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Abstract: The initial procedure of the Coefficient of Determination Ratio (CDR) for determining outliers in linear regression 

model is suggested for centred data and declares an observation as an outlier if the CDR value deviates from unity. Although 

the method performs very well and detects more precisely the requisite outliers than those observed by other well-known 

detection measures, the cut-off rule approach is a source of subjectivity and the data structure for which the method is designed 

is also restrictive. In this study therefore, a more rigorous cut-off rule of the same method for identifying influential 

observations is outlined for an updated method of the CDR that covers the more general case of a non-centred data. A cut-off 

rule is specified that involves the ratio of quantile values of the Beta distribution. An automated implementation of the 

procedure is presented that makes use of datasets in the literature and those that are simulated under various conditions of 

sample size, number and distribution of explanatory variables. The method is now made more generalized in application, 

objective and reliable as a detection measure than the initial proposal. It therefore provides most appreciable improvement in 

the explanatory power of linear regression models when the identified outliers are deleted from the data. 

Keywords: Outliers, Coefficient of Determination Ratio, Linear Regression, Regression Diagnostics,  

Influential Observation 

 

1. Introduction 

The identification of outliers in linear regression analysis 

has received attention in many studies (such as those of 

Chatterjee & Hadi [1, 2]; Hadi [3]; Pena [4]; Barnett & 

Lewis [5]; Cook & Weisberg [6]; Draper & John [7]; Hadi 

& Simonoff, [8]; Hawkins [9]; and Lawrence [10]) Most of 

the outlier detection methods employ case deletion 

approach, by which the influence of the ith observation in 

the data is measured by computing single-case diagnostics 

with the ith case removed [11-13]. In many case deletion 

measures, the effect of deleting an observation is 

determined based on a particular regression result, for 

instance, the influence of observations on the predicted 

values, the estimated regression coefficients and its 

variance-covariance structure. In Zakaria et al. [13], a case 

deletion measure is proposed as an alternative method for 

outlier detection based on the coefficient of determination. 

It is observed that the proposed method in that work, known 

as the coefficient of determination ratio (CDR), appears 

more responsive to detecting influential outliers in both 

simple and multiple linear regression. The method has been 

compared with some standard case deletion measures and 

found to be particularly effective in identifying more subtle 

outlying observations. 

Generally, outlier detection measures utilize cut-off rules 

or threshold values in identifying influential observations in 

datasets. The work of Zakaria et al. [13] does not provide 

cutoff values for the CDR measure, but relies on graphical 

procedure. In that method, if the CDRi  of the ith observation 
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deviates from unity, then the observation is influential. This 

‘deviation’ is a source of subjectivity. The objective of this 

paper therefore is to determine exact cutoff values for the 

CDR measure, and provide an automated implementation of 

the method in R software. The performance of the CDR 

measure on improving the explanatory power of linear 

regression models will also be assessed. 

In what follows, an update of the theoretical formulation and 

derivation of the CDR measure is presented. The CDR 

measure for non-centred linear regression models is also 

presented. In Section 3, an algorithm for the implementation of 

the CDR measure is presented. In Section 4, simulation of 

datasets used in the paper is described. Results and discussion 

are provided in Section 5, and conclusion follow in the end. 

2. Methodology 

In the work of Zakaria et al. [13], the CDR measure is 

proposed based on an assumption that the data under 

consideration is mean-corrected. In order to prescribe the cut-

off value for the measure, we will first provide a review of 

the CDR to cover the general case of a non-centred data. 

2.1. Updating the CDR Measure 

Based on the general linear regression model y Xβ ε= + , 

where y  is 1n×  vector of responses, X  is ( 1)n k× +  design 

matrix involving k predictor variables, and corresponding 

vector of coefficients β,  and error term ε , the sum of 

squares total, SST, may be given as 

1
SST y y y Jy

n

 ′ ′= −  
 

                            (1) 

and the sum of squares regression, SSR, is also given as 

1ˆSSR β X y y Jy
n

 ′ ′ ′= −  
 

                           (2) 

where J 11′= , an n n×  matrix of 1s, with 1 ones( , 1)n= . 

