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Abstract: This paper considers the parameter estimation problem of test units from Poisson-Exponential distribution based 

on progressively type II right censoring scheme. The maximum likelihood estimators (MLEs) for Poisson-Exponential 

parameters are derived using Expectation Maximization (EM) algorithm. EM-algorithm is also used to obtain the estimates as 

well as the asymptotic variance-covariance matrix. By using the obtained variance-covariance matrix of the MLEs, the 

asymptotic 95% confidence interval for the parameters are constructed. Through simulation, the behavior of these estimates are 

studied and compared under different censoring schemes and parameter values. It is concluded that for an increasing sample 

size; the estimated value of the parameters converges to the true value, the variances decrease and the width of the confidence 

interval become narrower. 
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1. Introduction 

In the statistical literature one can find numerous 

distributions for modelling life time data. In life time study, 

exponential distribution is one of the most discussed 

distributions due to its simplicity and easy mathematical 

manipulations. However, its use is inappropriate in those 

situations where associated hazard rate is not constant. A 

number of life time distributions having non-constant hazard 

rate are available in the literature e.g., Gamma, Weibull, 

Exponentiated Exponential etc. These distributions are 

generalization of Exponential distribution and possess 

increasing, decreasing or constant hazard rate depending on 

the value of the shape parameters and reduce to exponential 

distribution for their specific choices of the shape parameter. 

A modification in exponential distribution was proposed by 

Kus [1] to get a decreasing failure rate distribution by finding 

the distribution of the minimum of n independently, 

identically and exponentially distributed random variables 

where n is random following zero truncated poisson 

distributions. Since the distribution is obtained through the 

compounding of poisson and exponential. Further Barreto 

and Cribari [2] generalized the distribution proposed by Kus 

by including a power parameter. Cancho et al. [3] proposed a 

new family of distribution, called Poisson-Exponential (PE) 

distribution having increasing failure rate. The distribution 

has been obtained by finding the distributionof the maimum 

of n independently,identically and exponentially distributed 

random variables where n is randomfollowing,zero truncated 

Poisson distribution. 

In this study, we assume that the lifetimes have Poisson-

Exponential distribution. The motivation for this family of 

distribution can also be traced in the study of complementary 

risk(CR) problems in presence of latent risks i.e, for those 

situations when only life time values are observed but no 

information is available about the factors responsible for 

component failures. For other datails regarding CR and 

related models,the readers may refer Basu and Klein [4] and 
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Adamidis and Loukas [5]. 

In real life, sometimes it is hard to get a complete data set; 

often the data are censored. Scientific experiments might 

have to stop before all items fail because of the limit of time 

or lack of money. This results to availability of censored data. 

Type-I and Type-II censoring are the most basic among the 

different censoring schemes. Type-I censoring happens when 

the experimental time T is fixed, but the number of failures is 

random. Type-II censoring occurs when the number of 

failures r is fixed, the experimental time is random. Vast 

literature is available on these two censoring schemes and 

one may refer to Bain and Engelhardt [6] for detailed 

discussion on various aspects of these schemes. 

Unfortunately,these methods do not allow the removal of 

units before the completion of the experiment. However, in 

medical and engeneering survival analysis,removal of items 

may occur at intermediate steps also due to various reasons 

which are beyond the control of the experimenter. For such a 

situation,progressive censoring is an appropriate censoring 

scheme as it allow the removal of surving items before the 

termination point of the test. Therefore, in this study, we will 

focus on progressive censoring due to its flexibility that allows 

the experimenter to remove active units during the 

experiment. 

Many authors have discussed inference under progressive 

censoring using different lifetime distributions, including 

Cohen, [7], Aggarwala [8] and Amal et al [9]. For a 

comprehensive recent review of progressive censoring, 

readers may refer to Balakrishinan [10]. 

Let X be a non-negative random variable denoting the life 

time of a component/system. The random variable X is said 

to have a PE distribution with parameters   andθ λ , if its 

probability density function (pdf) is given by,  

( ), , ,   x > 0
1

xx ee
f x

e

λλ θ

θ
θλθ λ

−− −

−=
−

 0, 0θ λ> >            (1) 

The corresponding cumulative distribution function (cdf) 

is given by, 

1
( ) 1 ,    x>0

1

xee
F x

e

λθ

θ

−−

−
−= −

−
 0, 0θ λ> >                 (2) 

Where λ is the scale parameter, while θ  is shape 

parameter of the distribution. Louzada-Neto et al. [11], 

pointed out that the parameters θ and λ  of the distribution 

have direct interpretation in terms of complementary risk. In 

fact θ  represents the mean of the number of complementary 

risk whereas λ  denotes the lifetime failure rate. 

