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Abstract: This study uses the existing second order rotatable design to obtain optimum design based on the known classical 

optimality criteria that is the determinant criterion, the average-variance criterion, the smallest-Eigen value criterion and the 

trace criterion. These criteria measure the desirability of a design, D-optimum design minimizes the content of the ellipsoidal 

confidence region for the parameters of the linear model, A-optimum design minimizes the sum (or average) of the variances 

of the parameter estimates, E-criterion reduces the variance of each individual parameter estimate and T-criterion is one that 

has not enjoyed much use because of the linearity aspect of T-criterion. This study considers the already existing twenty four 

points three dimensional specific rotatable design of order two. The information matrices C1, for this design is obtained from 

the moment matrix M, for the second order model for three factors using the relation C=(K
1
M

-1
K)

-1
, where M=1/N(X

1
X), is the 

moment matrix, K is the coefficient matrix of the parameter sub system of interest. Our parameter system of interest is that of 

the linear and pure quadratic factors only. The optimality criteria for the design with the corresponding information matrix C1, 

is determined as A-optimal. 
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1. Introduction 

The theory of optimal experimental designs has its origins 

in a paper [1]. She was among the first to state a criterion and 

obtain optimal experimental designs for regression problems. 

For polynomial regression of order � − 1  in one variable 

over the design region 	� = (−1, 1) , she proposed the 

criterion 


�(�) = min�max ������	(�� , � = 1,2. . . �), �� ∈ �     (1) 

This criterion was later called the G-optimality and it has 

assumed considerable importance in the theory and 

constructions of optimum designs [2]. Using this criterion 

Smith obtained designs for various values of p. For a 

polynomial of degree p-1, the allocation of points according 

to min max criterion in equation (1) could be obtained by 

finding the zeroes of the derivative of a Legendre polynomial 

[1, 3]. In the study of efficient design of statistical 

investigations, Wald [4] proposed the criteria of maximizing 

the determinant of X
1
X as a means of maximizing the local 

power of the F-ratio for testing a linear hypothesis on the 

parameters of certain fixed-effects, in the analysis of variance 

of models. The same criterion was proposed for obtaining 

weighing designs [5]. This criterion was later called D-

optimality and its use was extended to regression models in 

general by minimizing the trace of (X
1
X)

-1
 to obtain 

regression designs [2, 6]. Study done by De la Garza showed 

that, for a polynomial of degree p-1there exist a design with p 

distinct points which has the same X
1
X matrix as a design 

with more than p distinct points [7]. The proof of this 

theorem was subsequently corrected, and can be found in [8]. 

Maximizing the minimum eigenvalue of X
1
X was suggested 

as the efficient criterion for experimental designs [9], while 

the optimal allocation for a polynomial of degree � − 1 can 
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be done using both the minimum-maximum criterion and the 

determinant criterion. The two criteria gave the same results, 

thus hinting at the equivalence theorem [10]. Various other 

properties of the X
1
X matrix were suggested as being an 

appropriate criterion for a design. An extensive review of D-

optimality for weighing problems and for analysis of variance 

problems was given in the study of D-Optimality for 

regression models [11]. In the early 1970's the core of the 

theory was crystallized in the papers by [12, 13] and [14]. In 

the process of development, two parallel approaches took 

place, one concerned more with developing methods for 

tackling applied problems and the other vested with the general 

mathematical theory. The former is associated with the name 

Box and the work is reported in papers by [15-19]. The latter is 

associated with the name Kiefer. Although their aims were 

different there is considerable overlap in ideas between what 

might be called Kiefer-type theory and the Box approaches, 

and this overlap has become more apparent in recent years 

when there has been more emphasis on developing tools for 

applying the Kiefer-type theory and the Box approaches, a 

seminar paper in this context being that which of constructed 

calculus optimum designs of order two in three dimensions 

[20, 21]. Draper [22], gave the six second order rotatable design 

classes in letter pronouncements from which were specified by 

Mutiso [21], with coded levels into natural levels [23, 24]. 

2. Particular Criteria 

2.1. D –Criterion 

The most intensively studied criterion is the D-criterion for 

which 

Ø�(�) = � �!	"#$(�), if	M	is	non − singular	−∞, otherwise	  

The determinant criterion ∅ ∘ (4) differs from the 

determinant det C by taking the 7
th

 root, whence both 

functions induce the same preordering among information 

matrices. For comparing different criteria, and for applying 

the theory of information functions, the version ∅ ∘ (4) =(det 4)�/7	 is appropriate. 

