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Abstract: Identifying the ‘right’ dose is one of the most critical and difficult steps in the clinical development process of any 

medicinal drug. Its importance cannot be understated: selecting too high a dose can result in unacceptable toxicity and associated 

safety problems, while choosing too low a dose leads to smaller chances of showing sufficient efficacy in confirmatory trials, 

thus reducing the chance of approval for the drug. The optimal dose is the dose that gives the desired effect with minimum side 

effects. The dose of a drug is of course ‘optimal’ only for a given subject, but not necessarily for any other. In view of this the 

objective of a dose-finding trials is not to determine a single fixed dose for use in the early phases of clinical trials or in medical 

practice, but to determine an interval of doses within which there is a stated degree of confidence that the defined, acceptable 

therapeutic response and the frequency of adverse reactions will lie above and below, respectively, certain acceptable 

predetermined levels. If the subject samples used in the dose finding studies adequately represent the subject population for 

which the drug is intended, the interval of doses so defined can be applied to the subject population as a whole. In this paper, we 

propose the technique based on maximization of likelihood function in order to estimate the maximal tolerated dose (MTD) and 

minimal effective dose (MED) on the basis of l samples of subjects, which are grouped in a simplest way. The necessary and 

sufficient conditions for the existence and uniqueness of the maximum likelihood estimates are derived. The proposed approach 

to dose estimation in drug development is simple and suitable for medical practice. The numerical examples are given. 
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1. Introduction 

The proper understanding and characterization of the 

dose-response relationship for a new compound is a 

fundamental step in the clinical development process of any 

medicinal drug. The determination of the doses of a new 

pharmaceutical preparation to be used in clinical practice is a 

very important issue in the early phases of clinical trials: this is 

recognized not only in the literature [1] but is also mentioned in 

the F.D.A. guidelines for the clinical evaluation of drugs [2]. 

A common problem in toxicological and drug development 

studies is to assess the biological activity of a chemical 

compound. For this purpose, a dose-response experiment is 

conducted in which several doses of the compound are 

administered to separate groups of experimental units. There 

are two primary goals in these studies. In a toxicological study 

the goal is to estimate a safe dose that will not cause some 

undesirable effect (e.g., toxicity, carcinogenicity), whereas in 

a drug development study the goal is to estimate the lowest 

dose that will cause some desirable effect. Indeed, in Phase I 

clinical trials, researchers test a new drug or treatment in a 

small group of subjects for the first time in order to evaluate its 

safety, identify side-effects and determine a therapeutically 

useful interval of doses. The upper end of the interval is the 

maximal tolerated dose (MTD) and the lower end of the 

interval is the minimal effective dose (MED). Here we will 

face the estimation of the minimal effective dose; 

generalization to maximum tolerated dose will be shown 

straightforward.  

A well-established approach to search for MED and MTD is 

based on the construction of a dose–toxicity curve. Robbins 

and Monro [3] and later Wu [4] try to estimate, through 
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stochastic approximation, the MTD as the quantile of this 

curve. Eichhorn and Zacks [5, 6] studied the sequential search 

problem through linear regression dose–toxicity models. 

Inference within the dose–response framework that accounts 

for the model uncertainty was discussed by Pinheiro, Bretz, 

and Branson [7]; Bornkamp, Pinheiro, and Bretz [8]; and 

Whitney and Ryan [9] who used parametric nonlinear models 

to characterize the dose–response relationship and proposed to 

use model averaging techniques to account for model 

uncertainty. Within this approach several parametric nonlinear 

models are fitted to the data and information from all models 

is combined, using information criteria, for both estimation 

and inference. Although some of these methods perform quite 

well in small sample dose–response study simulations, their 

main drawback is just requiring an explicit dose–toxicity 

curve, often nonparametric, that could be artificial and 

complicated. Gasparini and Eisele [10] proposed a curve-free 

method: modelling the probabilities of toxicity directly as the 

unknown parameter of interest, a product of beta prior 

distributions is considered.  

In this paper, the parameters of interest are the probability 

distribution functions of a suitable dose in drug development 

(from the point of view of toxicity and from the point of view 

of efficacy, respectively), which are determined via a new 

approach based on maximization of likelihood of grouped 

data. 

