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Abstract: We developed a five parameter distribution known as the Generalized Exponentiated Gompertz Makeham 

distribution which is quite flexible and can have a decreasing, increasing and bathtub-shaped failure rate function depending on 

its parameters making it more effective in modeling survival data and reliability problems. Some comprehensive properties of 

the new distribution, such as closed-form expressions for the density function, cumulative distribution function, hazard rate 

function, moment generating function and order Statistics were provided as well as maximum likelihood estimation of the 

Generalized Exponentiated Gompertz Makeham distribution parameters and at the end, in order to show the distribution 

flexibility, an application using a real data set was presented. 

Keywords: Generalized Exponentiated Gompertz Makeham Distribution, Maximum Likelihood Estimation,  
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1. Introduction 

Generalized Exponentiated Class of distribution 

Cordeiro G. M. et al. Proposed a new method of adding 

two shape parameters to a continuous distribution that 

extends an idea which was first introduced by Lehmann and 

studied by Nadarajah and Kotz. The idea produces a new 

class of exponentiated generalized distributions that can be 

interpreted as a double construction of Lehmann alternatives. 

Given a continuous cumulative density function, G. M 

Cordeiro et al define the exponentiated generalized class of 

distribution by 

���� � �1 � �1 � 	���
�
�			                   (1) 

And the probability density function given by 

���� � ���	���
����1 � �	���
�
�������	          (2) 

Where are two additional shape parameters in equations can 

control the both the tail weight and possibly adding entropies 

to the center of the exponentiated generalized density function. 

2. Gompertz Makeham Distribution 

The Gompertz distribution was first introduced by 

Benjamin Gompertz a British actuary. The distribution has 

been used frequently to describe human mortality, growth 

model and actuarial tables. 

A different version of Gompertz distribution which is 

called Gompertz Makeham (GM) distribution was introduced 

by another British actuary, Makeham. He introduced a 

constant (Makeham terms) that describe the age independent 

mortality and has received considerable attention in the 

literature. The GM family has been studied by Baily et al. 

and an expression using the Lambert W function for the 

quantile function was given by Jodra, P. Suppose now is a 

GM random variable with the cumulative density function 

given by 

	��� � 1 � �����
�
��������	                      (3) 

And the probability density function given by 
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���� � �� + �� �������
�
��������											�, ", � > 0	  (4) 

According to Finch, the Gompertz Makeham distribution 

produces a better fit between the age windows 30 to 85 

years. An extension of the distribution will induce 

flexibility and enable it to cope with early failure or infant 

mortality. 

3. The Proposed Generalized 

Exponentiated Gompertz Makeham 

Distributions 

Putting (3) in (1), the cumulative density function of 

generalized exponentiated Gompertz Makeham (EGGM) 

distribution can be obtained as follows 

���� � %1 − ��&�������������'(�                     (5) 

The graph below depicts the behaviour of the Cumulative 

density function of the EGGM distribution. 

Also putting (4) in (2), we obtain an expression for the 

probability density function of the Generalized 

Exponentiated Gompertz Makeham (EGGM) distribution as 

follows 

���� = ���� + �� ����&�������������' %1 − ��&�������������'(��� (6) 

The graph below depicts the behaviour of EGGM at 

different values of the shape parameters. 

 

Figure 1. The cdf of EGGM for various parameters. 

 

Figure 2. The pdf of EGGM for various parameters. 
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The graph drawn above indicates that the pdf of EGGM is 

positively skewed 

3.1. Expansion for the Density Function 

For any real non integer b, we consider the binomial series, 

�1 − )�� =								 ∑ �−1�+,+-. ��+�)+				         (7) 

Which is valid for |)| < 1 

Applying equation (7) in (5), we have 

���� = ∑ �−1�1,1-. 2�13 ��&�������������'1 				      (8) 

Also for the probability density function we have 

���� = ���� + �� ����&�������������'∑ �−1�1,1-. 2���1 3��&�������������'1   (9) 

Finally we have 

���� = ������∑ �−1�1,1-. 2���1 3 �&�������������'��4�1���		  (10) 

3.2. Verification of Exponentiated Generalized Distribution 

to Be a Proper Pdf 

Here, we want to show that the integral of the EGGM 

distribution equal to 1; that is 

5 ����,�, = 1						                    (11) 

5 ����,�, = 5 ���� + �� ����&�������������' %1 −,�,
��&�������������'(��� 6�					            (12) 

