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Abstract: Poisson regression is the most extensively used model for modeling data that are measured as counts. The main 

characteristic of Poisson regression model is the equidispersion limitation in which the mean and variance of the count variable 

are the same. However, in many situations the variance of the count variable is greater than the mean which causes 

overdispersion, and hence, poor fit will be resulted when inference about regression parameters. Alternatively, the negative 

binomial regression is preferred when overdispersion is present. In addition, in particular cases, the zero counts are not 

observed in data which is known as zero-truncation. In the presence of overdispersion in zero-truncated count data, the zero-

truncated negative binomial (ZTNB) regression model can be used as an alternative to zero-truncated Poisson (ZTP) regression 

model. In this paper, for testing overdispersion in ZTNB regression model against ZTP regression model, the likelihood ratio 

test (LRT), score test, and Wald test are proposed. A Monte-Carlo simulation is carried out in order to examine the empirical 

power for statistics of these tests under different levels of overdispersion and various sample sizes. The simulation results 

indicate that Wald test is more powerful than the LRT and score test for detecting the overdispersion parameter in ZTNB 

regression model against ZTP regression model, since it provides the highest statistical power. Thus, the Wald test is preferable 

for detecting the overdispersion problem in zero-truncated count data. 
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1. Introduction 

The counting data can be defined as the number of 

occurrences of an event within a fixed period of time, where 

which this data can take only non-negative discrete numbers. 

Poisson regression is the most common modeling technique 

for count data in a wide variety of fields such as biostatistics, 

agriculture, econometric, epidemiology, psychology, and 

many others. The standard Poisson regression models have 

the equidispersion limitation which the mean and variance of 

counts are equal. However, many count data do not satisfy 

the equidispersed property, they are either overdispersed 

(variance is greater than mean) or underdispersed (variance is 

less than mean) Cameron and Trivedi [4]. The negative 

binomial regression is an appropriate approach to model 

overdispersed count data as an alternative to Poisson 

regression model.  

In practice, many studies have been established to analyze 

overdispersed count data (e.g., Lee et al [15], Zhang et al 

[28], Hossain et al [11], Ismah et al [12]). 

In addition, in many cases, the count data are recorded 

only over part of the response variable’s range, then the data 

are said to be truncated such as the length of hospital stay, the 

age of an animal in years, and the number of accidents per 

worker in a factory. In particular, the zero counts are not 

observed which is known as zero-truncation, or more 

generally left-truncation or truncation from below. Also, 

right- truncation or truncation from above may be arise. 

Zero-truncated Poisson (ZTP) distribution is the most 

widely used to model count data with zero-truncation Gurmu 

[8], Johnson et al [13]. It is also usually called the positive 

Poisson distribution, so for positive counts, the fit of 

truncated Poisson distribution has been preferred Singh [22], 

Matthews and Appleton [16]. Poisson regression model has 

been proposed to analyze the truncated count data by Shaw 

[21]. However, in the presence of overdispersion, poor fit 

will be resulted and the estimates of regression parameters 

will be biased and inconsistent Grogger and Carson [7], 
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Cameron and Trivedi [4]. The most common way to handle 

overdispersion and truncated data at zero is to employ zero-

truncated negative binomial (ZTNB) distribution which is 

presented by Sampford [20]. Further, the ZTNB regression 

model is suitable approach for modeling zero-truncated count 

data in the presence of overdispersion problem. 

For testing overdispersion in count data, several tests have 

been proposed, one can refer to Lee [14], Dean and Lawless 

[6], Cameron and Trivedi [3], O’Hara Hines [18], Hilbe [10] 

for more details. According to three categories of nested 

models, various tests of overdispersion have been proposed 

in the Poisson model versus more general parametric model 

(e.g., Gurmu and Trivedi [9], Yang et al [25], Yang et al [26], 

Zhao et al [29], Molla and Muniswamy [17], Zamani and 

Ismail [27], Pongsapukdee et al [19]). These categories are 

based on the estimation of the unrestricted model as in the 

Wald test Winkelmann [24], the estimation of the restricted 

model as in the score test Cameron and Trivedi [2], Dean [5], 

Gurmu and Trivedi [9], and the difference between the 

restricted and the unrestricted log likelihood values as in the 

likelihood ratio test (LRT) Vives et al [23], Winkelmann [24]. 