2. Minimal Effective Dose Estimation 

2.1. Likelihood Function of Grouped Data 

Let us assume that the random variable X, which represents 

an effective dose level of a drug (from the point of view of 

efficacy) for randomly chosen subject, has a continuous 

cumulative distribution function ( | )e eF x θ (probability 

density function ( | )e ef x θ ) with unknown parametric vector 

eθ . We consider l (l ≥ the number of components of the 

unknown parametric vector
eθ ) random samples of subjects of 

sizes Nj, j=1(1)l. The Nj subjects of the jth random sample are 

assigned to the dose dj of a drug. Let nj be the number of 

subjects in the jth sample, for which the effective dose of a 

drug is less than dj. It is assumed, without loss of generality, 

that 0 < d1 < d2 < …< dl.  

The problem is to estimate the unknown parametric vector

eθ . For this purpose, it can be used the likelihood function of 

the grouped data 

1

( ) [Pr( ] [Pr( ]j j j
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e e j j

jj

N
L X d X d
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Consider a situation described by a location-scale family of 

probability distribution functions, indexed by a parametric 

vector ( , ),e e eθ µ σ=  

( | ) Pr( ) ( ),  ,e

e e e e

e

x
F x X x F F z x
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σ
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where −∞ < µe < ∞ is a location parameter and σe > 0 is a scale 

parameter, the distribution of Z = (X – µe) /σe does not depend 

on any unknown parameters.  

Assumption 1. ( )eF z  is strictly increasing continuous 

function for all z∈(−∞, ∞), i.e., 
2 1( ) ( )e eF z F z> for all 

2 1.z z>  

For computational convenience, the maximum likelihood 

estimate is obtained by maximizing the log-likelihood 

function, ln ( ).e eL θ This is because the two functions, ( )e eL θ  

and ln ( ),e eL θ are monotonically related to each other so the 

same maximum likelihood (ML) estimate is obtained by 

maximizing either one. Thus, 
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z
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2.2. Log-Likelihood Equations 

To obtain the log-likelihood equations for the unknown 

parameters eµ and ,eσ the log-likelihood function in Equation 

(3) will be differentiated partially with respect to eµ and ,eσ
respectively, and set equal to zero to provide the maximum 

likelihood estimates (MLEs), ˆ
eµ  and ˆ ,eσ  of the unknown 

parameters, eµ and ,eσ  respectively, as follows: 
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where 
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Equations (5) and (6), which represent a necessary 

condition for the existence of the MLEs, can be reduced to: 
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It is usually not possible to obtain an analytic form solution 

of Equations (8) and (9). Hence, a numerical iterative 

technique can be used to obtain the MLEs, ˆ
eµ  and ˆ ,eσ of the 

parameters,
eµ and ,eσ respectively.  

2.3. Existence and Uniqueness of the ML Estimates 

The maximum likelihood estimates need not exist nor be 

unique. In this section, we show that the MLEs, ˆ
eµ  and ˆ ,eσ  

which maximize (1), exist in the above case and are unique.  

Assumption 2. ( )eF z′  and ( )
e

F z′′ exist and are continuous 

functions for all z∈(−∞, ∞).  

Assumption 3. 
1( )eh z  is strictly increasing function for all 

z∈(−∞, ∞);
2 ( )eh z is strictly decreasing function for all z∈(−∞, 

∞).  

It follows from (8) and (9) that the MLEs, ˆ
eµ  and ˆ ,eσ  

exist and are unique if and only if  

1 1 1 1

( ) ( )
l l l l

j j j j j j j j

j j j j

N n d n d N n n
= = = =

− > −∑ ∑ ∑ ∑      (10) 

or 

1 1

1 1

.

l l

j j j

j j

l l

j j j

j j

d n n

d N N

= =

= =

>
∑ ∑

∑ ∑
              (11) 

A sufficient condition for  to be a maximum 

of (3) is that the Hessian matrix 
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evaluated at ˆ
e eθ θ=  satisfies the following condition [11]: 
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Then  

 (20) 

and 
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i.e., the MLEs, ˆ
eµ  and ˆ ,eσ  exist and are unique ones that 

maximize (1). Thus, the following theorem has been proven. 

Theorem 1. Suppose that X is a random variable coming 

from a situation described by a location-scale family of 

probability distribution functions, indexed by a parametric 

vector ( , ),e e eθ µ σ=
 

( | ) Pr( )e eF x X xθ = ≤
 

( ),  ,e

e e

e

x
F F z x
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       (22) 

where −∞ < µe < ∞ is a location parameter and σe > 0 is a scale 

parameter, the distribution of Z = (X – µe) /σe does not depend 

on any unknown parameters.  

