on the rth order statistic Yr in a set of m 

future ordered observations Y1≤…≤Ym is given by 

 ( ),
l k l

h Y S Sη= + +                (36) 
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3. Practical Example 

Consider a single-period newsvendor model. Single-period 

stocking decisions often occur in practice; these require the 

decision maker to choose the stocking level of an item for 

which demand exists for only a single period. Several factors 

affect this decision: the distribution of demand, the cost and 

price of the item, the salvage value of the item, and the loss of 

customer goodwill due to stockouts. The newsvendor model 

addresses this problem and develops a formula for what is 

usually called the ‘critical-fractile’. The optimum order 

quantity is calculated using the critical-fractile of the 

distribution of the demand for the period. Underlying the 

mathematical simplicity of the critical-fractile formula is a 

powerful and intuitively appealing insight for the 

determination of the order quantity. The order quantity 

depends only on the optimum balance between two types of 

costs. The first is the cost per unit associated with the 

unavailability of stock to meet the manifest demand (i.e., 

underage cost). The second is the unit cost associated with 

excess inventory at the end of the period for which there is no 

demand (i.e., overage cost). Following Hadley and Whitin 

[17], we review the single-period newsvendor model and 

provide a broader interpretation to the structure of its solution. 

The notation, we use for the newsvendor model, is given in 

Table 1. 
Table 1. The notation. 

Y Random variable for single-period demand 

fθ (y)  Probability density function of single-period demand 

Fθ (y) Probability distribution function of single-period demand  

θ Parameter (in general, vector) 

c1 Unit selling price 

c 
Unit procurement cost, which is independent of the procured 

amount 

g 
Unit salvage value for unsold items remaining at the end of 

the period 

c2 Unit stockout penalty cost (over and above any lost profit) 

u Variable representing the order quantity 

u* Optimal order quantity 

Q(u) Expected profit as a function of the order quantity 

co Unit overage cost 

cu Unit underage cost  

Different versions of the problem may equivalently 

consider expected opportunity cost minimization or expected 

profit maximization. We examine the latter and write the 

expected profit as  

1 1

0

( ) ( ) ( )

u

u

Q u c yf y dy c u f y dy cuθ θ

∞

= + −∫ ∫  

2

0

+ ( ) ( ) ( ) ( ) .

u

u

g u y f y dy c y u f y dyθ θ

∞

− − −∫ ∫      (38) 

Assuming that c1 + c2 > g (which is generally true in most 

situations), we can show that the expected profit function Q(u) 

is concave. We, therefore, set the first derivative equal to zero 

to find a maximizing solution. The value of u that maximizes 

(38) is the one that satisfies 

1 2 1 2
( ) ( ) / ( ).F u c c c c g cθ

∗ = − + − +         (39) 

Clearly the lost contribution margin (c1 − c) plus the 

stockout penalty (c2) represents the ‘underage cost’. Similarly 

the item cost (c) minus the salvage value (g) represents the 

‘overage cost’. If we refer to the underage cost as cu and the 

overage cost as co, we may rewrite (39) as 

u u o
( ) / ( ).F u c c cθ

∗ = +               (40) 

We should choose the order quantity u
*
 such that the 

cumulative distribution function (cdf) of u
*
 equals the ratio of 

the underage cost to the sum of the underage and overage costs. 

A relatively high underage cost results in a higher order 

quantity, whereas a relatively high overage cost leads to a 

lower order quantity, as one would expect. If the single-period 

demand Y follows the exponential distribution (1) then 

1 1 2( ) ( ) ( ) ( )exp ,
u u

Q u c g c g c g cσ
σ σ

  = − − − − − + −  
  

   (41) 

1 2ln 1 ,
c c c

u
c g

σ∗  − +
= + − 

             (42) 

and 

( )Q u∗ = 1 2
1 ( ) ln 1

c c c
c c c g

c g
σ
  − +

− − − +  −   
.    (43) 

Parametric uncertainty. Consider the case when the 

parameter σ is unknown. Let X1 ≤... ≤ Xn be the past 
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observations (order statistics) of single-period demands from 

the exponential distribution (1). Then 

1

,
n

i

i

S X
=

=∑                     (44) 

is a sufficient statistic for σ; S is distributed with 

1 1( ) [ ( ) ] exp( / )    ( 0),n ng s n s s sσ σ σ− −= Γ − >       (45) 

To find the best invariant decision rule 
BI

,u  we use the 

invariant embedding technique [12-16] to transform (41) to 

the form, which is depended only on the pivotal quantity 

V=S/σ and the ancillary factor η=u/S. In statistics, a pivotal 

quantity or pivot is a function of observations and 

unobservable parameters whose probability distribution does 

not depend on unknown parameters. Note that a pivotal 

quantity need not be a statistic−the function and its value can 

depend on parameters of the model, but its distribution must 

not. If it is a statistic, then it is known as an ancillary statistic. 

