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Abstract: Bayesian Statistical Analysis requires that a prior probability distribution be assumed. This prior is used to describe
the likelihood that a given probability distribution generated the sample data. When no information is provided about how data
samples are drawn, a statistician must use what is called an, “objective prior distribution” for analysis. Some common objective
prior distributions are the Jeffery’s prior, Haldane prior, and reference prior. The choice of an objective prior has a strong effect on
statistical inference, so it must be chosen with care. In this paper, a novel entropy based objective prior distribution is proposed. It
is proven to be uniquely defined given a few postulates, which are based on well accepted properties of probability distributions.
This novel objective prior distribution is shown to be the exponential of the entropy information in a probability distribution
(e%), which suggests a strong connection to information theory. This result confirms the maximal entropy principle, which paves
the way for a more robust mathematical foundation for thermodynamics. It also suggests possible connection between quantum
mechanics and information theory. The novel objective prior distribution is used to derive a new regularization technique that is
shown to improve the accuracy of modern day artificial intelligence on a few real world data sets on most test runs. On just a
couple of trials, the new regularization technique overly regularized a neural network and lead to poorer results. This showed that,
while often quite effective, this new regularization technique must be used with care. It is anticipated that this novel objective
prior will be an integral part of many new algorithms that focus on finding an appropriate model to describe a data set.

Keywords: Statistics, Data Science, Artificial Intelligence, Information Theory

paper, an objective Bayesian prior distribution is derived from
simple postulates. The prior distribution is shown to be the
exponential of the entropy (e) of the probability distribution.
This result has a strong connection with information theory

1. Introduction

In 1763 Bayes discovered how to make the ideal probability
distribution [1]. The idea behind his Bayesian inference

work is to calculate the average loss between a statistician
chosen probability distribution and all possible probability
distributions weighted by both how likely they are to exist and
how likely it is for them to have produced the sample data. The
probability distribution that minimizes this loss is the ideal fit
for the data. In order to use Bayes’ formula, the sample data
points, the loss function, and the prior probability distribution
(which represents how likely a probability distribution is to
exist) must all be known. In many cases the prior probability
distribution is unknown, so it must be guessed in order to use
Bayes’ work. There have been many attempts to discover what
the best prior distribution is for arbitrary sample points, often
called an, “objective Bayesian prior distribution” [2-5], but
there is no consensus among the statistics community that any
given objective prior distribution is the correct one. In this

[6]. It will be shown to lead to a new regularization technique
for neural networks [7] that can boost their accuracy under the
right circumstances.

Section two contains the mathematical proof of the proposed
prior distribution given two simple postulates. Section three
shows how to account for this prior distribution in gradient
decent algorithms often used in data science [8] and tests of
the prior distribution using neural networks [9]. Section four
is the conclusion of the paper.
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2. Proof of Novel Objective Prior
Distribution

This section provides a mathematical proof that an objective
Bayesian prior distribution given two simple postulates is
the exponential of the entropy of the probability distribution
(e%). These postulates are based on well accepted properties
of probabilities [10]. The proof involves the uniqueness of
differential equation solutions [11], mathematical induction
[12], and the e-0 definition of the convergence of a function
[13].

This objective prior distribution represents the statistical
weight that any given probability distribution will occur
naturally. It is given by the mathematical symbol p which is
consistent with p’s meaning in physics as the density of states
[14]. p will, in general, be an improper prior distribution,
meaning that it is not normalized initially. Since p takes in
a probability function and returns a number in the range zero
to infinity, it is a functional.