The aim of this paper is to detect the overdispersion 

problem in zero-truncated count data based on ZTNB 

regression model against ZTP regression model. Therefore, 

the likelihood ratio test (LRT), score test, and Wald test are 

proposed for testing the overdispersion parameter in ZTNB 

against ZTP regression models. In addition, the empirical 

power for statistics of these tests is examined under different 

cases of overdispersion and sample sizes by simulation study 

to choose the most powerful test in detecting overdispersion.  

The rest of this paper is structured as follows: A brief 

review of ZTP and ZTNB regression models is provided in 

section 2. Maximum likelihood estimates for parameters of 

ZTP and ZTNB are derived in section 3. Testing for 

overdispersion is discussed in section 4. A simulation study is 

carried out in section 5 to investigate the empirical power for 

statistics of LRT, score, and Wald tests under different levels 

of overdispersion and various sample sizes in ZTNB against 

ZTP regression models. Finally, some conclusions are 

summarized in section 6. 

2. Zero-Truncated Poisson and Negative 

Binomial Regression Models 

Consider �� , � = 1, 2, … , 	  be a count variable which 

follows by a discrete probability function 
���� = 
��.  Let � + 1  are omitted, then the resulting distribution is called 

left-truncated and its probability function will be denoted by 

������ = 
���� = 
�|�� > �� =  
����=
��

����>�� = ��
��1−����,      (1) 

where ������ is the truncated (above �) probability function, ��
�� = 
� ��� = 
��  is the probability function of the 

random variable �� , and ����  is the distribution function 

evaluated at �. 

The left-truncation or zero-truncation is the most common 

way of truncation in count models, in which � = 0. Since 

many count data have been analyzed by several generalized 

distributions of Poisson, Grogger and Carson [7] proposed a 

Poisson distribution to model left-truncated count data at the 

value � = 0 as follows: 


���� = 
�|�� > 0� = ���� �!�
"�! �$%&'�(�� , = )−*�*�
�


�! �1−)−*�� , = *�
�

�! �)*�−1�,                                      (2) 

where the value of �� = 0  is omitted, *� = )+,�+�- .� , � =1, 2, … , 	 is the mean of Poisson distribution, +� is a �1 × �� 

vector of covariates, . is a �� × 1� vector of parameters, and 

�0�0� = �1 − )% �� is the distribution function at 0. 

The conditional mean and variance of ��  are given 

respectively by 

1���|2� , �� > 0� = *�[1 − �0�0�]%$, = *�[1 − )% �]%$.                                               (3) 

56����|2� , �� > 0� = 1���|2� , �� > 0� × [1 − �0�0�1���|2� , �� > 0�], =  �
$%���� 71 −  �����

 $%����8.                  (4) 

In many applications, since data are often overdispersed, 

the estimates of regression parameters of truncated Poisson 

model will be biased and inconsistent Cameron and Trivedi 

[4]. One way to handle overdispersion is to consider a 

mixture model with overdispersed distribution, for example, 

the negative binomial model is a gamma-Poisson mixture 

model that can be preferred when Poisson mean has a gamma 

distribution Winkelmann [24], Arrabal et al [1]. 

In the situation of truncated count data, the left-truncated 

negative binomial (LTNB) distribution at zero is given by 


���� = 
�| �� > 0� = 9�"�:;<�
9�"�:$�9�;<� �= *��"� × �1 + = *��%�"�:;>�[1 − �?@�0�]%$,                               (5) 

= 9�"�:;<�
9�"�:$�9�;<�A$%�$:B  ��� ;>C

�=*��"� × �1 + =*��%�"�:;>�,                                               (6) 

where�?@�0� = �1 + = *��%;>, = > 0 is the distribution function at 0. 