From Equations (1) and (2), the coefficient of determination, 
2

R , is expressed as 

2 SSR

SST

1
β̂ X y y Jy

    
1

y y y Jy

R

n

n

=

 ′ ′ ′−  
 =
 ′ ′−  
 

 

The coefficient of determination ratio (CDR) for the ith 

observation, a measure for detecting influential outliers in 

linear regression, is given as 

( )
2

2
CDR

i

i

R

R
= , 1, 2, ,i n= …  

where ( )iSSR , and ( )iSST  are the respective sums of squares 

regression and total with the ith observation deleted. The 

CDR expression becomes 

( )

( )
2

SSR1
CDR

SST

i

i

iR
= × , 1,2, ,i n= …                 (3) 

Similar to Equation (2.1), ( )iSST  may be expressed as 

( ) ( ) ( )
( )

( ) ( ) ( )
1

y y y J yi i i i i i
i

SST
n

 
 ′ ′= −
 
 

, 

where ( )y
i  is the corresponding ( )1 1n − ×  vector after 

deleting iy  from y . It can be shown [14] that 

( ) ( )
2y y y y ii i

y′ ′= − . 

It is noteworthy that ( ) 1
i

n n= −  and 

( ) ( ) ( ) ( ) ( )

( )
( ) ( )

2

2

y J y 1 y

              1 y

              1 y 1 y

i i i i i

i

i i

y

y y

 ′ ′=
 

′= −

′′ ′= − −

 

( ) ( ) ( ) ( ) 21 y 1 y 1 y 1 yi i iy y y′′ ′ ′ ′= − − +  

( ) 2y 11 y 2 1 y i iy y′ ′ ′= − +  

( ) 2y Jy 2 1 y i iy y′ ′= − +  

Thus, 

( ) ( )

( )

[ ] ( )

2 2

2 2

2

1
SST y y y Jy 2 1 y

1

1 2 1
        y y y Jy 1 y

1 1 1

1 2
        y y y y y Jy 1 y

1 1 1

i i ii

i i i

i i

y y y
n

y y y
n n n

n
n y y

n n n

   ′ ′ ′= − − − +   − 

     ′ ′ ′= − − + −     − − −     

     ′ ′ ′ ′= − − + −     − − −     

 

( ) ( ) 21 2
SST y y 1 y

1 1 1
i i

n
n y y

n n n

     ′ ′ = − + −      − − −     
 

( ) ( ) 21
SST y y 2 1 y

1
i in y ny

n

   ′ ′= − + −   − 
         (4) 

In line with Equation (2), ( )iSSR  is stated as 

( ) ( ) ( ) ( ) ( ) ( ) ( )
1ˆSSR β X y y J y

i i i i i i i
n

 ′ ′ ′= − 
 
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where ( )X X \ xi i=  is the ( 1) ( 1)n k− × +  matrix obtained by 

deleting ( )1x 1, , ,i i ikx x′ = …  observation in the ith row of X , 

and ( )β̂
i

 is the corresponding vector for β̂ . It can be 

determined [14] that 

( ) ( ) 1ˆˆ ˆβ β X X x
1

i
ii

iih

ε −′= −
−

. 

The term ( ) ( ) ( )β̂ X y
i i i

′ ′  is expanded as 

( ) ( ) ( ) ( ) ( )

( ) ( )

1

1 1

ˆˆ ˆβ X y β X X x X y x
1

ˆ ˆˆ ˆ               β X y β x x X X X y x X X x
1 1

i
i i ii i i

ii

i i
i i i i i i

ii ii

y
h

y y
h h

ε

ε ε

−

− −

′ 
′ ′ ′ ′= − − − 

′ ′′ ′ ′ ′ ′ ′= − − +
− −

 

It is known that, ˆˆ x βi iy = , ( ) 1
β̂ X X X y

−′ ′= , and ( ) 1
x X X xii i ih

−′ ′= . Thus, 

( ) ( ) ( )
ˆ ˆˆ ˆ ˆ ˆβ X y β X y

1 1

i i
i i i ii ii i i

ii ii

y y y h y
h h

ε ε′ ′ ′ ′= − − +
− −

. 