The first postulate that is required to derive p is that the
prior distribution is symmetric in its indices. Intuitively, this
states that the statistical weight of a bag with an 80% chance
of drawing a blue marble and a 20% chance of drawing a red
marble must be the same as the statistical weight of a bag with
a 20% change of drawing a blue marble and an 80% chance
of drawing a red marble. This is because the ordering of the
probabilities is chosen by the statistician and does not effect
the underlying properties of the data. The first postulate as an
equation is,

p("'7pj7"',pk;"'):p("'»pka"'vpjv"') (1)

The second postulate that is required to derive p is that the
prior distribution of two statistically independent probabilities
is the multiple of the two independent prior distributions. For
two statistically separate distributions, the joint distribution
is the combination of them through multiplication [10].
Likewise, the statistical weight that independent events can
occur together is the multiple of the statistical weight that
they can occur independently. For example, say that there
is a bag with blue and red marbles in it and a completely
separate bag with green and yellow marbles in it. Each of these
bags represents a probability distributions based on the ratio of
colored marbles inside of them. If there are n ways to produce
a probability distribution with Py, and P,.; and m ways
to produce the probability distribution Pyreen, and Pyejiow,
then for each of the n distributions there are m distributions.
This means that the joint distribution which describes the
probability of drawing red and green, red and yellow, blue and
green, or blue and yellow has n times m ways to exist. The
second postulate as an equation is,

p(P,Q) = p(P) x p(Q) (2)

Each point on the probability distribution is independent

from the rest [10]. Due to the second postulate (2), p across
the entire distribution is given by the multiplication of the
statistical weight that a given probability can happen at each
point.

p(P) = IL;o4(p:) (3)

Where o;(p;) is the prior distribution of the single state’s
probability p;. By the first postulate equation (1), the
location of p; and py, can be switched without changing p(P).
Switching p; and py, in (3) along with canceling out identical
terms on each side yields,

= ' (4)

Since the left hand side of the equation is not a function of
p;, both sides must evaluate to a constant K.

;(p;)
Ko =~ = 05(p;) = Kook(p) Q)
oulp;) !

This means that whenever the ordering of two o; terms are
switched there comes a factor of K. Switching the order of o
and o, twice (one switch forward and one switch back) returns
the initial p but with an extra factor of K3.

K§ x p(P)=p(P) = Kj =1 (6)

Solving this yields,

Ko = =+1 7)

K must be greater than or equal to zero for p to represent
the statistical weight of a distribution because p must always
be a number greater than or equal to zero. This gives that K
is positive, so Ky = 1. Plugging this result into (5) yields,

oj(pj) = or(p;) (8)

Thus every o; is the same function at every location in the
probability distribution,

p(P) =1I}o(p;) ©

Since o represents the statistical weight that a given
probability distribution will exist in nature, it is a number in
the range [0, 0o). This allows the definition of a new function,
7, that is in the range (—o0, c0) such that,

oc=¢" (10)
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This definition of ~ will help simplify the math later on.

Equation (10) can be plugged into (9) to get,
w(P) = n(p) = In(eX=: 1)) =3 " (p;) (12)
P) = Lo(p;) = e>i V(@i 11
p(P) olpi) =e (i Evaluating this at a joint distribution between two
statistically independent distributions from postulate (2) gives

A new function, w(P), can be defined by taking the natural
the formula,

log of (11) as so,

w(P,Q) =w(P)+w(@) = > > (pig) =(D_v@)+(D_v(a)) (13)
i i j
The unique solution to equation 13 will now be derived. Solving for w using any one given probability distribution will give w

for them all since the os are all the same by (9) and (12). For simplicity, take the special case that both P and () are the following
probability distributions,

P=(p,1-p) (14)

with both p and ¢ arbitrary numbers in the range [0, 1]. This allows (13) to be written as,

Y(pg) +v(p(1 = q)) +7(¢(1 —p)) + (1 =p) 1 =) =~(p) + (1 —p) +7(q) +7(1 —q) (15)

The derivative with respect to p yields,

' (pg) + 1 =)' (p(1 =) — 7' (¢(1 =p)) = A1 =¥ (1 —p)(1 —q)) =7'(p) —7'(1 - p) (16)

The derivative with respect to q yields,

Y (pq) + pay" (pa) — 7' (p(1 — q)) — p(L — q)7" (p(1 — @) — ' (a(1 — p)) (17)
—q(1=p)Y" (¢l =p)) +7 (1=p)(1=q)+ (1 =p) (1 — g (1 -p)(1—¢q) =0