Then, the conditional mean and variance of �� are given respectively as follows: 
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1���| 2� , �� > 0� =  *�[1 − �?@�0�]%$, =  *�[1 − �1 + =*��% ;>]%$.                                            (7) 

56����| 2� , �� > 0� = 

D�E�|F�,E�G(� [$%[&HI�(�];J> D�E�|F�,E�G(�]
[&HI�(�]> , =   �

$%�$:K ��� ;>
[1 + =*� −  ��$:K ��� ;>

$%�$:K ��� ;>
]%$.                                 (8) 

3. Maximum Likelihood Estimation of 

ZTP and ZTNB Regression Models 

For the model of ZTP regression as in (2), the maximum 

likelihood (ML) estimation method can be used to estimate 

its parameter by taking the partial derivative of the likelihood 

function with respect to the parameter and setting it equals to 

zero. The likelihood function is 

L = ∏  �!�
"�! ����%$� 

N�O$ ,                           (9) 

where P  is the number of observations in the truncated 

sample. Then, the log likelihood function is given by 

LQR L =  ℓ = ∑ [
�+�-. −N�O$ LQR�
�!� − LQR�) � − 1�].  (10) 

The first partial derivative with respect to .  is given as 

follows: 

Uℓ
UV =  ∑ +�  [N�O$ 
� −  �

$%����].                      (11) 

Therefore, the first order condition for ML is given by 

maximizing ℓ for . as: 

∑ +�  [N�O$ 
� −  �
$%����] = 0,                     (12) 

An iterative procedure such as the Newton-Raphson or 

Fisher scoring can be implemented to solve (12) numerically.  

The second partial derivatives with respect to .  can be 

obtained, forming the elements of Fisher’s information 

matrix W�.�, where W�.� = −1 X UYℓ
UVUVZ[, 

UYℓ
UVUVZ =  − ∑ *�+�+� -[N�O$ $%�$: ������

�$%�����Y ].         (13) 

Then, the maximum likelihood estimator of . is normally 

asymptotic distribution with mean .  and variance matrix [W�.�]%$. 

In addition, for ZTNB regression model, the maximum 

likelihood estimation method can be used to obtain the 

parameters estimates as follows:  

From (6), the likelihood function is given by the following 

form: 

L = ∏ [ 9�"�:;
>�

9�"�:$�9�;>� [$%�$:B  ���;>]
N�O$ × �=*��"��1 + =*��%�"�:;

>�].                                       (14) 

The log likelihood function is given by 

LQR L = ℓ = ∑ [∑ LQR�1 + =��"�%$\O( −N�O$ LQR�
�!� + 
�+�-. − ]
� + $
K^ LQR�1 + =*�� − LQR�1 − �1 + =*��% ;>�].       (15) 

Then, the maximum likelihood estimators for the parameters in zero-truncated negative binomial can be obtained by setting 

the first partial derivatives of log likelihood function, ℓ in (15) with respect to . and = equal to zero as follows: 

Uℓ
UV =  Uℓ

U 
U 
UV = 0, ∑ +� [P�=1 
�−*�1+=*� − *��1+=*��− �1+1=�

1−�1+=*��− 1=
] = 0,                                             (16) 

Uℓ
UK = ∑ [∑ \

$:K\
"�%$\O( −N�O$

 �]"�:;
>^

$:K � − *��1+=*��− 1=−1
= [1−�1+=*��− 1=]

] = 0.                                          (17) 

One can use the Newton-Raphson procedure or Fisher scoring to obtain the solution of (16), and (17) numerically. 

The second order derivatives of ℓ with respect to the parameters, . and = are 

UYℓ
UVUVZ = − ∑ *�+�+�- [$:K"�

_YN�O$ − `],                                                              (18) 

where 

` = *�a%b]$:;
>^ +  c Xa%]$:;

>^ − *��1 + =�a%b:;
>[

cb ,  
 

a = 1 + = *� , and c = 1 − a% 1=. 
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UYℓ
UKY = ∑ [∑ %\Y

�$:K\�Y
"�%$\O( +N�O$  �

_KY +  �d
Ke_YJ;>�_ ;>%$�Y],                                            (19) 

where f = LQR[a]%_ Y> − LQR[=*�a]_ Y> + =aY
>�1 + *�� − =a;>. 