Inferential issues for the Poisson-Exponential distribution 

based on complete data have been addressed by Louzada-

Neto et al who studied the statistical properties of PE 

distribution and discussed about the Bayes estimators under 

squared error loss function (SELF).

 

Singh et al. [12] obtained 

the maximum likelihood estimators and Bayes estimators of 

the parameters under symmetric and asymmetric loss 

function for Poisson-exponential distribution and compared 

the proposed estimators with maximum likelihood estimators 

in terms of their risks. Raqab and Madi [13] discussed the 

classical and Bayesian inferential procedure for progressively 

type II censored data from the generalized Rayleigh 

distribution. The results showed that the maximum likelihood 

estimators of the scale and shape parameters can be obtained 

via EM algorithm based on progressive censoring. Krishna 

and Kumar [14] discussed the inference problems in Lindley 

distribution and the results shows that Lindley distribution 

provide good parametric fit under progressive censoring 

scheme for some real life situations. Also, some of the recent 

work on progressive censoring include but not limited to 

Kumar et al. [15], Pak et al. [16] and Rastogi and Tripathi 

[17]. As far as we know, no one has described the EM 

algorithm for determining the MLEs of the parameters of the 

Poisson-Exponential distribution based on progressive type-

II censoring scheme. 

In this study, we propose to use EM algorithm for 

computing MLEs. This is because the EM algorithm is 

relatively robust against the initial values compared to the 

traditional Newton-Raphson (NR) method as shown by 

Watanabe and Yamaguchi [18] and Ng et al. [19].

 

It 

guarantees a single uniform non-decreasing likelihood trial 

from the initial value to the convergence value. Moreover, 

with the EM algorithm, there is no need to evaluate the first 

and second derivatives of the log-likelihood function, which 

helps save the central processing unit (CPU) time of each 

iteration.

 

The Expectation maximization algorithm is 

computational stable, easy to implement and asymptotic 

variances and covariance are also obtained. For more recent 

relevant references on EM algorithm and censoring include 

[20-22]. 

The purpose of this study is to estimate the shape and scale 

parameters of the Poisson-Exponential distribution under 

progressive type-II censoring using the EM algorithm and to 

compare the results under different censoring schemes. 

The rest of this paper is organized as follows:Section 

2,provides a brief description of Progressive type II 

censoring scheme. Furthermore, the asymptotic variance and 

covariance of the maximum likelihood estimates which are 

generated through EM algorithm are given. Simulation study 

is conducted in section 3. Finally, conclusion and 

recommendation are presented in section 4. 

2. Parameter Estimation 

2.1. Progressive Type-II Censoring Scheme 

Suppose that n units are placed on a life test at time 0. 

Prior to the experiment, a number m (< n) is fixed and the 

censoring scheme 1 2,  ,  ..., mR R R R= are predetermined with 

0jR ≥  and 

1

m

j

j

R m n

=

+ =∑  is specified. At the first failure 

time 1: :m nX , 1R  units, chosen at random, are removed from 

the n−1 surviving units. At the second failure time 2: :m nX , 
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2R  randomly chosen units from the remaining 12n R− −  

units are removed. The test continues until the thm  failure 

time : :m m nX . At this time, all remaining units are removed; 

there are

1

1

m

m j

j

R n m R

−

=

= − −∑  of these. The set of observed 

lifetime 1: : 2: : : :,  ,  ...,m n m n m m nX X X X= is a progressively Type 

II right censored sample as reffered by Balakrishnan and 

Aggarwala [23].  