The only solution to this equation is at,

" (x) +v'(x) + f(x) =0 (18)

With,

flpg) — f(@(1 —p)) — f(p(1 —q)) + f(1—p)(1—¢q)) =0 (19)

The partial derivative of (19) with respect to p yields,

qf'(pg) +qf'(q(1 —p)) = (A=) f'(p(1 —q)) = (1 = q)f' (1 —=p)(1—¢q)) =0 (20)

The partial derivative with respect to g yields,

paf"(pq) + f'(pg) + q(1 = p)f"(q(1 = p)) + f'(q(1 = p)) + f'(p(1 — q)) + p(1 = @) f"(p(1 — q)) (21)
+1 - =) f" (1 =p)(1 =)+ f(1-p)(1-¢q)=0

The only solution to this equation is,
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2f"(2) + f'(2) + g(a) = 0

With the constraint,

> 9(P,Q) = g(pq) + g(g(1 — p)) + g(p(1 — ) + g((1 = p)(1 — q)) = 0

In order to solve (22) the function g must be known.

2.1. Lemma that g is Zero

It will now be proven that the only valid solution for
g(P) from (22) is the constant function that outputs zero
everywhere.  Using the constraint equation (23) on a
probability distribution with the two probabilities p and 1 — p
gives,

g(p) +9(1 —p)=0—g(p) = —g(1 —p) (24)
Evaluating (24) at p = 1 yields,
1 1 1 1
9(5) =—g(1— 5) = *9(5) — 9(5) =0 (25)

Evaluating the constraint equation (23) at the probability
distribution %, 1, 3 gives,

o5+ 9(5) +9(2) =0

1 1 2 (26)
1 1
—>29(Z)+O=0—>g(1):0

By repeating this process the following equation can be
derived,

27)

For n > 0 and an integer. Equation (27) will be shown to be
true using proof by mathematical induction. The case n = 0
yields,

g(l) =0

Which is true since it is just (23) evaluated at the probability
distribution with one possible outcome that has 100% chance
to occur. As is common in induction, it will now be assumed
that (27) is true for n — 1 and all smaller non-negative integers
and it will be shown that (27) must then be also true for n. The
probability distribution (1), (3)", ()", (3) is a valid
probability distribution since it sums to one. This can be seen

by inspecting the geometric sum [15],

(28)

(22)

(23)

;@)i =1- (%)” - (%)" +;(;)i (29)
1., 1., 1., 1.
:(5) +(§) +(§) +"'(§)*1

Evaluating the constraint equation (23) at the probability
distribution (3)™, (3)", (3)"" 1, - - (3) yields,

o+ X0l —o

i=1

(30)

All of the terms except the g((1)") terms are zero by the
induction assumption,

g((%)”) + g((%)”) + io =0 g((%)”) =0 @b
i=1

This concludes the proof by induction.

A corollary must be show which will be used later to help
prove that any arbitrary point of g is zero. It will be proven
that any real number in the range [0, 1] can be expressed as the
sum of some subset of the set of numbers (%)Z for 7 a positive
integer,

Ly
a= Z 7i(5) (32)
With v; being 0 or 1 at any given ¢ and « an arbitrary real
number in the range [0, 1]. To prove this it will be shown that
for a sufficiently large number of terms added into the sum the
distance between « and the sum can be made arbitrarily small.
This is Cauchy’s definition of e-6 convergence [13].
Define the current distance from the sum up to j terms to «
as,

i=j
. 1.,
d(j)=a =3 %(3) (33)
i=1
It is asserted that,
) 1.
d(j) < (5V (34)
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This means that d can be made arbitrarily small for large
enough j. Equation (34) will be proven with mathematical
induction [12]. First take the base case that j = 0,

4(0) < (2)° =1 d(0) <1

5 (35)

The sum has no terms in it and therefore the sum is zero.
This means,

d(0) = « (36)