Maximizing the determinant of information matrices is the 

same as minimizing the determinant of dispersion matrices, 

because of the formula. 

("#$	4)�� 	= "#$(4��)	
2.2. A-Criterion 

This is the average of the standardized variances of the 

optimal estimators for the scalar parameter systems 4�Θ9 , … , 4;Θ9  formed from the columns of K. the average 

variances of optimal criterion ∅��(4) is given by: 

∅��(4) = 1< ($=>?#	4��)�� 

if 4 is positive definite. 

Maximizing the average-variance criterion among 

information matrices is the same as minimizing the average 

of the variance given above. 

2.3. E-Criterion 

The eigen value criterion Ø-∞ is one extreme member of 

the matrix mean family Ø p, corresponding to the parameter �	 = 	−∞  This criterion involves the evaluation of the 

smallest eigenvalue. The smallest eigenvalue criterion, 

Ø − ∞(4) = 	@_ min(4)	
It is the same as minimizing the largest eigenvalue of the 

dispersion matrix, 

1∅ − ∞B4C(D)E = @FGHB4C(D)E = max I�J�D��JI 

minimizing this expression guards against the worst possible 

variance among all one-dimensional subsystem Z
1
K

1
β

1
with a 

vector Z of norm 1. In terms of variance, it is a minimax 

approach, in terms of information a maximum minimum 

approach. This criterion plays a crucial role in the 

admissibility investigations. 

2.4. T-Criterion 

The trace-criterion is one of the extreme members of the 

Ø-1 family; however, the trace criterion by itself is rather 

meaningless because of its linearity property which makes it 

susceptible to interpolation [25]. It is worth noting that the 

weaknesses of the T-criterion are an exception in the matrix 

mean family with ∅K	� ∈ �−∞; 1�. The other matrix means 

are concave without being linear. 

The evaluation of the trace criterion is 

∅�(4) = 1< $=>?#	(4) 

3. Specific Designs 

3.1. The Twenty Four Points Three Dimensional Specific 

Rotatable Design of Order Two 

We consider the design, 

�� = M(N, N, 0) + M(4�, 0,0) + M(4Q, 0,0) 

This gives the following set of points 

(f, f, 0) (f, 0, f) (0, f, f) 

(-f, f, 0) (-f, 0, f) (0, -f, f) 

(f, -f, 0) (f, 0, -f) (0,f, -f) 

(-f, -f, 0) (-f, 0, -f) (0, -f, -f) 

(C1, 0, 0) (0, 0, C1) (0, C1, 0) 

(-C1, 0, 0) (0, 0, -C1) (0, -C1, 0) 

(C2, 0, 0) (0, 0, C2) (0, C2, 0) 

(-C2, 0, 0) (0, 0, -C2) (0, -C2, 0) 

The moment conditions that the set of twenty-four points 
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should satisfy to form a rotatable arrangement of order two are: 

∑ ��SQQTSU� = 2(4�Q + 4QQ + 4NQ) = 24@Q                 (2) 

∑ ��ST = 2(4�T + 4QT + 4NT) = 72@TQTSU�                  (3) 

∑ ��SQQTSU� �XSQ = 4NT = 24@T	                         (4) 

For � ≠ Z = 1,2,3  with all other sums of powers and 

products up to and including order four being zero. 

The excess of ∑ ��STQTSU� = 3 ∑ ��SQQTSU� �XSQ  is given by 

Ex (S(f,f,0)+ S(c1,0,0) + S(c2,0,0)) = ∑ ��STQTSU� - 3∑ ��SQQTSU� �XSQ  = 2?�T+2?QT+8NT-12NT=0 

Simplifying we get; 

4�T + 4QT − 2NT = 0 

Letting 4�Q = �NQ and 4QQ = 
NQ we �Q + 
Q − 2 = 0 

Implying 


 = \(2 − �Q), 0 < � < √2 

Specifically, when � = 0.5 

we have, 


 = 	1.3228757	
Therefore, 

4�Q = 0.5NQ, 4� = 0.7071067 

4QQ = 1.3228757, 4Q = 1.1501633N 

The points form a second order specific rotatable arrangement in three dimensions in the twenty-four points if the non-

singularity condition of rotatability bcbdd	 > C
CfQ is satisfied. From equation (2 – 4) we have, @Q = 0.4852396NQ and @T = 0.1666666667NT respectively. 