Noting that ˆˆ
i i iy y ε= − , we have 

( ) ( ) ( ) ( ) ( )
2

2

2
2

ˆ ˆˆ ˆ ˆ ˆβ X y β X y
1 1

ˆ ˆ ˆˆ ˆ              β X y
1 1 1

ˆˆ              β X y
1

i i
i i i i i ii ii i i

ii ii

i i i
i i i i ii i

ii ii ii

i
i

ii

y y y h y
h h

y y y h y
h h h

y
h

ε εε ε

ε ε εε

ε

′ ′ ′ ′= − − − − +
− −

′ ′= − + − + +
− − −

′ ′= − +
−

 

The ( )iSSR  becomes 

( ) ( )

( ) ( )

( ) ( )

2
2 2

2
2

2

ˆ 1
β̂ X y y Jy 2 1 y

1 1

ˆ1 2ˆ ˆ        β X y β X y y Jy 1 y
1 1 1 1

ˆ1 2ˆ        SSR β X y 1 y
1 1 1 1

i
i i ii

ii

i
i i

ii

i
i

ii

SSR y y y
h n

n
n y y

n h n n

n
n y

n h n n

ε

ε

ε

   ′ ′ ′ ′= − + − − +   − − 

     ′ ′ ′ ′ ′ ′= − − + + −     − − − −     

     ′ ′ ′= − + + −    − − − −    

2
iy


 



 

( ) ( ) ( )
2

2ˆ1 ˆSSR β X y 1 2 1 y
1 1

i
i i

ii

n n y ny
n h

ε   ′ ′ ′= − + − + −  − −    
                                                  (5) 

Substituting Equations (4) and (5) into Equation (3), the 

CDR becomes 

( ) ( )

( )

2

2

ˆ1ˆSSR β X y
1

CDR
SST y y

i
i

ii
i

i

n
n c

h

R n c

ε−
′ ′− + +

−
=

′ − + 
               (6) 

where 22(1 y)i i ic y ny′= − . 

In some applications it is required that the predictor 

variables in the linear regression model be centred. The 

centred linear regression model may be stated as 

( )
1

k

i j ij j

j

y x xα β
=

= + −∑ , 

where, 
0

1

k

j j

j

xα β β
=

= +∑  and 

1

1
n

j ij

i

x x
n =

= ∑ . The model is 

expressed in matrix notation as 

1y j X β εcα= + +  

where, ( )1 1 2β , , , kβ β β ′= …  and ( )1
1X I J Xc n

= − , which is 

n k×  matrix, where 1X  is the design matrix without the first 
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column of 1s. 

The CDRi  measure can be computed based on the centred 

linear regression model. In this regard, the quantities SSR, 

β X y′ ′ , and iih  are replaced by their counterparts in the 

centred regression model. The results of the measure based 

on the centred regression model are the same as those for the 

non-centred regression model. 

The CDR measure is implemented using an algorithm in R. 

The algorithm takes as input the vector of response variable 

y , the design matrix X , and the level of significance α . The 

main output of the algorithm entails the computed values of 

CDRi , the cutoff values, and the outliers detected. 

2.2. A Cutoff Value for CDR Measure 

A relationship between the coefficient of determination, 
2

R , and the F-distribution is given by 

2

2

1

1

n k R
F

k R

− −=
−

                              (7) 

where, F follows the F-distribution, , 1k n kF − − . The 

probability density function of F, ( )h f , is defined as 

( )1
1

12 2
2

1

2
( ; , 1) 1

1 1 1

2 2

k
k n

n

k k
h f k n k f f

k n k n k n k

− −−

− Γ 
    − − = + ⋅   − − − − − −       Γ Γ   

   

                                 (8) 

The probability density function of 
2

R , ( )2g R , may be 

obtained by 

( ) ( )1

2
2

2

1

1
T

n k R
g R h J F

k R
−

 − −= ⋅ ×  − 
,           (9) 

where ( )1
2T

dF
J F

dR
− = , the Jacobian of the inverse 

transformation (
1

T
−

) specified in Equation (8). Making 

substitution into Equation (9) and simplifying gives 

( ) ( ) ( )
1

 1  1
2 2 22 2

1

2
1

1

2 2

k n k
n

g R R R
k n k

− −− −

− Γ 
 = −

− −   Γ Γ   
   

 (10) 

The result shows that 
2

R  follows the Beta distribution 

with parameters 
2

k
 and 

1

2

n k− −
. 

Ultimately, when all observations in a dataset have equal 

influence on
2

R , the CDR value would be approximately 

equal to one. When the CDR value markedly exceeds one, it 

indicates that the corresponding observation is possibly 

influential. As a result, an observation is identified as an 

influential outlier if 

( )

( )

; 2, 2 2

; 2, 1 2

CDR
k n k

i

k n k

B

B

α

α

− −

− −
> , 1, 2, ,i n= … ,           (11) 

where, ; ,Bα i i  is an upper quantile of the Beta distribution at 

α  level of significance. 