«a is in the range [0, 1] and any number in this range is less
than or equal to one, so (35) must be true. To continue the
proof by induction, it will now be assumed that (34) is true for
j = n — 1. The goal is to show that it must also be true for
n. By the induction assumption, the distance at (n — 1) must
obey the inequality,

ﬂn—ms(é”* 37)

at j = n either add in ()" or zero to the sum that had

previously ended at j = n — 1. If

dn—1) < (3)"

(33)
Then set ,, = 0 and thus do not add in a new term into the
sum. If this is true then the proof is concluded. Otherwise,

dn—1) > (3)" (9)

In this case add in the (3)™ term by setting v, = 1. Using
(33) yields,

1
d(n) = d(n 1) - (3)" (40)
By the induction assumption (37) it is true that,
1 n—1 1 n __ 1 n 1 n
dn) < (5" = (5)" = ()" = dm) < (5)" @D

This is what was set out to be shown, thus concluding the

1

S
<.
I

3

induction proof. This means that d(n) can be made arbitrarily
small for a large enough j and thus the sum can be made
to converge to any real number in the range [0, 1] with the
appropriate choice of the ;s and sufficiently large j.

It follows that the number 1 — ¢ € [0, 1] can be written in
terms of a sum,

1..
L=q=) %(5) (42)

Applying the constraint equation (23) at the probability
distribution ¢ and 1 — ¢ along with (42) yields,

0=mm+§:%xg«;ﬁ (43)

:g(QHvaOHg(q):O

Where (27) was used to zero out the sum >, y; x g((3)?).
Since ¢ was arbitrary and it was just shown that g(¢) = 0, any
and all arbitrary points on g must equal zero. Thus the proof
that g must always be zero is concluded.

2.2. Continued Derivation of Objective Bayesian Prior
Distribution

Equation (43) can be plugged into (22) to get,

xf(x)+ f(x) +0=0 (44)

This can be solved using standard differential equation
techniques [16],

f(p) =ciln(p) +co (45)
Equation (45) can be plugged into (18) to yield,
oy () +/(z) + erln(z) + 2 =0 (46)
This differential equation has the solution [16],
v(p) = c3 + 2c1p — cipIn(p) — cap + c3In(p) (47)
This solution can be evaluated at (13),
(cs + 261 P,Q; — 1 PiQ; In(P,Q;) — c2PQ; + csIn(P,Q;)) = (48)

7 1

1y

i=n

i=1

Simplifying yields,

j=m
(203 + 21 P, — a1 P 1D(Pi) — P+ c3 ln(Pz))—f—( Z c3 + QCle — Cle hl(Qj) — CQQJ‘ + c3 IH(QJ))

Jj=1
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i=n j=m i=n j=m
2¢1 + mnces — ¢ + mes Zln(R;) + nes Z In(Q;) — a1 Z P, In(P;) — ¢ Z Q;In(Q,) = (49)
i=1 j=1 i=1 j=1
i=n i=n j=m j=m
nes +2c; —cg — ¢ ZPZ- In(P;) + cs3 Zln(Pi) +meg +2¢1 —cp — 3 Z Q;In(Qj) +c3 Z In(Q;)
i=1 i=1 j=1 j=1
Canceling out terms yields,
i=n j=m
21+ eates(mn—n—m+(m—-1)> W(P)+n-1)Y In(Q;) =0 (50)
i=1 j=1
The only way that (50) can be true for an arbitrary of this paper.

probability distribution is if 2¢; = ¢ and c¢3 = 0. Plugging
this into (47) gives the solution for +,

v(p) = —c1pIn(p) (5D

Equation (51) means that « is an arbitrary constant times
the entropy [6], measured in Shannon’s, of the probability
distribution. Plugging this result into (11) yields,

p(P) — e~ c12pIn(p) — C1Sshamons — Hip_—clpi (52)
Due to the uniqueness of differential equation solutions [11],

this is the unique solution for the objective prior probability

distribution, p(P), given the two postulates (1) and (2).

