
 
American Journal of Theoretical and Applied Statistics 
2024; 13(1): 1-7 
http://www.sciencepublishinggroup.com/j/ajtas 
doi: 10.11648/j.ajtas.20241301.11 
ISSN: 2326-8999 (Print); ISSN: 2326-9006 (Online)  

 

On Sparre Andersen Model with Partial Premium Payment 
Strategy to Shareholders with Dependence via Sperman 
Copula 

Delwendé Abdoul-Kabir Kafando
1
, François Xavier Ouedraogo

1
, Lassané Sawadogo

1
,  

Kiswendsida Mahamoudou Ouedraogo
1
, Pierre Clovis Nitiema

2
 

1Department of Mathematics, Université Joseph KI-ZERBO, Ouagadougou, Burkina Faso 
2Department of Mathematics, Université Thomas SANKARA, Ouagadougou, Burkina Faso 

Email address: 

 

To cite this article: 
Delwendé Abdoul-Kabir Kafando, François Xavier Ouedraogo, Lassané Sawadogo, Kiswendsida Mahamoudou Ouedraogo, Pierre Clovis 
Nitiema. (2024). On Sparre Andersen Model with Partial Premium Payment Strategy to Shareholders with Dependence via Sperman Copula. 
American Journal of Theoretical and Applied Statistics, 13(1), 1-7. https://doi.org/10.11648/j.ajtas.20241301.11 

Received: December 8, 2023; Accepted: December 22, 2023; Published: January 8, 2024 

 

Abstract: This paper is based on the Poisson composite risk model, popularised for its flexibility in modelling loss 
occurrences. However, it innovates by incorporating a strategy of distributing dividends to shareholders, adding a realistic 
dimension to the financial implications. A key element is the introduction of a constant threshold 'b', representing a critical 
amount beyond which claims become significant. This threshold makes it possible to distinguish between small, routine claims 
and major events with a significant impact on reserves. In addition, the model introduces a dependency between the amount of 
claims and the time between claims via the Spearman copula. This copula captures the non-independence often observed in 
insurance data, where large claims tend to be followed by claim-free periods or vice versa. The analysis then focuses on the 
integro-differential equation associated with the model, which describes the evolution of Gerber's Shiu function, a fundamental 
element in assessing the reserve required to cover future obligations. The Laplace transform of this function is also studied, 
providing valuable information on the distribution of the long-term reserve. 
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1. Introduction 

Mathematical models are constantly being developed in 
response to the need for better knowledge of risks with the 
simplifying assumption of independence between the random 
variables the random variables involved in risk modelling (See, 
for example, references [11, 17]). However, in certain 
practical contexts, this assumption needs to be relaxed, as it is 
inappropriate and too restrictive (see [15, 16]). In flood 
insurance, for example, the occurrence of several floods in a 
short space of time in a short space of time can lead to major 
damage, and therefore large claims, as a result of 
accumulation of water. In earthquake insurance, it’s the other 
way around, because in a high-risk zone, the longer the time 
between two earthquakes, the greater the impact of the second 
earthquake, due to the accumulation of energy. 

To make up for this shortcoming (see [1, 9, 10, 13], ), many 
works include in the risk model the dependence between 
certain dependence between certain random variables, in 
particular the variables claim amount and inter-claim time, 
thanks to the Farlie Gumbel Morgenstern copula (see, for 
example, references [5-8, 12, 18]). Although this copula is 
commonly used in the literature, encounters certain limitations. 
It fails to model tail dependencies (see references [2-4]). 

To remedy the inadequacy of the Farlie Gumbel 
Morgenstern copula, while taking into account the reality of 
insurance companies, we consider in this article, the 
Compound Poisson risk model in which we integrate not only 
the dependence between the variables claim amounts and 
interclaim times via the Spearman copula, with also a strategy 
of partial payment of dividends to shareholders of constant 
threshold b. 
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In this model, when the surplus process reaches the constant 
threshold barrier b set, bonuses are partially granted to 
shareholders at a contant rate � such that 0 < � < 1. Noting 
by Ub(t) the surplus process in the presence of the threshold 
dividend barrier b (with ��(0) = u), the model follows the 
following dynamics: 

������ = 	 
�� − ����� �� ����� < � �1 − ��
�� − ����� �� ����� = �      (1) 

where: ����� is the surplus process in the presence of a b threshold 
dividend barrier � (with ���0� = � the initial surplus and 0 < � ≤ ��; 
 is the constant rate of premium received by the insurer 
per unit of time; ��  is the first instant when the surplus reaches the 

horizontal barrier � so �� = ���
� . 