2.2. Maximum Likelihood Estimation Based on Progressive 

Type-II Censoring 

Suppose n identical units are placed on a lifetime test. At 

the time of the thi  failure, iR  surviving units are randomly 

withdrawn from the experiment,1 i m≤ ≤ . Thus, if m failures 

are observed then 1 2 ... mR R R+ + + units are progressively 

censored; hence 1 2 ... mn m R R R= + + + + , 

1: : 2: : : :....R R R
m n m n m m nX X X≤ ≤ describe the progressively 

censored failure times, where ( )1 2,   ..., mR R R R=  denotes 

the censoring scheme. If the failure times of the n items 

originally on test are from a continuous population with 

( ). .  p d f f x  and cdf F(x) given by equation (1) and (2) 

respectively, then the joint probability density function for 

1: : 2: : : :....R R R
m n m n m m nX X X≤ ≤ is given by, 

( ) ( ) ( )( )1, 2, ..., 1: : 2: : : : : : : :
1

.... 1
jRmR R R R R

m m n m n m m n j m n j m n
j

f x x x A f x F x
=

≤ ≤ = −∏    

(3) 

Where 1: : 2: : : :....R R R
m n m n m m nx x x−∞ < ≤ ≤ < ∞  and 

1 1 2 1 2 1( 1)( 2)...( ... 1)mA n n R n R R n R R R m−= − − − − − − − − − − +  

From equation (1) and (2), the likelihood function based 

on	progressively Type II censored sample is given by;  

( )
( )

( ) ( )

1

1
, |

1 1

x j jx j
j

R
x em e
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e e
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=
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The log-likelihood function of equation (4) can be written 

as follows 

( ) ( )

( )
1 1 1

, | 2 (1 )

                     1
x j

j
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x e

jj
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lnL x const mln mln e
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λ θ
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 ∑ ∑ ∑

      (5) 

Differentiating (5) w. r. t. (with respect to) to θ  and λ  and 

equating the derivatives to zero, we get the following normal 

equations: 

( )1 1

2
0
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x j
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j
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xm m e
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e

j j

m me e e
e R

e e
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1 1 1

0

1
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j

j
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jx
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e
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x e em
x x e R

e

λ

λ

λ θ
λ

θ
θ θ

λ

−

−

− −
−

−
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The normal equations (6) and (7) are implicit system of 

equations in θ  and λ . They cannot be solved analytically. 

Therefore, we propose to use EM algorithm for solving these 

equations numerically, for maximum likelihood estimate of 

θ  and λ . 

2.3. Expectation-Maximization (EM) Algorithm 

The E M algorithm was introduced by Dempster et al. [24] 

to handle any missing or incomplete data situation. 

McLachlan and Krishnan[25] discussed EM algorithm and its 

applications. The progressive type-II censoring can be 

viewed as an incomplete data set, and therefore, the EM 

algorithm is a good alternative to the NR method for 

numerically finding the MLEs. 

Let 1: : 2: : : :, ,  ..., m n m n m m nX X X X=  with 

1: : 2: : : :< ...<m n m n m m nX X X<  denotes the progressive type-II 

right-censored data from a population with pdf and cdf given 

in Equations (1) and (2), respectively. For notation simplicity, 

we will write jX for : :j m nX . 

Let ( )1 2,  ,  ..., mZ Z Z Z= with ( )1 2,  ,  ..., 
jj j j jRZ Z Z Z= ,

1,  2,  ...,mj =  be the censored data. We consider the 

censored data as missing data. The combination of 

( ),X Z Y= forms the complete data set. The Likelihood 

function based on Y is 

1 1

( , , )
1 1

x zj jk
jj jk

Rx e z em

j k

e e
L Y

e e

λ λλ θ λ θ

θ θ
θλ θλθ λ

− −− − − −

− −
= =

 
 =
 − −
 

∏ ∏          (8) 

The log-likelihood function based on Y is 

( ) ( ) ( )
1 1 1

( , , ) ( ) 1

j

j jk

Rm m
x z

j jk

j j k

lnL Y nln nln e x e z e
λ λθθ λ θλ λ θ λ θ− −−

= = =

= − − − + − +∑ ∑∑   (9) 

The MLEs of the parameters θ and λ for complete sample 

Y can be obtained by deriving the log-likelihood function in 

Equation (9) with respect to θ and λ and equating the normal 

equations to 0 as follows: 

1 1 1

( , , )
0

1

j

j jk

Rm m
x z

j j k

lnL Y n ne
e e

e

θ
λ λ
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θ θ
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−
= = =

∂ = − − − =
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1 1 1 1 1 1

( , , )
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R Rm m m m
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j j j k j k
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x x e z z e
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− −

= = = = = =

∂ = − + − + =
∂ ∑ ∑ ∑∑ ∑∑  (11) 