2.3. Relationship with Information Theory

Entropy is the average amount of information in a
probability distribution [6]. Given n bits of information it is
possible to encode 2™ different states [17]. An example of this
is that there are, 256 = 28, 8-bit numbers. Equation (52) can
be interpreted as, it is possible to encode,

p(P) = 261 5bis (53)
different probability distributions with .S bits of information.
Where p is the number of states of the information. Setting
c1 = 1 allows a direct relationship between the number
of ways that a probability distribution can exist and the
information inside of it.

p(P) — 95bis — o Sshannons — Hl_p;m (54)

Where Sy is the entropy measured in bits and SSpannons
is the entropy measured in Shannons. Any other value of c;
will not make the units of the entropy line up with the base
of the exponent. Equation (54) is asserted to be the correct
expression for the objective Bayesian prior distribution given
the two postulates (1) and (2) and is therefore the main result

Probability distributions with larger entropy have a higher
statistical weight due to (54). This means that the most likely
probability distributions are the maximal entropy ones. Thus,
(54) confirms the maximal entropy principle used in statistics
and thermodynamics [14, 18]. In the next section, it will be
shown how to use (54) to boost the accuracy of modern day
artificial intelligence by adding in a novel regularization term
to the loss function of neural networks [7, 9].

3. Application of Novel Objective Prior
to Neural Networks

A common problem in data science is to fit sample points
to a probability distribution that can then be used to make
inferences about future samples. One way to do this is to use
a neural network [9], which is a randomly initialized guess of
a function that is refined using gradient decent [8]. A common
loss functions to fit a neural network model to a data set is
cross entropy [19]. In this section, the explicit formula for the
ideal Bayesian estimator that minimizes the cross entropy loss
function is derived. This will then be used in conjunction with
(54) to describe a new technique to regularize neural networks
that use cross entropy as a loss function.

3.1. General Formula For Bayesian Estimator

The average error between a chosen probability distribution
and all distributions weighted by both the likelihood that they
produces the sample data points and the probability that the
distribution exists is [1],

E(F) 0. Q) = /P L(P, {7} ) % p(P) x H(P,Q)[dP] (55)

Where [,[dP] stands for the functional integral over all
valid probability distributions (functions whose sum is equal
to one and values are real and non-negative), L(P,{Z};) is
the likelihood that a probability distributions (P) gives the set
of sample data ({Z}s), p(P) is the prior probability that a
given probability distribution will occur, and H (P, Q) is the
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loss function between P and (). Picking the appropriate ()
to minimize this Bayesian loss gives the Bayesian estimator,
which is the mathematically ideal probability distribution
given this sample data, prior probability, and loss function.

3.2. Minimizing Cross Entropy

The cross entropy between the probability distributions P
and @ will be minimized. Cross entropy loss is the amount
of information required to encoding the drawing of a sample
point from P assuming that a probability distribution @

ﬂﬁh@dﬁ=ﬁaﬂﬁmXMﬂxHWQWH+MQ;M®—U

Where \; is the Lagrangian multiplier.
equation leads to the solution,

Extremizing the

~ _ fP L(P,{Z}s) x p(P) x P(Z")[dP)]
QEP) = "1 2P (7)) x p(P)dP]

Where this is true for all possible values of Z’. The
denominator is a normalizing factor that can be found at the
end by imposing normalization. This Q(&’, p) is the ideal
Bayesian estimator for cross entropy loss, the set of sample
data {#}, and prior distribution p. Equation (58) can be seen
as the average of all probability distributions weighted by both
how often each individual distribution occurs and how often it
produces the sample data.

The P that is dominate in the functional integral (58) is the
probability distribution that is most likely to have produced the
data. This is the maximum of the following functional,

(58)

L(P{Z}s) x p(P)

Taking the natural log, dividing by the number of data
samples in {Z},, and multiplying by negative one to turn this
functional into a loss that must be minimized.