3. Simulation of Datasets 

Datasets are simulated in R using an algorithm which runs 

on mvtnorm [15] package. The function is evaluated by 

specifying different conditions of the regression coefficients, 

independent variables, and error terms depending on the 

dynamics of the peculiar dataset as indicated in what follows. 

3.1. Dataset 1 

The dataset is generated based on a sample size 50n = . 

The regression model under consideration is given by 

0 1 1 2 2i i i iy x xβ β β ε= + + + , 1, 2, ,i n= … , 

with the population coefficients generated as ( )10,5j Nβ ∼ , 

0,1,2j = , and the associated estimates obtained as 

( ) 1

3 1 3β̂ β,5 X XN
−

×
 ′
  

∼ . The independent variables are both 

sampled from the normal distribution with ( )1 30,5X N∼  

and ( )2 14,7X N∼ . The mean response vector, ŷ , is 

simulated from ( )ˆXβ,5N . The error terms are independent 

and identically distributed from ( )0,5N . The observations 

formed as outliers are 10% of the sample size and are those 

that lie about three standard deviations ( 3σ ) away from the 

mean of the distribution. The set of outliers, which are in 

respect of y  values in the dataset is { }1,11,18, 21,37 . 

3.2. Dataset 2 

For this dataset, a sample size of 100n =  is considered. The 

linear regression model employed is made up of five predictor 

variables. The regression parameters are generated as 

( )20,5j Nβ ∼ , 0,1, ,5j = … , and its sample estimate 

determined as ( ) 1

6 1 6β̂ β,5 X XN
−

×
 ′
  

∼ . The predictors are 

simulated as ( )1 5, 2X N∼ , ( )2 14, 4X N∼ , ( )3 50,10X N∼ , 

( )4 2,0.05X N∼ , and ( )5 70, 20X N∼ . The predicted values 
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of the response variable ŷ  are generated from ( )ˆXβ,5N . The 

error terms are simulated as independent and identically 

distributed from ( )0,5N . The observations formed as outliers 

constitutes 7% of the sample size and lie approximately three 

standard deviations ( 3σ ) away from the mean of the 

distribution. The formulated outliers, which are with respect to 

X  values only, is the set { }5,10,12, 26,36,85,93 . 

3.3. Dataset 3 

The dataset is simulated based on a sample size 1000n = . 

The linear regression model used consists of ten independent 

variables. The regression coefficients are generated as

( )50,92j Nβ ∼ , 0,2, ,10j = … , and its corresponding 

estimate obtained as ( ) 1

11 1 11β̂ β,92 X XN
−

×
 ′
  

∼ . The 

independent variables are sampled from various distributions: 

( )1 70, 25X N∼ , ( )2 20,10X N∼ , ( )3 5,0.2X N∼ , 

( )4 50X Poisson∼ , 2
5 99X χ∼ , ( )6 104X Poisson∼ , 

( )7 40,0.3X b−
∼ , ( )8 0.05X geom∼ , ( )9 210,50X N∼ , 

and ( )10 257,100X N∼ . The fitted values of the dependent 

variable ŷ  are determined from ( )ˆXβ,92N . The error terms 

are independent and identically distributed from ( )0,92N . 

The observations formed as outliers in the dataset constitutes 

1% of the sample size, and lie outside the interval 3j jµ σ± , 

1,2, ,10j = … . The formulated outliers is the set

{ }1 5, 201, 202,501,502,503− . The subset { }1,2,3, 4,5  are 

outlying with respect to both y and X values, the subset 

{ }501,502,503  are outliers in X values alone, and the subset 

{ }201, 202 are outliers in only y  values. 

3.4. Dataset 4 

This data is the artificial data in Table 3 created to illustrate 

the features of developed package for detecting regression 

outliers in Siniksaran and Satman [16]. This data is also used 

in Zakaria et al. [13].  

4. Results and Discussion 

In this section, the results of the implementation of the 

automated CDR for the simulated datasets is presented. In 

each illustration, we show the outliers detected by the CDRi  

measure compared with the results from other well-known 

diagnostics such as the studentised deleted residuals ( )it , the 

leverage values ( hii ), the Cook’s distance ( Di ), and the 

difference in fits standardised ( DFFITSi ). We also assess the 

performance of the CDRi  measure in improving the 
2

R  

value associated with the underlying linear regression model. 