Therefore 
bcbdd : = iQ 	= 	0.707842267	 > C

CfQ 

3.2. The Estimation of the Free Parameter in the Twenty Four Points Design 

Theorem 

The arrangements M1 form an optimum rotatable designs of order two 

Proof 

iQ = 	0.7078418, iQQ = 0.50104, @T = 0.485239σfQ,	
@QQ = 	0.2354574NT, @QiQQ = 0.2431244NQ 

k@Q = 3 × 0.4852396NQ = 1.4557188NQ	
k(k − 1)@T = 3 × 2 × 0.166667NT = 1.2NT 

3k@T = 3 × 3 × 0.166667NT = 1.53NT 

Where k is the dimension or the number of factors. 

m = λQT2λT((k + 2)λT − kλQ)Q = 12iQ((k + 2)iQ − k, 
m = 12x0.7078418(5x0.70784183) = 1.3100162 

Recalling to N = 24, we shall obtain 

p>=(
�S) 	=0.054584qQ r2 × 5 × 0.50104 + ;st.7t7uT�u�Q
t.Qv;T;7Twc (1.50000	NT) 	− T×t.7t7uT�u

t.Tu;Qvxywd × (1.4557188NQ) −
Q×(t.7t7uT�u��)

(t.Qv;T;7Twc) (1.000002NT) − �.T;;7�uuwd
t.Qv;T;7Twc − �.ttttttQwc

t.QTv�QTTwdz  
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p>=(
�S) =0.054584σ
2
(5.0104+9.8056547-8.494106+2.4816231-6.1825145N�Q-4.1131215NQ 

p>=(
�S) 	= 0.054584	qQ(8.8035762 − 6.1825145N�Q − 4.1131215NQ)	
p>=(
�S) = 0.4805344qQ − 0.3374663qQN�Q − 0.02245106qQNQ                                         (5) 

Hence 

""N p>=(ŷS) = 0.6749326	qQN�v − 0.4490212	qQN	
Equating to zero implies that 

0.6749326 = 0.4490212NT	
N = 1.107256886	

thus N = 1.1072569 makes the design M1 optimal. 

�� = M(1.1072569,1.1072569,0) + M(0.7829487,0,0) + M(1.2735263,0,0)	
The information matrix for the design �� is given as, 

|}
}}
}}
~ 1 0.5949 0.5949 0.5949 0 0 00.5949 0.7516 0.2505 0.2505 0 0 00.5949 0.2505 0.7516 0.2505 0 0 00.5949 0.2505 0.2505 0.7516 0 0 00 0 0 0.5949 0 0 00 0 0 0 0 0.5949 00 0 0 0 0 0 0.5949��

��
��
�
 

The X matrix for the design M1 is given as: 

|}
}}
}}
}}
}}
}}
}}
}}
}}
}}
}}
}}
~1 1.11 1.11 0 1.23 1.23 01 −1.11 1.11 0 1.23 1.23 01 1.11 −1.11 0 1.23 1.23 01 −1.11 −1.11 0 1.23 1.23 01 0.78 0 0 0.61 0 01 −0.78 0 0 0.61 0 01 1.27 0 0 1.61 0 01 1.27 0 0 1.61 0 01 1.11 0 1.11 1.23 0 1.231 −1.11 0 1.11 1.23 0 1.231 1.11 0 −1.11 1.23 0 1.231 −1.11 0 −1.11 1.23 0 1.231 0 0 0.78 0 0 0.611 0 0 −0.78 0 0 0.611 0 0 1.27 0 0 0.611 0 0 −1.27 0 0 0.611 0 1.11 1.11 0 1.23 1.231 0 −1.11 1.11 0 1.23 1.231 0 1.11 −1.11 0 1.23 1.231 0 −1.11 −1.11 0 1.23 1.231 0 0.78 0 0 0.61 01 0 −0.78 0 0 0.61 01 0 1.27 0 0 1.61 01 0 −1.27 0 0 1.61 0 ��

��
��
��
��
��
��
��
��
��
��
��
�

  

A-Criterion	= 0.005366, D-Criterion = 0.398647, E-

Criterion = 0.072085, T-Criterion = 0.565103 

A practical hypothetical example 

We shall discuss the hypothetical production of Katumani 

hybrid maize to illustrate the use of the specific optimum 

second order rotatable design of twenty four points 

� = ��
Q �(1.1072569, 1.1072569, 0) + �

T �(0.7829487, 0, 0) +
�
T �(1.2735263, 0, 0)�  

Suppose the initial three factors are Potassium (��S) , 

sodium (�QS), and calcium (�vS) as a result of soil mapping 

investigations which indicated deficiencies of these mineral 

elements in the Kibwezi loam soils. We wish to point out that 

the original letters N, ?�  and ?Q  represent the variation in 

quantity application of a factor due to soil fertility gradient 

culminating in several radii manifestations of rotatability 

criterion. The criterion can revert the mineral elements to its 

natural levels denoted by iuψ [15]. Scaling condition fixes a 

particular design when 2 1λ =  [26]. Whence 

��S = ��S − ��∗M�  

��∗ = 1� � ��S
�

SU�
 

M� = �1� �(��S − ��∗)Q
�

SU�
�
t.;