(59)

L(P {7} ) =~ W(L(P, {7.) x o(P)

= H({#}. P) — 5 In(o(P)

(60)

Where H({Z}, P) is the familiar cross entropy loss, and
N is the number of sample points. This is the standard
loss used in many categorical neural networks but with the
addition of one extra term, — % In(p(P)). To stay true to
Bayesian statistics, a — 4 In(p(P)) must be included into the
loss function as a regularization term. This will lead to more
accurate prediction of the model on unseen data [7]. Using the
solution for p from (54) yields,

L(P,{#}) = H({#}., P) — ~S(P)

N (61)

generated the data [19]. The explicit formula for the loss is,

H(P,Q) == P xn(Q:) (56)

Equation (55) for the average loss will be used along with
Lagrangian multipliers [20] to extremize the cross entropy loss
over all probability functions P subject to the constraint that
the statistician chosen probability, (), must sum to one. The
equation to extremize is,

(57)

With S being the entropy of the probability distribution
measured in Shannon’s. This novel extra regularization term
(—+S(P)) in the loss function will be called, “Entropy
Regularization”.

3.3. Result of Entropy Regularization on Real World Data

In this subsection, Entropy Regularization from (61) will be
used on real world data. The nature of Entropy Regularization
makes it force the model to be less confident that a given
sample is in a class. This means that it may behave similarly
to other known regularization techniques such as lowering the
weight of samples in a training set that performed well and
raising the weight of under performing samples. The specifics
of its performance are given below.

The results of Entropy Regularization from (61) may vary
in effectiveness because: it does not include additional
information from prepossessing, the metric that is used to
evaluate the performance of a model may not be cross entropy,
gradient decent algorithms are only an approximation of full
Bayesian statistics, and Entropy Regularization should be
effective on average over many different data sets but may not
perform perfectly on any one individual data set. This is why
the limits of its effectiveness are on real world data [21-30]
should be tested using neural networks [9].

Three data sets where chosen to test Entropy Regularization
on: the MNIST Handwritten Digits data set [21], the Credit
Card Fraud data set [22-29] and the Graduate Admission’s
data set [30]. Each data set has categorical targets. The
average f1 score [31] across all classes was used to rank
the models. In the first nine runs, standard regularization
techniques of AiZiA’s Integral Regularization [32], Dropout
Regularization [33], and L2 Kernel Regularization [34] were
used. On the first runs, a few different parameters for each
regularization technique were tried. In the next run Entropy
Regularization was used alone. In the last three runs, Entropy
Regularization was used along with the other three techniques
utilizing the parameters that gave the best results from the first
few runs. The highest f1 score on held out validation data is
made bold in the tables below to show which regularization
technique performed best on the given data. The same neural
network architecture, preprossessing, optimizer [35], and data
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augmentation were used on each data set to keep the results of
every run comparable.

3.3.1. MINIST Handwritten Digits

The MNIST handwritten digits data set [21] is comprised
of 42,000 handwritten digits from zero through nine. Each
sample is a 28 by 28, grey scale, 8-bit, image of a number
from zero through nine. The data was prepossessed by
rescaling it into the range of minus three to three. Each
image was augmented every epoch with random: resizing,
cropping, brightness, and contrast changes. The neural
network architecture had initial convolution layers that fed into
dense layers. There are five convolution layers, a maxpooling
layer, and eight dense layers. Cross entropy loss was used to
classify images into ten categories, one for each number.
Table 1. Results of various different neural network models trained on the MNIST
Handwritten Digits data set. The numbers in the columns represent the average fl score

of the model for a given regularization type and value of its regularization parameters for
a given run. The best result is boldfaced.

Index of Run Entropy Used None Integral Dropout Kernel
1 False 0.9912 0.9949 0.9900 0.9944
2 False N/A 0.9930 0.9921 0.9945
3 False N/A 0.9951 0.9907 0.9934
4 True 0.9898 0.9940 0.9923 0.9940

Integral Regularization [32] out performed the rest with
Kernel Regularization [34] as a close second. Entropy
Regularization from (61) helped Dropout [33] perform better,
but still did not do as well as the other techniques.