Transformation of Q(u) is given by 

( )1 1 2( | ) ( ) ( ) ( ) exp .Q v c g c g v c g c vη σ η η = − − − − − + −   (46) 

We find the expected profit for the statistical decision u=η S 

as 

0

( ) { ( | )} ( | ) ( )Q E Q V Q v g v dvη η η
∞

= = ∫  

1 1 2 = ( ) ( ) ( )( 1) ,nc g c g n c g cσ η η − − − − − − + +     (47) 

where 

1 1( ) [ ( )] exp( )    ( 0).ng v n v v v− −= Γ − >         (48) 

The value of η that maximizes (47) is given by 

[ ] 1/ ( 1)

1 2 1 ( ) / ( ) 1.
n

c c c c gη +∗ = + − + − −       (49) 

Thus, 

[ ]( ) 1/ ( 1)BI

1 2 1 ( ) / ( ) 1 .
n

u S c c c c g Sη +∗= = + − + − −   (50) 

Comparison of decision rules. For comparison, consider the 

maximum likelihood decision rule that may be obtained from 

(42) as 

[ ]ML ML

1 2
ln  1 ( ) / ( ) ,u c c c c g Sσ η= + − + − =⌢

     (51) 

where /S nσ =⌢  is the maximum likelihood estimator of σ, 

[ ] 1/ML

1 2ln  1 ( ) / ( ) .
n

c c c c gη = + − + −        (52) 

Since 
BI

u and 
ML

u  belong to the same class  

{ : },u u Sη= =C                   (53) 

it follows from the above that 
ML

u  is inadmissible in relation 

to 
BI

u . If, say, c= 2, c1=490, c2=2, g=1 (in terms of money), 

and n=1, we have that  

ML BI

{ ( )}
rel.eff . { , , }

E Q
u uη σ ML= { ( )} { ( )E Q E Qη η∗

 

ML

1 1 2 ML

1 1 2

1
( ) ( ) ( )

( 1)
0.93.

1
( ) ( ) ( )

( 1)

n

n

c g c g n c g c

c g c g n c g c

η
η

η
η

∗
∗

− − − − − +
+= =

− − − − − +
+

 (54) 

Thus, in this case, the use of 
BI

u leads to a reduction in the risk 

of about 7 % as compared with 
ML

u . The absolute risk will be 

proportional to σ and may be considerable.  

Predictive inference. It will be noted that the predictive 

probability density function of the single-period demand Y, 

which is compatible with (38), is given by 

( 2)
1

( | ) 1   ( 0).

n
n y

f y s y
s s

− ++  = + > 
 

        (55) 

Using (55), the predictive profit is determined as 

( )

1 1

0
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0
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which can be reduced to 

( )

1 1 2

1
 ( | ) ( ) ( ) ( ) .

( 1)

p

n

s
Q s c g c g n c g c

n
η η

η
 

= − − − − − + + 
 (57) 

It follows from (57) that 

( ) ( )

0

{ ( | )} ( | ) ( )  
p p

E Q s Q s g s dsσ ση η
∞

= ∫  

1 1 2( ) ( ) ( )( 1) ( )nc g c g n c g c Qσ η η η− = − − − − − + + =  . (58) 

Thus, u
BI

 can be found immediately from (56) as  

BI ( )arg max ( | ).p

u
u Q u s=            (59) 

4. Conclusion 

The technique proposed in this paper represents a simple 

and computationally attractive statistical method based on the 

constructive use of the invariance principle in mathematical 

statistics. The main advantage of this technique consists in that 

it allows one to eliminate unknown parameters from the 

problem and to use the previous and current data of 

observations for obtaining predictive inferences as completely 

as possible. We have illustrated the technique for the 

exponential distribution. Applications to other 

log-location-scale distributions could follow directly.  
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