To find an estimate  of the unknown 

parametric vector ( , ),e e eθ µ σ= the likelihood function, 

1
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of the observed grouped data 1
( ,  ...,  )

l
n n and 

1 1
( ,  ...,  )

l l
N n N n− − from l random samples of sizes Nj, 

j=1(1)l, respectively, is used, where 
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are fixed values, 

0 , 1(1) .
j j
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Then the estimates, ˆ
eµ  and ˆ ,eσ  which maximize (23), 

exist and are unique if and only if the following conditions are 

satisfied: 

1) ( )eF z  is strictly increasing continuous function for all 

z∈(−∞, ∞), 

2) ( )
e

F z′
 
and ( )

e
F z′′ exist and are continuous functions for 

all z∈(−∞, ∞), 

3) 
1( )eh z is strictly increasing function for all z∈(−∞, ∞);

2 ( )eh z is strictly decreasing function for all z∈(−∞, ∞).  

4) 
1 1 1 1

.
l l l l

j j j j j j

j j j j
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= = = =
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2.4. Estimation of Minimal Effective Dose 

Numerical methods can be used to find the ML estimate ˆ .eθ  

Then an estimate, 
MEDd , of the minimal effective dose (MED) 

for randomly chosen subjects, which elicits a prescribed 

lowest therapeutic response, is given by 

[ ]MED MEDarg Pr( ) 1 ,d X d α= ≤ = −        (26) 

where  

MED MEDPr( ) ( | ).e eX d F d θ≤ =
⌢

         (27) 

α is a significance level (say, α = 0.05). 

3. Maximal Tolerated Dose Estimation 

3.1. Likelihood Function of Grouped Data 

Let us assume that the random variable Y, which represents 

a tolerated dose level of a drug (from the point of view of 

toxicity) for randomly chosen subject, has a continuous 

cumulative distribution function ( | )t tF y θ (probability 

density function ( | )t tf y θ ) with unknown parametric vector 

tθ . We consider l (l ≥ the number of components of the 

unknown parametric vector
tθ ) random samples of subjects of 

sizes Nj, j=1(1)l. The Nj subjects of the jth random sample are 

assigned to the dose dj of a drug. Let mj be the number of 

subjects in the jth sample, for which the tolerated dose of a 

drug is more than dj. It is assumed, without loss of generality, 

that 0 < d1 < d2 < …< dl.  

The problem is to estimate the unknown parametric vector 

tθ . For this purpose, it can be used the likelihood function of 

the grouped data 
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Consider a situation described by a location-scale family of 

probability distribution functions, indexed by the parametric 

vector ( , ),t t tθ µ σ=  

( | ) Pr( ) ( ),  ,t
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t

y
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where −∞ < µt < ∞ is a location parameter and σt > 0 is a scale 

parameter, the distribution of Z = (Y– µt) /σt does not depend 

on any unknown parameters.  

Assumption 1. ( )tF z  is strictly increasing continuous 

function for all z∈(−∞, ∞), i.e.,
2 1( ) ( )t tF z F z> for all 

2 1.z z>   

For computational convenience, the maximum likelihood 

estimate is obtained by maximizing the log-likelihood 

function, ln ( ).t tL θ This is because the two functions, ( )t tL θ  

and ln ( ),t tL θ are monotonically related to each other so the 

same maximum likelihood estimate is obtained by 

maximizing either one. Thus, 
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3.2. Log-Likelihood Equations 

To obtain the log-likelihood equations for the unknown 

parameters 
tµ  and ,tσ the log-likelihood function in 

Equation (30) will be differentiated partially with respect to 

tµ and ,tσ respectively, and set equal to zero to provide the 

MLEs, ˆ
tµ  and ˆ ,tσ  of the unknown parameters,

tµ and ,tσ
respectively, as follows: 
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Equations (32) and (33), which represent a necessary 

condition for the existence of the MLEs, can be reduced to: 
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It is usually not possible to obtain an analytic form solution 

of Equations (35) and (36). Hence, a numerical iterative 

technique can be used to obtain the MLEs, ˆ
tµ  and ˆ ,tσ of the 

parameters, 
tµ and ,tσ respectively.  

3.3. Existence and Uniqueness of the ML Estimates 

The maximum likelihood estimates need not exist nor be 

unique. In this section, we show that the MLEs, ˆ
tµ  and ˆ ,tσ  

which maximize (28), exist in the above case and are unique.  

Assumption 2. ( )
t

F z′  and ( )
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functions for all z∈(−∞, ∞).  

Assumption 3. 
1( )th z is strictly increasing function for all 

z∈(−∞, ∞);
2 ( )th z is strictly decreasing function for all z∈(−∞, 

∞).  