3.3.2. Credit Card Fruad Detection

The Credit Card Fraud data set [22-29] is taken from real
world European credit card fraud cases. The data set contains
284,807 credit card transactions, 30 features per sample, and
highly imbalanced classes. The data was standardized and then
fed into a fully connected dense thirty seven layered neural
network architecture. Cross entropy loss was used to classify
transactions as: either “fraud” or “not fraud”.

Table 2. Results of various different neural network models trained on the Credit Card
Fraud data set. The numbers in the columns represent the average fI score of the model
for a given regularization type and value of its regularization parameters for a given run.
The best result is boldfaced.

Index of Run Entropy Used None Integral Dropout Kernel
1 False 0.5650 0.6091 0.7995 0.5653
2 False N/A 0.8883 0.8725 0.4996
3 False N/A 0.00173  0.8458 0.4996
4 True 0.7055 0.6649 0.4996 0.7308

Integral Regularization [32] out performed the rest of the
techniques with Dropout [33] coming in a close second.
Entropy Regularization from (61) improved the results of the
model when either no other regularization was used or when
Kernel Regularization [34] was used.

3.3.3. Graduate Admissions
The U.S. Graduate Admissions data set [30] is comprised
of 500 sample points of real world students data with seven

features per sample. The features include GPA, test scores, and
research experience. The data was prepossessed with principal
component analysis and then fed into a dense neural network
for predictions about the chance of admission or rejection for a
student. The network has six dense layers. Cross entropy loss
was used to classify samples as either, “will be admitted to
graduate school” or, “will be rejected from graduate school”.

Table 3. Results of various different neural network models trained on the Graduate
Admissions data set. The numbers in the columns represent the average f1 score of the

model for a given regularization type and value of its regularization parameters for a
given run. The best result is boldfaced.

Index of Run Entropy Used None Integral Dropout Kernel
1 False 0.8957 1 1 1
2 False N/A 1 0.8198 0.9241
3 False N/A 1 0.7818 0.8957
4 True 1 1 0.8957 1

All four regularization techniques received a perfect f1 score
of one.

3.3.4. Summary of Real World Data Set Findings

Entropy Regularization from (61) interacted well with the
other regularization techniques. Often including it into the
neural network training boosted the accuracy of the model.
It did lower the f1 score on a few trials though, so it should
be used with care in general. As is always the case, it is
important to not overly regularize the neural network or the
training loss may rise above acceptable levels. This means that
if Entropy Regularization is included into a model, then it may
be best to lower the amount of other regularization that was
used previously.

4. Conclusion

In this paper, a novel objective prior distribution was
derived to be the exponential of the entropy information in
a probability distribution (¢%) [6]. This allowed it to be
related to information theory, the maximal entropy principal,
and thermodynamics [14, 18]. This novel objective prior
distribution was then used to derive a new regularization
technique [7] that could be used in artificial intelligence
gradient decent algorithms [8] based on updating the loss
function with a term that is the negative of the entropy divided
by the number of data points [6]. The regularization technique
theoretically works best when there is very little information
about how the sample data was produced. Including Entropy
Regularization into several neural network models sometimes
boosted their f1 score [31] on three real world test data [21—
30]. In a few trials the f1 score was lowered due to over
regularization, so some level of care must be used before
applying it to real world artificial intelligence models. This
technique was derived assuming categorical data, so it should
not be used on regression data sets.

Future work includes expanding the understanding of when
and how to use this new objective prior distribution from
(54) in real world applications including, but not limited to,
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data science, thermodynamics, and optimization algorithms.
The limits of Entropy Regularization were not fully explored
here, so more testing of it may lead to additional valuable
insights. There is a also a connection between the Feynman
Path Integral of quantum mechanics [36] and thermodynamics.
Since this paper connects statistics and thermodynamics, it
may be possible to form a connection from statistics and
information theory directly to quantum mechanics.
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