���� = ∑ ��������  s the aggregate Poisson loss process 
composed of: !"���, � ≥ 0% the total number of claims recorded up to 
time �, which follows a Poisson process of intensity & > 0; 
(Note that���� = 0 �( "��� = 0); !�� , � ≥ 1%  a sequence of random representing the 
individual amounts of claims with common density function (  and distribution function ) and assumed to have an 
exponential distribution Erlang (2) de paramètre *. 

The interclaim times !+� , � ≥ 1%  form a sequence of 
random variables with Erlang (2) law of parameter &, 
probability density function ,��� = &-�.�/�  and 
distribution function 

0��� = 1 − .�/� − &�.�/�; 

The aim of this work is to determine the integro-differential 
equation and the Laplace transform of the Gerber Shiu 
function in the risk model defined by the relation (1). The rest 
of the article is structured as follows: In section 2, we discuss 
the preliminaries of the risk model defined by the relation (1). 
In Section 3, we study the integro-differential equation 
satisfied by the Gerber Shiu function in the risk model defined 
by relation (1). 

2. Preliminaries 

2.1. Ruin Probability 

The insurer’s probability of ruin is the probability of ruin 
occurring either over a finite horizon or over an infinite 
horizon. In the latter case, we speak of the ultimate probability 
of risk. 

Let 1  be the insurance company’s instant of ruin. 1  is 
defined by: 

1 = �2(!� ≥ 0, ���� < 0|��0� = �%        (2) 

When the probability of ruin is always zero, by convention 
we note 1 = ∞ in this case 

���� ≥ 0 ∀ � ≥ 0. 
The probability of ultimate failure is defined by: 

ѱ��� = ѱ��, ∞� = 6781 < ∞, ���� < 0|��0� = � 9     (3) 

2.2. Gerber-Shiu Discounted Penalty Function 

The Gerber-Shiu expected penalty function or 
Gerber-Shiu function appeared in 1998 in the work of 
Gerber and Shiu. Nowadays, this function is of great 
interest for research. Its analysis remains a central issue in 
both insurance and finance, as it is a valuable tool not only 
in the study of the probability of ruin, but also in the 
calculation of pension and reinsurance premiums, the 
pricing of options and so on. It is defined by: 

:��� = ;8.�<=>?��=@�, |�=|AB�1 < ∞�|��0� = �9   (4) 

where: 1 is the instant of failure defined by the relation (2); 1� is the moment just before ruin; C is a force of interest; 
The penalty function >�D, E� is a positive function of the 

surplus just before ruin ��=@�  and of the ruin deficit |�=|, ∀ D, E ≥ 0; B  is the indicator function which is worth 1 if event A 
occurs and 0 otherwise. 

2.3. Dependency Model Based on Spearman's Copula 

In this work, the dependency structure is provided by the 
Spearman copula defined by: ∀ ��, G� ∈ 80,19- and I ∈ 80,19 
par: 

JK��, G� = �1 − I�JL��, G� + IJN��, G�          (5) 

Where: JL��, G� = �G; JN��, G� = O�2��, G�;  I  is 
dependency parameter. 

Spearman’s copula can be used to express positive 
dependencies and also tail dependencies in many situations in 
many situations (see [18, 19]). Using formula (5), the random 
vector claims amount and inter-claim times (X, V ) has the 
joint distribution function given by: 

)P,Q�D, �� = JK�)P�D�, )Q���� 

= �1 − I�JL�)P�D�, )Q���� + IJN�)P�D�, )Q���� 

= �1 − I�)L�D, �� + I)N�D, ��        (6) 

Where: )P )Q  are are the respective marginals of the 
random variables � and +. 