The models I, II and III with associated 
2

R  values obtained 

from the respective datasets are presented in Table 1. The 

table shows that all the models are generally significant. 

Table 1. Models extracted from Datasets 1, 2 and 3. 

Parameter 

Model 

I II III 

Estimate p-value Estimate p-value Estimate p-value 

β0 − 67.968 0.311 1585.01 2×10-16 33179.676 2×10-16 

β1 13.279 8.82×10-8 − 3.487 0.56707 13.313 0.146 

β2 8.504 6.21×10-7 11.240 0.00623 − 48.315 0.001383 

β3   1.464 0.63368 − 636.298 3.13×10-9 

β4   − 64.855 0.06697 8.807 0.191980 

β5   13.727 2.83×10-10 30.516 <2×10-16 

β6     14.359 0.002741 
β7     47.323 <2×10-16 

β8     38.137 <2×10-16 

β9     25.713 0.000127 
β10     4.952 0.282980 

R2 0.6015  0.4836  0.5031  

4.1. Illustration 1 

Table 2 displays the results of the outliers detected for all five detection measures for Dataset 1. 

Table 2. Outliers detected by various measures for Dataset 1. 

Measure Outliers No. of Detected Outliers 2
newR  Percentage Change in R2 

CDRi

 
1, 11, 18, 37 4 0.9641 60.28 

ti

 
11, 18, 37 3 0.9155 52.20 

hii

 
9, 10, 17, 41, 42 5 0.5177 −13.96 

Di

 
11, 18, 37 3 0.9155 52.20 

DFFITSi

 
11, 18, 37 3 0.9155 52.20 

Cut-off value 1.020355 
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The table shows that the CDRi  measure successfully 

identifies four of the five outliers in the dataset. Meanwhile, 

the t i , Di  and DFFITSi  measures each detect three and the 

same outliers. For each of these other diagnostics, the 

outlying observation 1 could not be detected in addition to 

21, an observation which is also not detected under CDR. All 

the actual outliers in the dataset have been completely 

masked under the hii  measure which detects entirely 

different set of outliers. Thus, there is deterioration in 

performance of hii , an outcome which is not too surprising 

since it is known to identify high leverage points. 

It is noteworthy that when the outlying set of 

observations detected by the CDRi  measure is removed 

from the dataset, the estimate of the coefficient of 

determination (
2

R ) associated with the linear regression 

model improves by about 60%. Table 2 shows the 

percentage increase in 
2

R  for the five measures. 

Comparatively, the outliers identified by the CDRi  

measure are more influential than those detected by the t i , 

Di  and DFFITSi  measures. The set of observations 

identified by the hii  measure as outliers are actually good 

leverage values, and hence, their deletion from the dataset 

would adversely affect the value of the 
2

R . 

4.2. Illustration 2 

Table 3 displays the results of outliers detected for all five 

measures for Dataset 2. 

Table 3. Outliers detected by various measures for Dataset 2. 

Measure Outliers No. of Detected Outliers 2
newR  Percentage Change in R2 

CDRi

 
5, 10, 12, 25, 26, 36, 59, 74, 85, 93 10 0.9992 106.62 

ti

 
25, 59, 90 3 0.5076 4.96 

hii

 
10, 12, 13, 14, 26, 31, 60, 72, 85, 93 10 0.7435 53.74 

Di

 
5, 10, 12, 26, 59, 74, 85, 93 8 0.8587 77.56 

DFFITSi

 
5, 10, 12, 26, 59, 74, 85, 93 8 0.8587 77.56 

Cut-off value 1.009979 

 

From the table, the CDRi  measure successfully detects all 

the seven outliers in the dataset, but misclassifies three other 

observations (25, 59 and 74) as outliers. The t i , could not spot 

any of the actual outliers, but wrongly identifies three 

observations as outlying. Two of the real outliers, 5 and 36, 

have been masked under the leverage values, hii , which 

misclassifies half of all observations identified as outliers. 

Both the Cook’s Di  and DFFITSi  diagnostics identify all but 

one of the actual outliers in the dataset, and misclassify two 

observations. In this dataset, all the diagnostics are prone to the 

masking effect, except the CDRi  measure. However, all the 

measures are susceptible to varying degrees of swamping 

effect of wrongly identifying observations as outliers with t i  

and hii  diagnostics being the worse affected. 