To start the algorithm, the joint distribution of x and z is 

given by, 

( ) ( )
1

( , ) ( )( | ) 1  x > 0, 1,  2,  3...  
! 1

zz
x x e

f x z p z x z z e e z
z e

θ
λ λ

θ
θλ

−−− −
−

= = − =
−  (12) 

Where 0λ > and 0θ > are parameters. It is straightforward 

to verify that the computation of the conditional expectation 
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of (Z|X) using the pdf is given by 

( ) ( )
1

1
! 1( , )

( | )
( )

1

x

zz
x x

x e

e
z e e

z ef x z
p z x

f x e

e

λ

θ
λ λ

θ

λ θ

θ
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θλ
−

−−− −
−

− −

−

−
−

= =
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Simplifying (13), we get 

( )
( )

1
1 1( , )

( | )
( ) 1 !

xz
z x ee ef x z

p z x
f x z

λλ θ θθ
−−− − − +−

= =
−

        (14) 

Thus it is straightforward to verify that the E-step of an 

EM cycle requires the computation of the conditional 

expectation ( )| , ,h hZ X λ θ where ( ),h hλ θ is the current 

estimates of ( ),λ θ . 

1

( | , , ) ( | , , )h h

z

E z x zp z xλ θ λ θ
∞

=

=∑                      (15) 

Using equation (15), we get, 

( )
( )
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1
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( | , , )
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h h

z

e e
E z x z

z

λλ θ θθ
λ θ

−−− − − +∞

=

−
=
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Simplifying (16), we get 

( )( | , , ) 1 1
hh h h xE z x e λλ θ θ −= + −  see Sadegh and Rasool [26] (17) 

The EM cycle is completed with M-step, which is 

complete data maximum likelihood over ( ),λ θ , with missing 

Z’s replaced by their conditional expectations ( )| , ,h hZ X λ θ . 

Thus an EM iteration, taking ( ),h hλ θ into ( )1 1,h hλ θ+ + is 

given by 

1 1

1 1 1

( , , )
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hh xj
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Rm m e
x
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e e

e

λθ λ θλ
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We obtain the iterative procedure of the EM-algorithm as 

1
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1 11

hxh jh
h

j

h
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m m e
x

j

j j

n

ne
e R e

e

λλ θθ
λ

θ

θ
−

+
  

− + −−    −   

−
= =

=

+ +
−

∑ ∑
    (20) 

and 

1

1 1

1 1 1 1
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The 
( ) ( )( )1 1

,
h hθ λ+ +

is then used as a new value of ( ),θ λ in 

the subsequent iteration. The MLEs of ( ),θ λ  can be 

obtained by repeating the E-step and M-step until 

convergence. Each iteration is guaranteed to increase the log-

likelihood and the algorithm is guaranteed to converge to a 

local maximum of the likelihood function, i.e. starting from 

an arbitrary point in the parameter space, the EM algorithm 

will always converge to a local maximum. In this work, the 

MLEs of θ  and λ based on complete sample are used as 

initial values for θ  and λ  in the EM algorithm. 

2.4. Asymptotic Variances and Covariance 

The variance–covariance matrix is used to provide a 

measure of precision for parameter estimators by utilizing the 

log-likelihood function. Applying the usual large sample 

approximation, the MLE of ( ),β θ λ=  can be treated as 

being approximately bivariate normal with mean β  and 

variance-covariance matrix, which is the inverse of the 

expected information matrix ( ) ( ),J E Iβ β= , where 

( ): obsI I xβ=  is the observed information matrix with 

elements 
2

ij
i j

l
I

θ λ
−∂=

∂ ∂
 with i, j = 1,2 and the expectation is 

to be taken with respect to the distribution of X. 

For a complete data set from the Poisson-exponential 

distribution, the variance–covariance matrix of parameters θ  

and λ  is given by the likelihood function of ( ),β θ λ= based 

on the observed sample of size n, ( )1 2,  ,  ...., nx x x x= , from 

the PE distribution is given by, 

( )
( ) ( )

1 1

log log 1

n n
x j

j

j j

n x e n e

L e

λ θθλ λ θ

β
− −

= =

− − − −

=
∑ ∑             (22) 

Theorem  

Some Cramer-Rao regularity conditions hold and 

( ),β θ λ=  belongs to an open interval of the real line. If the 

variance of an unbiased estimator attains the Cramer’s-Rao 

Lower Bound, the likelihood equation has a unique solution 

β̂  that maximizes the likelihood function. 