The copula support JN est R = ! ��, G� ∈ 80,19-: � = G% 

On the domain 80,19- ∖ R, UVWXU�UY = 0;  and on R, JN  is 

uniformly distributed. 
Since the dependency structure is described by the copula JN then they are monotonic and there is almost certainly an 

increasing function Z, such that � = Z�+�  (See [8], page 
27). 



 American Journal of Theoretical and Applied Statistics 2024; 13(1): 1-7 3 
 

The distribution function of � is: 

)P�D� = )Q�Z� �D�� 

⟺ 1 − .�\] = 1 − .�/^@_�]� 
⟺ −&Z� �D� = −*D 

⟺ Z� �D� = \]
/                  (7) 

From relation (7) we deduce that:Z��� = /
\ �. 

The joint distribution )P,Q�D, ��  of the random vector ��, +�  is singular, whose support is the domain R` =!�D, ��: )P�D� = )Q���% = !�D, ��: x = Z���%. 
Its distribution is b��� = )N�Z���, �� = 1 − .�/�  on the 

domain R` = c�D, ��: x = /
\ �d. 

3. Integro-Differential Equation Satisfied 

by the Gerber Shiu Function 

The aim of this section is to determine the differential 
equation satisfied by the function :���� in a risk model 
with constant threshold dividend payment �  and 
dependence between the random variables claim amount and 
inter-claim time via Spearman's copula. In this risk model 
(see reference [2, 3, 4]), the Gerber Shiu function :���� is 
given by: 

:���� = �1 − I� eB�, ��� + B�,-���f + I eB�,g��� + B�,h���f  (8) 

Where: 

B�, ��� = i  i .�<�:��� + 
� − D��)L�D, ���j��klk ;  

B�,-��� = i  i .�<�m�� + 
�, D − � − 
���)L�D, ��l�j��lk ;  

B�,g��� = i  i .�<�:��� + 
� − D��)N�D, ���j��klk ;  

B�,h��� = i  i .�<�m�� + 
�, D − � − 
���)N�D, ��l�j��lk   

To determine the integro-differential equation satisfied by 
the Gerber Shiu function in the risk model defined by relation 
(1), we adopt the following approach: 

1) The first loss occurs at time t before the surplus process 

reaches the barrier � e� < ���
� f.  The amount D  is 

such that D < � + 
�. 
2) The first loss occurs at time t before the surplus process 

reaches the barrier � e� < ���
� f.  The amount D  is 

such that D > � + 
�. 
3) The first loss occurs at time t after the surplus process 

has crossed the barrier. � e� > ���
� f. The amount D is 

such that D < � + �1 − ��
�� − ���. 
4) The first loss occurs at time t after the surplus process 

has crossed the barrier � e� > ���
� f. The amount D is 

such that D > � + �1 − ��
�� − ���. 

By conditioning on the time and amount of the first claim, 
and taking into account the different scenarios above, we have: 

B�, ��� = i  i .�<�:��� + 
� − D��j��k�nk �)L�D, �� +
i  i .�<�:��� + o 
�� − ��� − D��jp_�����n�

kl�n �)L�D, ��  

B�,-��� = i i .�<�m�� + 
�, D − � − 
���)L�D, ��l�j���nk +
i  i .�<�m?� + o 
�� − ���, D − � − o 
�� −l�jp_�����n�l�n ���A �)L�D, ��        (9) 

Where �� = �� − ��/
  and  : o = 1 − �. 
The copula JL  being the independent part of the 

Spearman copula, we have: 

�)L�D, �� = &.�/�(P�D��D��            (10) 

BY posing B���� = B�, ��� + B�,-���, and with using the 
relations (7); (9), (10), we have: 

B���� =&- i  i �.�<�:��� + 
� − D��j��k�nk .�/�(P�D��D�� +
&- i  i �.�<�:��� + o 
�� − ��� −�jp_�����n�

kl�nD� .�/�(P�D��D�� + &- i i �.�<�m�� + 
�, D − � −l�j���nk
��.�/�(P�D��D�� + &- i  i �.�<�m?� +l�jp_�����n�l�no 
�� − ���, D − � − o 
�� − ���A .�/�(P�D��D��   (11) 