Let 7 = ��������������, then 67 = −�� + �� ����������������, 
this implies that 6� = �89��4:����9  substitute this in equation 

(12), we have 

; ����,
�,

= ; ���� + �� ��7��1 −7����� 67�� + �� ��7
,

�,
 

On simplification this gives 

5 ����,�, = �� 5 7����1 − 7�����67,�, 				     (13) 

Further if we let < = 7�, 6< = �7���67, 67 = 8=�9>?@, 
substitute this in equation (13), we have 

; ����,
�,

= �� ; A<��B��� �1 − <���� 6<
� A<��B��� ,

,
�,

 

Finally we have 

; ����,
�,

= ; ��1 − <����6< = 1,
�,

 

This verified that the pdf of EGGM distribution function is 

a proper pdf. 

3.3. Investigation of the Asymptotic Properties of EEGM 

Distribution 

We seek to investigate the behaviour of the model in 

Equation (6) as 0→x  
We have 

lim�⟶. ��� + �� ���%����: �������( G1 − �%����: �������(H
���

 

= ��I + J� 
Also as 0→x and � = 1, we have 

lim�⟶. ��� + �� ����%����: �������( = ��I + J� 
It has been shown that as � ⟶ 0, � = 1, � = 1 the EGGM 

distribution depends mainly on the shape parameters namely, 	�, �, �, ". 

4. Well-known Distributions That Are 

Special Cases of the EGGM 

(i) If then we get the EGM distribution 

(ii) If, then we get, GM distribution 

(iii) If a = 1, b = 1, β → 0, then we get the E distribution. 

(iv) If b= 1, β → 0,, then we get the GE distribution which 

is introduced by Gupta & Kundu (1999) 

(v) If b = 1, then we get the GG distribution which is 

introduced by El-Gohary & Al-Otaibi (2013). 

(vi) If a = 1, b = 1, then we get the G distribution. (ii) 

5. Hazard Function 

The hazard function is define as 

ℎ��� = L�����M���		                            (14) 

Putting equation (5) and (6) in (14) we obtain the hazard 

function of the EGGM distribution as 

ℎ��� = ����4:�����>%?N�?��2O��?@3(P���>%?N�?��2O��?@3(QR?@

��P���>%?N�?��2O��?@3(QR
	   (15) 

Equation (15) above can also be called the Exponentiated 

Generalized Gompertz Makeham model.  
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Putting � = � = 1 in equation (15); it will reduce to 

ℎ��� = �� + �� ���%����: �������(
��%����: �������(  

Finally, 

ℎ��� = �� + �� ��		                     (16) 

Equation (16) represents the Gompertz Makeham model. 

The reliability function can be obtained as 

ℛ��� = 1 − ����	                   (17) 

Putting equation (5) in (17) we obtain the reliability 

function of EGGM distribution as 

ℛ��� = 1 − ∑ �−1�1,1-. 2�13 ��&�������������'1 		       (18) 

6. Generating Functions 

Here, we derive the moment generating function for a 

random variable X having the Exponentiated Generalized 

Gompertz Makeham distribution given in equation (9) as 

follows: 

The moment generating function of a random variable X is 

defined as 

7��T� = U��V�� = ; �V�����6�,
�, 	 , Wℎ�X�	|T| < 1				 

7��T� = ; �V����� + �� ��Y�−1�1,
1-.

A� − 1Z B ��%����: �������(�14��6�,
.  

This can be simplified as  

7��T� = �� ∑ �−1�1,1-. 2���1 3 5 �� + �� ���V�4�&�������������'�14��6�,. 		                          (19) 

Where 

; �� + �� ���V�4�%����: �������(�14��6�,
�, = ; ��V�4�%����: �������(�14��6�,

. +; ��V�4 �4�%����: �������(�14��6�,
.  

We let, 

[� = ; ��V�4�%����: �������(�14��6�,
.  

	�\6								[] = ; ��V�4 �4�%����: �������(�14��6�,
.  

Solving for [�	W�	ℎ�^� 

[� = �; �V�4�%����: �������(�14��6�,
.  

[� = � _�V�4�%����: �������(�14��T − ��� + �� ���` + Z� a.
,

 

Then we have, 

[� = − & �V����4:��b41�'			                                                                          (20) 

Also for [], we have 

[] = �; �V�4 �4�%����: �������(�14��6�,
.  
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[� = � _�V�4 �4�%����
: �������(�14��T + " − ��� + �� ���` + Z�a.