UYℓ
UVUK = ∑ [=b*�a Y

> ]a;
> − 1^ − =b
�N�O$ a;

> ]1 + aY
>^ + =aY

>�2=
� + *�� − LQR[=*�a]_ Y> − LQR[a]_ Y>] A  �g�
KY_YJ;>�_ ;>%$�YC.      (20) 

Let h = �=, .�-  be a , + 1  vector of parameters 

with . having ,  elements, then, the observed Fisher 

information matrix can be partitioned as follows: 

W�h� = AWVV�h� WVK�h�
WKV�h� WKK�h�C,                        (21) 

where WVV�h� = −1[UYℓ�m�
UV UVZ] is the , × , symmetric matrix, 

WVK�h� = WKV- �h� = −1[UYℓ�m�
UV UK ]  is the , × 1  matrix and 

WKK�h� = −1[UYℓ�m�
UKY ] is a scalar. Then, when the sample size 

is large and the usual regularity conditions of maximum 

likelihood estimation are satisfied, hy  is approximately 

distributed as z{�h, W%$�h��. 
4. Testing for Overdispersion 

For detecting the overdispersion parameter in ZTNB 

regression model versus ZTP regression model, the following 

hypothesis can be tested: 

|(: = = 0 against |$: = > 0,               (22) 

where the null hypothesis is rejected when there is evidence 

that the overdispersion parameter is significant. 

The likelihood ratio test (LRT) is one of possible tests that 

can be used to carry out the hypothesis in (22) based on the 

ratio of two log likelihood functions evaluated at the 

restricted and unrestricted maximum likelihood estimates. 

The statistic of LRT denoted ~�� and is given by 

~�� = −2�ℓ�*y� − ℓ�*y, =���,                      (23) 

where ℓ�*y�  and ℓ�* � , =��  are the log likelihood under ZTP 

and ZTNB respectively, and * �, =�  are the maximum 

likelihood estimates of * and = respectively. Under |( , the ~�� statistic has an asymptotical Chi-square distribution with 

one degree of freedom. If ~�� statistic is significant, then the 

unrestricted model is said to fit the data significantly better 

than the restricted model. 

A score test is an alternative test that can be used for 

testing the significance of overdispersion parameter due to 

(22). Let h∗ = �0, .-�- be the restricted maximum likelihood 

estimates of h  under |(  true. Then, the score test statistic 

denoted ~� and is given by 

~� = �-�h�WKK%$��h�|m∗ ,                          (24) 

where �(h) = Uℓ(m)
UK  is the score vector and WKK%$  = WKK�hy� −

 WKV�hy�WVV%$�hy�WKV�hy�. Then, 

 

~� = (∑ [�"�% ���Y%"�])���;
Y

b ∑  ��Y���;
,                      (25) 

where *y� is the estimated value from the ZTP model. Under 

|( , the score statistic has an asymptotical Chi-square 

distribution with one degree of freedom Cameron and Trivedi 

[2]. 

In addition, the statistic ~�  in (25) can be equivalently 

written as follows: 

~� = ∑ [�"�% ���Y%"�]���;
�b ∑  ��Y���;

,                           (26) 

which has an asymptotical standard normal distribution under 

|(. 

Also, the Wald type t-statistic can be used for testing 

overdispersion due to (22) defined as the ratio of the estimate 

of = to its standard error. An advantage of the Wald test over 

the LRT and score tests is that it only requires estimating the 

unrestricted model, which reduces the computations. Then, 

the Wald statistic denoted ~� and is given as: 

~� = K�
�D(K�),                                (27) 

where =� is the maximum likelihood estimate of = under the 

ZTNB model, and �1(=�) is the standard error of =� . Under 

|( , the ~�  statistic has an asymptotical standard normal 

distribution. 