To simplify the notation of relation (11), we pose: 

r��� = i >��, D − ��(�D��Dl� ;  s���� = i :��� −�kD�(�D��D + r���                  (12) 

The relation (11) becomes: 

B���� =
&- i �.��<j/��s��� + 
���� n@tuk + &- i  �.��<j/��s� v� +ln@tu
o e� − ���

� fw ��                  (13) 

Let's move on to calculating integrals B�,g��� and B�,h��� 
in the relation (8). 

B�,g��� = i  i .�<�:��� + 
� − D��j��k�nk �)N�D; �� +
i i .�<�m�� + 
�, D − � − 
��l�j���nk )N�D; ��  

= i .�<�:��� + 
� − D�x b��� + i .�<�m�� + 
�, D −y� − 
�� �b���                (14) 

where: 

0 = c� ∈ ℝj: 0 ≤ � ≤ ���
�  {2� 0 ≤ D = /

\ � ≤ � + 
�d  

= c� ∈ ℝj: 0 ≤ � ≤ ���
�  {2� e
 − /

\f � ≥ −�d  

= c� ∈ ℝj: 0 ≤ � ≤ ���
�  {2� � ∈ ℝjd  because 
 > /

\ ; � ≥
0 {2� � > 0  



4 Delwendé Abdoul-Kabir Kafando et al.:  On Sparre Andersen Model with Partial Premium Payment Strategy to  
Shareholders with Dependence via Sperman Copula 

Hence: 

0 = �0; ���
� �                         (15) 

� = c� ∈ ℝj: 0 ≤ � ≤ ���
�  {2� � + 
� ≤ D = /

\ �d  

= c�: ∈ ℝj: 0 ≤ � ≤ ���
�  {2� e/

\ − 
f � ≥ �d  

/
\ − 
 < 0;  � ≥ 0 {2� � > 0 ⟹ c�: ∈ ℝj {2� e/

\ − 
f � ≥

�d = ∅  

Hence: 

� = ∅                               (16) 

By injecting relations (15) and (16) into relation (14), we 
obtain: 

B�,g��� = i .�<�:��� + 
� − D� �nk b���  

= &- i �.��<j/��:� e� + 
� − /
\ �f �nk ��  

B�,g���  = &- i �.��<j/��:� e� + e
 − /
\f �f n@tuk ��                        (17) 

B�,h��� = i  i .�<�:��� + 
o �� − ��� − D��j�p_����n�
kl�n �)N�D; �� + i  i .�<�m�� + 
o �� − ���, � + 
o �� −l�j�p_����n�l�n��� − �� )N�D; ��  

B�,h���  = i .�<�:��� + 
o �� − ��� − D�x� b��� +  

i .�<�m�� + 
o �� − ���, D − ��y� �b���                             (18) 

where: 

0` = c� ∈ ℝj: � ≥ ���
�  {2� 0 ≤ D = /

\ � ≤ � + 
o �� − ���d  

= c� ∈ ℝj: � ≥ ���
�  {2� e/

\ − 
o f � ≤ � − o �� − ��d  

To guarantee solvency, it is assumed that: 
o ≥ /
\ ⟹ /

\ − 
o ≤ 0; 
We also have: � ≥ 0;  � − o �� − �� ≥ 0 because 0 < o ≤ 1 and � − � < � 
Hence: 

0` = c� ∈ ℝj: � ≥ ���
�  {2� � ∈ ℝjd  

Subsequently: 

0` = ����
� ;  +∞�                                                       (19) 

�` = c� ∈ ℝj: � ≥ ���
�  {2� D = /

\ � ≥ � + 
o �� − ���d  

= c�: ∈ ℝj: � ≥ ���
�  {2� e/

\ − 
o f � ≥ � − o �� − ��d  

We have: 
/
\ − 
o < 0; � ≥ 0;  � − o �� − �� Hence: c� ∈ ℝj: e/

\ − 
o f � ≥ � − o �� − ��d = ∅. 
We also have: 