It can be observed that there is an overwhelming 

improvement (106.62%) in the estimated 
2

R  value when the 

outliers detected by the CDRi  are deleted from the dataset. 

4.3. Illustration 3 

Table 4 displays the results of outliers detected for all five 

measures for Dataset 3. The table shows that the CDRi  

measure detects all the real outliers in the dataset, but 

misclassifies one observation as an outlier. The Di  and 

DFFITSi  measures also successfully identify all the actual 

outliers. 

Table 4. Outliers detected by various measures for Dataset 3. 

Measure Outliers 
No. of detected 

outliers 
2
newR  

Percentage 

Change in R2 

CDRi

 
1 – 5, 129, 201, 202, 501, 502, 503 11 0.99996 98.76 

ti

 
227, 305, 741 3 0.49965 − 0.67 

hii

 1 – 5, 23, 35, 56, 209, 220, 279, 293, 294, 427, 458, 501, 502, 503, 542, 591, 624, 

625, 643, 654, 702, 741, 749, 777, 824, 826, 830, 831, 914, 945 
34 0.97353 93.50 

Di

 1 – 5, 63, 201, 202, 227, 290, 293, 305, 399, 468, 501, 502, 503, 542, 614, 675, 741, 
749, 824, 873 

24 0.99995 98.75 

DFFITSi

 1 – 5, 63, 201, 202, 227, 290, 293, 305, 399, 468, 501, 502, 503, 542, 614, 675, 741, 

749, 824, 873 
24 0.99995 98.75 

Cut-off value 1.000999 

 
However, these measures are vulnerable to swamping 

effect as they misclassify 50% of the identified observations 

as outliers. It can be observed that eight of the ten outliers 

have been identified by the hii  measure, but misclassifies as 

much as about 76% of what has been detected as outlying 

observations. Surprisingly, all the actual outliers have been 
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masked under the ti  diagnostic, but misclassifies three 

observations as outliers. 

The improvements in the value of 
2

R  are about the same 

(98.8%) for CDRi , Di  and DFFITSi  diagnostics though 

with completely different sets of detected outlying 

observations. The results show that the outlying observations 

detected by the CDRi  measure are parsimoniously more 

precise and influential than the set of outliers detected by any 

of the other measures. 

4.4. Illustration 4 

Table 5 displays the results of outliers detected for all five 

measures for Dataset 4.  

Table 5. Outliers detected by various measures for Dataset 4. 

Measure Outliers No. of Detected Outliers 2
newR  Percentage Change in R2 

CDRi

 
29, 30, 31, 32 4 0.9872 385.35 

ti

 
28, 29 2 0.1849 −9.10 

hii

 
28, 30, 31, 32 4 0.5457 168.29 

Di

 
28, 29, 30, 31, 32 5 0.9746 379.15 

DFFITSi

 
28, 29, 30, 31, 32 5 0.9746 379.15 

Cut-off value 1.032756 

 

It can be observed that the CDR method identifies 

precisely the four outliers without swamping. These are 

exactly the same outliers observed by the BCH procedure 

[17] and the HS procedure [8] out of five procedures in the 

package of Siniksaran and Satman [16]. In the study of 

Zakaria et al. [13], the graphical nature of the rule identifies 

observation 28 in addition to the four realized in this method. 

The initial proposal [13] of the method could therefore be 

prone to swamping.  

5. Conclusion 

An automated implementation of an updated CDR has 

shown to detect more precisely the requisite outliers than 

other well-known detection measures in multiple linear 

regression analysis using datasets in the literature and those 

simulated under various conditions of sample size, number 

and distribution of explanatory variables. The performance of 

the CDR is so realized as it is less prone to masking of actual 

outliers and swamping of ordinary observations. With a more 

rigorous inbuilt cut-off rule, the method is now more 

objective and reliable outlier detection measure than initially 

proposed. 
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Appendix 

Plots of CDR Values for Simulated Datasets. 

 

Figure 1. Plots of CDR values for simulated Dataset 1 showing detected outliers. 
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Figure 2. Plots of CDR values for simulated Dataset 2 showing detected outliers. 

 

Figure 3. Plots of CDR values for simulated Dataset 3 showing detected outliers. 

 
Figure 4. Plots of CDR values for Dataset 4 showing detected outliers. 
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