,
 

Therefore, 

[] = − & :V4 ����4:��b41�'			                                                                       (21) 

Finally the moment generating function of EGGM distribution is given as 

7��T� = −�� ∑ �−1�1,1-. 2���1 3 & �V����4:��b41� + :V4 ����4:��b41�'	                                   (22) 

Order Statistics 

The density �b:d��� of the ith order statistics for ` = 1,2, . . . , \ from the independent identically distributed random variable g�,..gd is given by 

�b:d��� = L���h�b,d�b�������b���1 − ����
d�b 		                                                       (23) 

Substituting equation (5) and (6) in equation (23), we obtain the ith order statistics of EGGM which is given as 

�b:d��� = ����4:����h�b,d�b��� ��&�������������' %1 − ��&�������������'(��� Gi1 − ��&�������������'j�H
b��

                 (24) 

For b real non-integer by applying equation (7) and let k	=−�� − : �� � − 1�, we have 

�b:d��� = ���� + �� ��l�`, \ − ` − 1� ��mY�−1�+ A� − 1n B ��+m,
+-.

Y�−1�o A��` − 1�p B,
o-.

��om Y�−1�q A\ − `r B s1 − ��mt�q,
q-.

 

Further simplification we have, 

�b:d��� = ���� + �� ��l�`, \ − ` − 1� ��mY�−1�+ A� − 1n B ��+m,
+-.

Y�−1�o A��` − 1�p B,
o-.

��om Y�−1�q A\ − `r BY�−1�u A�rv B
,
u-.

��mu,
q-.

 

Finally, we have 

�b:d��� = ����4:����h�b,d�b��� ��m ∑ �−1�+4o4q4u����+ ����b���o ��d�bq � 2�qu 3 ��m��4+4o4u�,+-.                        (25)  

7. Estimation of Statistical Inference 

Let ��, �], … , �d be random variable distributed according to (8) the likelihood function of a vector of parameters given as Ω��, �, �, ", ��. 
p�	Ω� = \py���� + \py���� + ∑ py�db-� %�� + �� �z�����z���2���z��3( + �� − 1�∑ py� %����z���2���z��3(db-� + �� −

1�∑ py� G1 − %����z���2���z��3(�Hdb-� 				                                                 (26) 

Then the score vector 	{p = |o|� , |o|� , |o|: , |o|� , |o|  has components, 

let } = −��b − : �� �z − 1� 
|o|� = d� +∑ log	�}�db-� &�������>����> '		                                                             (27) 

|o|� = d� + ∑ py�s1 − ���t									db-� 		                                                     (28) 

|o|� = ∑ ����z���:���z4���:���z4����db-� + �� − 1�� + �������s����t>?@�z������> 					                                  (29) 
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|o|: = ∑ ���z�����@�2���z��3����:�@�2���z��3����z���:���z4����db-d − ������@�2���z��3����� + �������s����t>?@�@�2���z��3�������> 		               (30) 

|o| = ∑ �N��s���z� ����z��t��4%�������z����z �4����?@��� (���z��
�:���z4����db-� − �����&��z� ���z� �������z���'���� + �������s����t>?@&��z� ���z� �������z���'������> 			   (31) 