�` = ∅                                    (20) 

By injecting relations (19) and (20) into relation (18), we have: 

B�,h��� = &- i �.��<j/��:� e� + 
o e� − ���
� f − /

\ �fln@tu ��                      (21) 

By posing: B�⋆��� = B�,g��� + B�,h���. 
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B�⋆��� = &- i �.��<j/��:� e� + e
 − /
\f �f n@tuk �� + &- i �.��<j/��:� e� + 
o e� − ���

� f − /
\ �fln@tu ��         (22) 

By relations (13) and (22) relation (8) becomes: 

:���� =
�1 − I� v&- i �.��<j/��s��� + 
���� n@tuk + &- i  �.��<j/��s� v� + 
o e� − ���

� fw �� ln@tu w + I v&- i �.��<j/��:� e� + n@tuk
e
 − /

\f �f �� + &- i �.��<j/��:� e� + 
o e� − ���
� f − /

\ �fln@tu ��w                              (23) 

The relation (23) can be expressed as: 

:���� = &-�1 − I� i �.��<j/��s� ��� + 
�� ∧ v� + 
o e� − ���
� fw� �� lk + I&- i �.��<j/��:� �e� + e
 − /

\f �f ∧ lk
e� + 
o e� − ���

� f − /
\ �f� ��  

By a change of variable by posing � = � + 
o e� − ���
� f  {2� � = � + e
 − /

\f �, we obtain: 

:���� =
/V� �K�

�Vp_ × i  e���
p_ + � − �f .�e���u fe�@n�_ j���fs� �e� + ���

p_ f ∧ �� ��l��p_����� + K�\/�V
\��/ × i e ���

\��/f .�\e ����u@�f�����l� :� �� ∧
�� + �*
o − &� e ���

\��/f − o �� − ����                 (24) 

Theorem 3.1: The Gerber Shiu function :����  in a risk model defined by relation (1) satisfies the following 

integro-differential equation: 

�e� − * e <j/
\��/f ℓf�- �e� − e<j/

� f ℓf�- :���� = �� �K�?\/�<j/�AV
?��\��/�AV ℓ − -\/V� �K��<j/�

�V�\��/� � + /V� �K�
�V �-�  s���� + �I�C +

&�- e \/
\��/f- �e \

\��/ −  
�f- − \

\��/ e -\
\��/ − \�j-

� f� ℓ + 2I�C + &� e \/
\��/f- e \

\��/ − \�j 
� f � + I �\/�V

\��/ �-� :����    (25) 

Proof: 
We derive :���� in relation (24) with respect to �. 

:′���� =
/V� �K�

�Vp_ e<j/
� f i  e���

p_ + � − �f .�e���u fe�@n�_ j���fs� �e� + ���
p_ f ∧ �� ��l��p_����� − /V� �K�

�Vp_ i  .�e���u fe�@n�_ j���fs� �e� +l��p_�����
���
p_ f ∧ �� �� + I*�C + &� e \/

\��/f- i e ���
\��/f .�\e ����u@�f�����l� :� �� ∧ �� + �*
o − &� e ���

\��/f − o �� − ���� −
I e \/

\��/f- i .�\e ����u@�f�����l� :� �� ∧ �� + �*
o − &� e ���
\��/f − o �� − ����          (26) 

Noting by � {2� ℓ the respective differentiation and identity operators, let's calculate 

���� = e� − <j/
� ℓf :����.  

���� =
− /V� �K�

�Vp_ i  .�e���u fe�@n�_ j���fs� �e� + ���
p_ f ∧ �� ��l��p_����� + I�C + &� �\/�V

\��/ e \
\��/ −  

�f i e ���
\��/f .�\e ����u@�f�����l� :� �� ∧

�� + �*
o − &� e ���
\��/f − o �� − ���� − I e \/

\��/f- i .�\e ����u@�f�����l� :� �� ∧ �� + �*
o − &� e ���
\��/f − o �� − ����  (27) 

We derive ���� in the relation (27) with respect to �. 
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�`��� = − /V� �K�
�Vp_ e<j/