It is known that under such regularity conditions, as the 

sample size increases, the distribution of the MLE tends to 

the bivariate normal distribution with mean ( ,θ λ ) and 
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covariance matrix equal to the inverse of the Fisher 

information matrix, see Cox & Hinkley [27]. The Fisher 

information matrix is given by, 

1
2 2

2

2 2

2

( , , ) ( , , )
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The expectations are given by, 
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In matrix form, we get, 
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The inverse of ( )J β , evaluated at β̂  provides the 

asymptotic variance-covariance matrix of the MLEs. 

In this study, the procedure developed by Louis and 

Tanner [28] is used to derive the asymptotic variance–

covariance matrix for the MLEs based on the EM algorithm. 

The idea of this procedure is given by 

( ) ( ) ( )obs c missI I Iη η η= −                          (27) 

Where ( )obsI η , ( )cI η and ( )missI η denote the complete, 

observed, and missing (expected) information, respectively, 

and ( ),η θ λ= . The Fisher information matrix for a single 

observation which is censored at the time of the thj  failure is 

given by 

( ) ( ) ( )2
|

2

| ;z y jk jk jj

miss

lnf z z x
I E

η
η

η

  ∂ >
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  ∂
  

          (28) 

Given j jX x= , the conditional distribution of jkZ  

follows a truncated Poisson-Exponential distribution with left 

truncation at jx . That is, 

( ) ( )
( )| | ; ,     z

1

X jk

z x jk jk j jk j

X j

f z
f z z x x

F x
η> = >

−
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Hence, 
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θ
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  (30) 

Taking the logarithm of both sides, we get, 

( ) ( ) ( )/ | ; 1
x j

jz e
z x jk jk j jlnf z z x ln ln z e ln e

λλ θη θ λ λ θ
−− − > = + − − − − 

 
                                           (31) 

Differentiating (30) with respect to ( ),β θ λ= , we get 
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The expectations are given by, 

( ) ( ) ( )2,2 [2,2],[3,3],
4 1
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( ) ( ) ( )2
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     (33) 

The expected values of the second partial of the log-

likelihood function of Z given X are calculated as, 

( )2 2
|

112 2 2

| ; 1

1

x j
j

x
j

x e
z x jk jk j j

e

lnf z z x e
E I

e

λ

λ

λ θ

θ

η

θ θ

−

−

− −

−

 
  ∂ >

   − = − − + =
   ∂    −  

    

( )
( ) ( )

( )
( )

2

/

2,2 122

| ;
[2, 2],[3,3],

4 1 1

x

x

x e

z x jk jk j j

e

x eInf z z x
E F I

e e

λ

λ

λ θ

θ θ

θη θ θ
θ λ λ

−

−

− −

− −

 
 ∂ >  
 − = − − − = 
 ∂ ∂ − −   

 

 

( )
( ) ( )

2

3,32 2

2
/

2 2
222

2

2

1
[2, 2, 2],[3,3,3],

4 1

| ;

1

                                 

x xxj j
j j j j

x j

z x jk jk j j
x e x e x e

j

e

F
e

lnf z z x
E I

e e e

x

e

λ λλ

λ

θ

λ θ λ θ λ θ

θ

θ θ
λ λ

η
θλ

θ

− −−

−

−

− − − − − −

−

 
− − − + 

− 
   ∂ >
    − = − =− + +    ∂     

  −  
  

                   

 

Where 
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21 22

j j
j

miss j j

I I
I

I I
η
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 =
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                           (34) 

Note that 
( ) ( )j

missI η  miss is a function of jx  and η, since 

the expectation is taken with respect jz ; therefore, the 

expected information matrix is simply 

( ) ( ) ( )
1

m
j

miss j miss

j

I R Iη η
=

=∑                             (35) 

Therefore, the variance–covariance matrix of parameter η 

can be obtained by 

( ) ( ) ( )1 1[ ]obs comp missI I Iη η η− −= −                (36) 

An approximate (1 − α) 100% confidence interval for θ  

and λ  is obtained as  

/2
ˆ ˆvar( )zαθ θ±  and /2

ˆ ˆvar( )zαλ λ±  where zα/2 is the 

(α/2)100
th

 percentile of standard normal distribution. 