5. Simulation Study 

In this section, a simulation study is carried out to compare 

the empirical power of LRT, score, and Wald tests for testing 

the overdispersion parameter in a zero-truncated negative 

binomial model under different situations. The model 

considered in this study is 

��~ ZTNB(=, *�), � = 1, 2, … , 	 

where �QR *� = 2 − 0.8 +$ � + +b �. 
A set of random numbers is generated from a continuous 

uniform [0, 1] distribution for the covariate +$ �, and another 

set is generated from a continuous uniform [0, 0.5] 
distribution for the covariate +b �  by the R program with 

sample sizes are chosen to be 20, 50, 100, 6	� 200 to get the 

simulated power of tests. For each sample size, the power of 

tests are computed based on 1000  replications with = =
 0.01, 0.025, 0.05, 0.075, 0.1, 6	� 0.25  by calculating the 

proportion of times that the test value is greater than the 
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critical value at the significance level 0.05. The results are given in Table 1 and displayed in Figure 1. 

Table 1. Power of LRT, score, and Wald tests for overdispersion parameter. 

� Method 
Power 

� � �. �� � � �. ��� � � �. �� � � �. ��� � � �. � � � �. �� 

20 LRT 0.005 0.018 0.059 0.123 0.201 0.650 

 Score 0.031 0.057 0.130 0.215 0.313 0.735 

 Wald 0.178 0.259 0.380 0.535 0.638 0.814 

50 LRT 0.025 0.065 0.203 0.382 0.557 0.977 

 Score 0.046 0.127 0.310 0.502 0.679 0.988 

 Wald 0.321 0.472 0.714 0.853 0.932 0.994 

100 LRT 0.041 0.130 0.427 0.729 0.896 1 

 Score 0.081 0.211 0.537 0.803 0.940 1 

 Wald 0.420 0.663 0.909 0.985 0.995 1 

200 LRT 0.085 0.283 0.734 0.951 0.996 1 

 Score 0.125 0.354 0.797 0.971 0.998 1 

 Wald 0.521 0.818 0.986 0.999 1 1 

 

Figure 1. The empirical power curve for LRT, score, and Wald tests. 

Based on Table 1, it is clear that the power of three tests: 

LRT, score, and Wald increases for all sample sizes 	 �

20, 50, 100, 6	� 200 when = increases. Also, as 	 increases, 

the power of these tests increases and the Wald test has the 

greatest power level uniformly for all cases of =  and 	  as 

displayed in Figure 1. The score test outperforms LRT test in 

terms of power for all values of �	 � 20, 50�, = � 0.25 �	 �

100, 200�, while the LRT is powerful than the score test for 

all values of = when 	 � 200. 

For small and moderate sample size 	 � 20, 50, the power 

of LRT and score tests initially increases slowly then if 

= � 0.1 , the power increases quickly, while the power of 

Wald test increases steadily as = increases. For large sample 

size 	 � 100, 200 , the power of Wald test increases very 

quickly and approaches 1 when = � 0.25 �	 � 100� , and 

= � 0.1 �n � 200�, while the power of the LRT and score 

gets to nearly 1 when = � 0.1 �	 � 200� and approaches 1 

when = � 0.25 �	 � 100, 200�. 

Moreover, as =  and 	  increase, the difference between 

ZTP and ZTNB increases for all tests which emphasizes that 

there is very strong evidence against the fit of the ZTP model 

to the overdispersed data. Overall, the Wald test dominates 
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uniformly over score and LRT tests in terms of power for 

choosing between ZTP and ZTNB in the presence of 

overdispersion in the data. 

6. Conclusion 

Overdispersion is often encountered in count regression 

which leads to poor fit when inference about regression 

parameters. For testing overdispersion in ZTNB regression 

model against ZTP regression model, the LRT, score, and 

Wald tests were proposed. The empirical power for statistics 

of these tests was assessed under different levels of 

overdispersion by Monte-Carlo simulation. The results 

showed that the Wald test provides the highest statistical 

power. Thus, it is preferable for detecting the overdispersion 

problem in zero-truncated count data. 

On the other hand, the power of overdipersion tests can be 

examined for right-truncated count data in future work. 
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