It follows from (35) and (36) that the MLEs, ˆ
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exist and are unique if and only if  
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Then  

     (47) 

and 

2

2
1

1ˆ( ) (1 ) 0.
ˆ

l

t t j j

jt

z Qθ θ
σ =

′ = = − + <∑u H u       (48) 

i.e., the MLEs, ˆ
eµ and ˆ ,eσ exist and are unique ones that 

maximize (28). Thus, the following theorem has been proven. 

Theorem 2. Suppose that Y is a random variable coming 

from a situation described by a location-scale family of 

probability distribution functions, indexed by the parametric 

vector ( , ),t t tθ µ σ=
 

( | ) Pr( )t tF y Y yθ = ≤
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( ),  ,t

t t

t

y
F F z y

µ
σ

 −
= = −∞ < < ∞ 

 
          (49) 

where −∞ < µt < ∞ is a location parameter and σt > 0 is a scale 

parameter, the distribution of Z = (Y – µt) /σt does not depend 

on any unknown parameters.  

To find an estimate  of the unknown 

parametric vector ( , ),t t tθ µ σ= the likelihood function, 

1

( ) [Pr( )] [Pr( )]j j j

l
j N m m

t t j j

jj

N
L Y d Y d

m
θ −

=

 
= ≤ > 

 
∏

 

1

( | )[1 ( | )] .j j j

l
j N m m

t j t t j t

jj

N
F d F d

m
θ θ−

=

 
= − 

 
∏      (50) 

of the observed grouped data 1
( ,  ...,  )

l
m m and 

1 1
( ,  ...,  )

l l
N m N m− − from l random samples of sizes Nj, 

j=1(1)l, respectively, is used, where  

1 20  ... ,ld d d< < < <              (51) 

are fixed values, 

0 , 1(1) .
j j

m N j l≤ ≤ ∀ =              (52) 

Then the estimates, ˆ
tµ  and ˆ ,tσ which maximize (50), 

exist and are unique if and only if the following conditions are 

satisfied: 

1) ( )tF z  is strictly increasing continuous function for all 

z∈(−∞, ∞), 

2) ( )
t

F z′ and ( )
t

F z′′ exist and are continuous functions for 

all z∈(−∞, ∞), 

3) 
1( )th z is strictly increasing function for all z∈(−∞, ∞);

2 ( )th z is strictly decreasing function for all z∈(−∞, ∞).  

4) 
1 1 1 1

.
l l l l

j j j j j j

j j j j

N d m m d N
= = = =

<∑ ∑ ∑ ∑  

3.4. Estimation of Maximal Tolerated Dose 

Numerical methods can be used to find the ML estimate 

.tθ
⌢

Then an estimate, MTD ,d of a safe dose (maximal tolerated 

dose (MTD)) for randomly chosen subjects that will not cause 

some undesirable effect (e.g., toxicity, carcinogenicity) is 

given by 

[ ]MTD MTDarg Pr( ) 1 ,d Y d α= > = −         (53) 

where  

MTD MTD MTDPr( ) 1 ( | ) ( | ),t t t tY d F d F dθ θ> = − =
⌢ ⌢

    (54) 

α is a significance level (say, α = 0.05). 

It is clear that upper end of the interval is the maximal 

tolerated dose (MTD) 
MTD ,d and the lower end of the interval 

is the minimal effective dose (MED)
MED ,d  i.e., 

MED MTD .d d<  

Statistical inference. If the dose of a drug d is given by 

MED MTD( ,  ),d d d∈                (55) 

then there is more than 100(1−α)% assurance that d will be a 

suitable dose for randomly chosen subjects from the point of 

view of efficacy as well as from the point of view of toxicity. 

4. Numerical Examples 

4.1. Example 1 

Let us assume that the random variable X, which represents 

an effective dose level of a drug (from the point of view of 

efficacy) for randomly chosen subject, has a continuous 

cumulative distribution function of a normal distribution, i.e., 

      

( ) / 2
1

~ ( | ) exp ,
22

e ex

e e

z
X F x dz

µ σ

θ
π

−

−∞

 
= − 

 
∫      (56) 

where ( , )t t tθ µ σ=  is an unknown parametric vector, −∞ < 

µt < ∞ is a location parameter and σt > 0 is a scale parameter. 