8. Application 

To illustrate the new results presented in this paper, we fit 

the EGGM distribution to an uncensored data set from Nichols 

and Padgett, (2006) considering 100 observations on breaking 

stress of carbon fibres (in Gba). The data are as follows: 3.7, 

2.74, 2.73, 2.5, 3.6, 3.11, 3.27, 2.87, 1.47, 3.11,4.42, 2.41, 

3.19, 3.22, 1.69, 3.28, 3.09, 1.87, 3.15, 4.9, 3.75, 2.43, 2.95, 

2.97, 3.39, 2.96, 2.53,2.67, 2.93, 3.22, 3.39, 2.81, 4.2, 3.33, 

2.55, 3.31, 3.31, 2.85, 2.56, 3.56, 3.15, 2.35, 2.55, 2.59,2.38, 

2.81, 2.77, 2.17, 2.83, 1.92, 1.41, 3.68, 2.97, 1.36, 0.98, 2.76, 

4.91, 3.68, 1.84, 1.59,3.19,1.57, 0.81, 5.56, 1.73, 1.59, 2, 1.22, 

1.12, 1.71, 2.17, 1.17, 5.08, 2.48, 1.18, 3.51, 2.17, 1.69,1.25, 

4.38, 1.84, 0.39, 3.68, 2.48, 0.85, 1.61, 2.79, 4.7, 2.03, 1.8, 

1.57, 1.08, 2.03, 1.61, 2.12,1.89, 2.88, 2.82, 2.05, 3.65. These 

data were previously studied by Souza et al. for beta Frechet 

(BF), exponentiated Frechet (EF) and Frechet distributions. In 

the following, we shall compare the proposed KGM and its 

sub-model (GM) with several other three- and four-parameter 

lifetime distributions, namely: the Zografos-Balakrishnan log-

logistic (ZBLL), Kumaraswamy Pareto (KP) and recently the 

Kumaraswamy Gompertz Makeham (KGM) distribution with 

corresponding densities: 

Where 

���9��, �, �, ", �, �� = ����� � + �� A�����: �������B A1 − �����: �������B��� 

�1 − A1 − �����: �������B����� 

��h����, �, ", �� = "� ���� � ���1 + ���� ��] &ln	�1 + ���� �'��� 			� > 0 

	�hM��, �, �, �, "� = "� l��, �� ��� 4��������� �1 − ������ �R?@ 																	� > 0 

��=��, �, �, �, "� = ��"� ��� 4�� %1 − ���� (
��� %1 − �1 − ���� ��(

���
 

Where �, �, ", �, �, � > 0 

Table1 gives the descriptive statistics of the data and Table 

2 gives the likelihood ratio estimates of the parameters and 

table 3 gives the values of AIC, BIC, CAIC and HQIC for 

EGGM, KGM, GM, BF, KP, ZBLL, BF and EF distributions, 

the corresponding errors(given in parenthesis) and the 

statistics p����  (where p����  denotes the log-likelihood 

function evaluated at the maximum likelihood estimates), 

Akaike information criterion (AIC), the Bayesian 

information criterion (BIC), Consistent Akaike information 

criterion (CAIC) and Hannan-Quinn information criterion 

(HQIC). We also construct the Total Time on Test (TTT) plot 

for the data as well as its empirical density and cumulative 

density function. 

Table 1. Descriptive Statistics on Breaking stress of Carbon fibres. 

��� �� Med. ���� �� ��� ���� ¡�¡ Skewness 0.390 1.840 2.700 2.6214 3.220 5.560 0.10494 0.36815 

 

Table 2. Likelihood Estimates of Parameters. 

� ¨�I ©¡������¡ U		7 ��, �, �, "� 4.1581 �1.6264� 4.1757 �1.6094� 0.5705 �0.4949� 10��� �0.0037� 0.55113 �−� «	7 ��, �, �, �, "� 3.2590 

(1.8545) 

6.7422 

(1.18545) 

10���� 

(17.4572) 

0.22148 

(0.74510) 

0.130941 

(0.71868) «< ��, �, �, "� 4.69523 

(0.502) 

236.2335 

(149.552) 

0.39 

- 

0.19204 

(0.045) 

- 

¬l­­ ��, �, "� 1.5501 

(0.104) 

1.90903 

(0.0093) 

3.61259 

0.288 

- - 

l� ��, �, �, "� 0.42934 

(0.236) 

138.0664 

(113.552) 

34.38484 

(21.52) 

0.72474 

(0.19) 

- 

	7 ��, �, "� 10��� 

(0.0829) 

0.076941 �0.03399� 0.790997 �0.10837� - - 
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Table 3. Criteria for Comparison. 

� ¨�I ®�°̄) ±²³ ´²³ HQIC CAIC U		7 -29.548 69.096 82.122 74.368 69.734 ��, �, �, "�      «	7 -141.332 292.664 305.690 297.936 293.599 ��, �, �, �, "�      «< -166.751 339.502 347.318 338.084 339.923 ��, �, �, "�      ¬l­­ -162.913 331.826 339.642 330.408 332.076 ��, �, "�      l� -142.866 293.733 304.154 291.842 294.154 ��, �, �, "�      	7 -149.125 304.25 312.066 307.413 304.50 ��, �, "�      

 

 

Figure 3. The graph of Total Time on Test Plot for the breaking stress of carbon data. 

 

Figure 4. The graph of the Emprical density and the cummulative density of the carbon data. 
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9. Conclusion 

Since the EGGM distribution has the lowest, AIC, BIC, 

CAIC and HQIC values among all other models and its sub-

model so it could be chosen as the best model. 
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