 

��S = ��SM�∗ + ��∗ 

For ∑ ��SQ = ��SU�  and ∑ ��S = 0�SU� , the design matrix 

can then be constituted but the evaluation of the inverse will be 

a major computational project to estimate the coefficients of 

the second order rotatable design model which give the 

optimum response or yield. This requires a separate discourse 

but the actual response or yields can be obtained if a field 

experiment is conducted as explained. Let the scale parameter, M�, assume M� = 0.5, MQ = 0.3 and Mv = 1. Suppose that 

Potassium (K): ��∗ = 20 milligrams 

Sodium (Na): �Q∗ = 15 milligrams 

Calcium (Ca): �v∗ = 30 milligrams 

Are the hoe hole average quantities of the levels of the 
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mineral elements recommended by the soil mapping team. 

For �  we have the following coded and natural levels 

respectively as treatments: 

(��S , �QS , �vS); (��S , �QS, �vS) 

(1.1072569, 1.1072569, 0); (20.553628, 15.332177, 30) 

(-1.1072569, 1.1072569, 0);(19.446372, 15.332177, 30) 

(1.1072569, -1.1072569, 0);(20.553628, 14.667823, 30) 

(-1.1072569, -1.1072569, 0);(19.446372, 14.667823, 30) 

(1.1072569, 0, 1.1072569);(20.553628, 15, 31.107257) 

(-1.1072569, 0, 1.1072569);(19.446372, 15, 31.1072569) 

(1.1072569, 0, -1.1072569);(20.553628, 15, 28.892743) 

(-1.1072569, 0, -1.1072569);(19.446372, 15, 28.892743) 

(0, 1.1072569, 1.1072569); (20, 15.332177, 31.1072569) 

(0, -1.1072569, 1.1072569); (20, 15.332177, 31.1072569) 

(0, 1.1072569, -1.1072569); (20, 15.332177, 28.892743) 

(0, -1.1072569, -1.1072569); (20, 14.667823, 28.892743) 

(0.7829487, 0, 0); (20.391474, 15, 30) 

(-0.7829487, 0, 0); (19.608526, 15, 30) 

(0, 0, 0.7829487); (20, 15, 30.782949) 

(0, 0, -0.7829487); (20, 15, 29.217051) 

(0, 0.7829487, 0); (20, 15.234885, 30) 

(0, -0.7829487, 0); (20, 14.765115, 30) 

(1.2735263, 0, 0); (20.636763, 15, 30) 

(-1.2735263, 0, 0); (19.363237, 15, 30) 

(0, 0, 1.2735263); (20, 15, 31.273526) 

(0, 0, -1.2735263); (20, 15, 28.726474) 

(0, 1.2735263, 0); (20, 15.382058, 30) 

(0, -1.2735263, 0); (20, 14.617942, 30) 

to estimate the coefficients 

it, i�, iQ, iv, i��, iQQ, ivv, i�Q, i�v and iQv. 

In the expected second order rotatable design model in three dimensions 

2 2 2
0 0 1 1 2 2 3 3 11 1 22 2 33 3 12 1 2 13 1 3 23 2 3u u u u u u u u u u u u u u uy x x x x x x x x x x x x xβ β β β β β β β β β ε= + + + + + + + + + +  

We require field observations of the yield 
S , � =1,2, … ,24 as alluded to earlier. 

4. Conclusion 

Because of flexibility, easy estimation of the parameters 

(the β’s) and practicability of solving real response surface 

problems, the second-order model is widely used in response 

surface methodology. The criteria discussed and determined 

for the six specific designs are all functions of the 

information matrix. The information matrix for the second 

order model with the linear and the pure quadratic factors 

only are determined for the respective designs considered. 

Estimation of the design moments λ2 and λ4 is done using 
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calculus optimum values. 

In this study, the matrix means for the six specific second 

order rotatable designs in three dimensions were obtained 

using the methods of evaluating the optimality criteria 

presented in [24]. It is noticed that, the design M1 is A-

optimal, and does not actually comply with the usual notion 

that the most often used criterion is D-optimality. 
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