There are l=4 random samples of subjects of size Nj=10, 

j=1(1)l, and l=4 fixed doses dj, j=1(1)l, of a drug, where 

1 2 3 40 ( 2) ( 6) ( =10) < ( =14).d d d d< = < = <      (57) 

The Nj=10 subjects of the jth random sample are assigned to 

the dose dj of a drug. Let nj be the number of subjects in the jth 

sample, for which the effective dose of a drug is less than dj. 

The observed grouped data nj 
and Nj − nj from l random 

samples of sizes Nj, j=1(1)l, respectively, are given as follows: 

1 2 3 41,    9,    10,    10n n n n= = = =         (58) 

and 

1 1 2 2 3 3 4 49,    1,    0,    0.N n N n N n N n− = − = − = − =  (59) 

It follows from (11) that 

1 1

1 1

0.925 0.75,

l l

j j j

j j

l l

j j j

j j

d n n

d N N

= =

= =

= > =
∑ ∑

∑ ∑
       (60) 

i.e., the MLEs, ˆ
eµ  and ˆ ,eσ

 
exist and are unique ones that 

maximize (1). Thus, using the Solver of Excel 2010 for 

maximizing (1), we have that 
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     (61) 

where  

ˆ 3.999446,eµ =  ˆ 1.559312336.eσ =        (62) 

ˆmax ( ) ( ) 0.0015.
e

e e e eL L
θ

θ θ= =          (63) 

Then the estimate, MEDd , of the minimal effective dose 

(MED) for randomly chosen subjects, which elicits a 

prescribed lowest therapeutic response, is given by  

MED MEDarg  [Pr( ) 1 ]d X d α= ≤ = −  

MEDarg ( | ) 1 7.0557,e eF d θ α = = − = 
⌢

     (64) 

where the significance level α = 0.025. 

Let us assume that the random variable Y, which represents 

a tolerated dose level of a drug (from the point of view of 

toxicity) for randomly selected subject, also has a continuous 

cumulative distribution function of a normal distribution, i.e., 

( ) / 2
1

~ ( | ) exp .
22

t ty

t t

z
Y F x dz

µ σ

θ
π

−

−∞

 
= − 

 
∫     (65) 

The observed grouped data mj 
and Nj − mj from l random 

samples of sizes Nj, j=1(1)l, respectively, are given as follows: 

1 2 3 410,    10,    9,    1m m m m= = = =        (66) 

and 

1 1 2 2 3 3 4 40,   0,   1,   9.N m N m N m N m− = − = − = − =   (67) 

It follows from (38) that 

1 1

1 1

0.575 0.75.

l l

j j j

j j

l l

j j j

j j

d m m

d N N

= =

= =

= < =
∑ ∑

∑ ∑
        (68) 

i.e., the MLEs, ˆ
eµ  and ˆ ,eσ exist and are unique ones that 

maximize (28). Thus, using the Solver of Excel 2010 for 

maximizing (28), we have that 

    (69) 

where 

ˆ 12.00055404,tµ =  ˆ 1.559312;tσ =         (70) 

ˆmax ( ) ( ) 0.001500047.
t

t t t tL L
θ

θ θ= =         (71) 

Then the estimate, MTD ,d  of a safe dose (maximal 

tolerated dose (MTD)) for randomly chosen subject, which 

will not cause some undesirable effect (e.g., toxicity, 

carcinogenicity) is given by 

[ ]MTD MTDarg Pr( ) 1d Y d α= > = −  

    MTDarg ( | ) 1 8.9445,t tF d θ α = = − = 
⌢

    (72) 

where the significance level α = 0.025. 

Thus, the upper end of the interval is the maximal tolerated 

dose (MTD) 
MTD 8.9445d =  and the lower end of the interval 

is the minimal effective dose (MED) 
MEDd =7.0557, i.e., 

MED MTD7.0557 8.9445.d d= < =  

Statistical inference. If the dose d of a drug is given by 

MED MTD( 7.0557,   8.9445),d d d∈ = =       (73) 

then there is more than 97.5% assurance that d will be a 

suitable dose for randomly chosen subjects from the point of 

view of efficacy as well as from the point of view of toxicity. 