� f i  .�e���u fe�@n�_ j���fs� �e� + ���
p_ f ∧ �� ��l��p_����� + /V� �K�

�V s���� + I*�C + &�- e \/
\��/f- e \

\��/ −
 
�f i e ���

\��/f .�\e ����u@�f�����l� :� �� ∧ �� + �*
o − &� e ���
\��/f − o �� − ���� −

I�C + &� e \/
\��/f- e -\

\��/ −  
�f i .�\e ����u@�f�����l� :� �� ∧ �� + �*
o − &� e ���

\��/f − o �� − ���� + I �\/�V
\��/ :����   (28) 

We calcule ℎ��� = e� − e<j/
� f ℓf ����. 

ℎ��� = /V� �K�
�V s���� + I �\/�V

\��/ :���� + I�C + &�- e�\/�V
\��/f e \

\��/ −  
�f- i e ���

\��/f .�\e ����u@�f�����l
� :� �� ∧ �� + �*
o − &� e ���

\��/f −
o �� − ���� − 2I�C + &� e \/

\��/f- e \
\��/ −  

�f i .�\e ����u@�f�����l
� :� �� ∧ �� + �*
o − &� e ���

\��/f − o �� − ���� (29) 

We derive the function ℎ��� in the relation (29) with respect to �. 
ℎ`��� = /V� �K�

�V s`���� + I �\/�V
\��/ :`���� + I*�C + &�- e�\/�V

\��/f e \
\��/ −  

�f- e <j/
\��/f i e ���

\��/f .�\e ����u@�f�����l� :� �� ∧
�� + �*
o − &� e ���

\��/f − o �� − ���� − I�C + &�- e \/
\��/f- e \

\��/ −  
�f e g\

\��/ −  
�f i .�\e ����u@�f�����l� :� �� ∧ �� +

�*
o − &� e ���
\��/f − o �� − ����  + 2I�C + &� e \/

\��/f- e \
\��/ −  

�f :����                                 (30) 

We determine ,��� = e� − * e <j/
\��/f ℓf ℎ��� 

,��� = − \/V� �K��<j/�
�V�\��/� s���� + I�C + &� e \/

\��/f- e -\
\��/ − \�j-

� f :���� + /V� �K�
�V s`���� + I �\/�V

\��/ :`���� − I�C +
&�- e \/

\��/f- e \
\��/ −  

�f- i .�\e ����u@�f�����l� :� �� ∧ �� + �*
o − &� e ���
\��/f − o �� − ����          (31) 

We derive still ,��� in the relation �31� with respect to �. 
,`��� = − \/V� �K��<j/�

�V�\��/� s`���� + I�C + &� e \/
\��/f- e -\

\��/ − \�j-
� f :`���� + /V� �K�

�V s``���� + I �\/�V
\��/ :``���� − I*�C +

&�- e \/
\��/f- e \

\��/ +  
�f- e <j/

\��/f i .�\e ����u@�f�����l� :� �� ∧ �� + �*
o − &� e ���
\��/f − o �� − ���� +

I�C + &�- e \/
\��/f- e \

\��/ −  
�f-  :����                                                   (32) 

Let's calculate ���� = e� − * e <j/
\��/f ℓf ,��� 

���� = � �K�?\/�<j/�AV
?��\��/�AV s���� − -\/V� �K��<j/�

�V�\��/� s`���� + I�C + &�- e \/
\��/f- �e \

\��/ −  
�f- − \

\��/ e -\
\��/ − \�j-

� f� :���� +
2I�C + &� e \/

\��/f- e \
\��/ − \�j 

� f :`���� + /V� �K�
�V s``���� + I �\/�V

\��/ :``����                            (33) 

From relations (26) to (33), we deduce relation (25). 

4. Conclusion 

In this paper, we have determined the integro-differential 
equation satisfied by the Gerber Shiu function in a Sparre 
Andersen risk model with a strategy of partial dividend 
payment to shareholders and a dependence between claim 
amounts and inter-claim times via the Spearman copula. 

Determining the Laplace transforms of the Gerber Shiu 
function and the probability of ultimate ruin is our next 
objective. 
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