4.2. Example 2 

Consider the situation described in Example 1. Let us 

assume that  

( )~ ( | ),e W eX F x θ                (74) 

where 

( ) ( | ) Pr( ) 1 exp ,    0,

e

e W e

e

x
F x X x x

δ

θ
β

  
 = ≤ = − − > 
   

  (75) 

is a cumulative distribution function of a two-parameter 

Weibull distribution with an unknown parametric vector 

( , ),e e eθ β δ=  0eβ >  is a scale parameter, 0eδ > is a shape 

parameter. Using the Solver of Excel 2010 for maximizing the 

likelihood function of the grouped data (58) and (59), 

( )

1

( ) [Pr( ] [Pr( ]j j j

l
j n N n

e W e j j

jj

N
L X d X d

n
θ −

=

 
= ≤ > 

 
∏

 

( ) ( )

1

( | )[1 ( | )] ,j j j

l
j n N n

e W j e e W j e

jj

N
F d F d

n
θ θ −

=

 
= − 

 
∏    (76) 

it can be obtained the MLEs 

     (77) 
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where  

ˆ 4.457434,eβ =  ˆ 2.811425;eδ =          (78) 

( ) ( )
ˆmax ( ) ( ) 0.0015.

e

e W e e W eL L
θ

θ θ= =        (79) 

Then the estimate, MEDd , of the minimal effective dose 

(MED) for randomly selected subjects, which elicits a 

prescribed lowest therapeutic response, is given by 

MED MEDarg  [Pr( ) 1 ]d X d α= ≤ = −  

  ( ) MED
ˆarg ( | ) 1 7.0913,e W eF d θ α = = − =       (80)  

where the significance level α = 0.025. 

Now, let us assume that  

( )~ ( | ),t W tY F y θ                (81) 

where 

 ( ) ( | ) Pr( ) 1 exp ,    0,

t

t W t

t

y
F y Y y y

δ

θ
β

  
 = ≤ = − − > 
   

 (82) 

is a cumulative distribution function of a two-parameter 

Weibull distribution with an unknown parametric vector 

( , ),t t tθ β δ=  0tβ >  is a scale parameter, 0tδ > is a shape 

parameter. Using the Solver of Excel 2010 for maximizing the 

likelihood function of the grouped data (66) and (67), 

( )

1

( ) [Pr( )] [Pr( )]j j j

l
j N m m

t W t j j

jj

N
L Y d Y d

m
θ −

=

 
= ≤ > 
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∏

 

( ) ( )

1

( | )[1 ( | )] ,j j j

l
j N m m

t W j t t W j t

jj

N
F d F d

m
θ θ−

=

 
= − 

 
∏    (83) 

it can be obtained the MLEs  

     (84) 

where  

   (85) 

( ) ( )
ˆmax ( ) ( ) 0.001487.

t

t W t t W tL L
θ

θ θ= =    (86) 

Then the estimate, MTDd , of a safe dose (maximal tolerated 

dose (MTD)) for randomly chosen subject, which will not 

cause some undesirable effect (e.g., toxicity, carcinogenicity) 

is given by 

MTD MTDarg  [Pr( ) 1 ]d Y d α= > = −  

( ) MTD
ˆarg ( | ) 1 8.59218,t W tF d θ α = = − =    (87) 

where the significance level α = 0.025. 

Maximum likelihood inference. Since 

    (88) 

and 

   (89) 

it follows from (88) and (89) that the normal distribution better 

fits the grouped data of Example 1 than the Weibull 

distribution.  

5. Conclusion 

Dose–response experiments are an important part of 

biomedical research to study relationships between increasing 

doses of a therapeutic compound and a variety of responses. 

Typically, the response represents a phenotypical effect of a 

compound such as inhibition, stimulation, toxicity, or 

expression level of a certain gene. The primary goal of such an 

experiment is to detect a dose–response relationship and to 

determine the nature of the relationship wherever it exists. In 

this article, we focus on a continuous response and an 

experimental design with fixed number of doses. If the 

dose–response relationship exists, it may be monotone, that is, 

the compound effect (increasing or decreasing) becomes 

stronger (or stays the same) with an increasing dose. This 

property is very common in real applications, especially when 

inhibition or toxicity is measured. More general 

umbrella-shaped profiles [12] can occur within the context of 

overdosing and therefore a decreasing (increasing) effect is 

expected after reaching some threshold dose. These properties 

are not discussed in this paper. It is assumed only that the dose 

of a drug suitable for a randomly chosen subject is a random 

variable that follows a certain law of probability distribution. 

If there are a few models of the probability distribution for the 

aforementioned random variable, then the best model is the 

one that provides the greatest value of the maximum 

likelihood function of the grouped data. The methodology 

described here can be extended in several different directions 

to handle various problems that arise in practice. We have 

illustrated the proposed methodology for location-scale 

distributions (such as, say, the normal, lognormal, Gumbel, 

Weibull distribution, etc.). Applications to other distributions 

could follow directly. 
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