3. Results and Discussions 

In this section, a simulation study is conducted to 

investigate how the proposed estimators perform in 

estimating the parameters of Poisson-Exponential 

distribution based on progressive type II censored data. The 

samples were generated based on the algorithms of 

Balakrishnan and Sandhu [26]. 

In this study, samples of sizes 20, 50, and 100 were used 

and the censoring schemes considered are given in Table 1, 2 

and 3 below. 

Table 1. Censoring scheme 1 2( ,  ,  ....,  )= mR r r r  for ( 1.5,  =1.5)= =β θ λ . 

n m θ  λ  Censoring scheme 

20 
10 

15 

1.5 

1.5 

1.5 

1.5 

1, 0, 1, 1, 0, 2, 0, 2, 0, 3 

1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1 

50 
20 

40 

1.5 

1.5 

1.5 

1.5 

1, 2, 3, 3, 0, 3, 2, 1, 2, 0, 3, 0, 1, 2, 0, 2, 1, 0, 2, 2 

1,0,0,0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 

1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0,1 

100 
50 

80 

1.5 

1.5 

1.5 

1.5 

1, 0, 1, 0, 2, 1, 1, 2, 0, 0, 1, 2, 0, 1, 0, 4, 0, 2, 0, 1, 

3, 0, 2, 2, 0, 2, 0, 0, 0, 0, 3, 1, 2, 0, 1, 0, 1, 1, 0, 1, 

1, 2, 0, 2, 0, 1, 0, 1, 0, 5 

0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 

0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 

0, 1, 0, 0, 0, 2, 0, 0, 0, 0,1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

1, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1 
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Table 1 represents the progressive censoring scheme for different samples size and different numbers of failures for 

parameters ( 1.5,  =1.5)β θ λ= = . 

Table 2. Censoring scheme 1 2( ,  ,  ....,  )= mR r r r  for ( 1.5,  =2)= =β θ λ . 
 

n m θ  λ  Censoring scheme 

20 
10 

15 

1.5 

1.5 

2 

2 

1, 0, 1, 1, 0, 2, 0, 2, 0, 3 

1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1 

50 
20 

40 

1.5 

1.5 

2 

2 

1, 2, 3, 3, 0, 3, 2, 1, 2, 0, 3, 0, 1, 2, 0, 2, 1, 0, 2, 2 

1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 

1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0,1  

100 
50 

80 

1.5 

1.5 

2 

2 

1, 0, 1, 0, 2, 1, 1, 2, 0, 0, 1, 2, 0, 1, 0, 4, 0, 2, 0, 1, 

3, 0, 2, 2, 0, 2, 0, 0, 0, 0, 3, 1, 2, 0, 1, 0, 1, 1, 0, 1, 

1, 2, 0, 2, 0, 1, 0, 1, 0, 5 

0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 

0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 

0, 1, 0, 0, 0, 2, 0, 0, 0, 0,1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

1, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1 

Table 2 represents the progressive censoring scheme for different samples size and different numbers of failures for 

parameters ( 1.5,  =2)β θ λ= = . 

Table 3. Censoring scheme 1 2( ,  ,  ....,  )= mR r r r  for ( 2.3,  =2)= =β θ λ . 

n m θ  λ  Censoring scheme 

20 15 2.3 2 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0 

30 15 2.3 2 1, 0, 1, 1, 0, 1, 2, 0, 1, 2, 2, 0, 2, 0, 2 

40 15 2.3 2 1, 0, 1, 1, 0, 1, 2, 5, 0, 2, 2, 3, 2, 0, 5 

Table 3 represents the progressive censoring scheme for increasing samples size but fixed numbers of failures for parameters 

( 2.3,  =2)β θ λ= . 

No restriction has been imposed on the maximum number of iterations and convergence is assumed when the absolute 

differences between successive estimates are less than 
5

10
−

. All computational results were computed using R software. 

Table 4. The MLEs, Variances, covariance and 95% confidence limits of the MLEs for the parameters of Poisson-exponential distribution under progressive 

type II censored sample when ( 1.5,  =1.5)= =β θ λ
.
 

n m θ̂  λ̂  ˆvar( )θ  ˆvar( )λ  ˆ ˆcov( , )λ θ  
CL( θ ) CL( λ ) 

LCL UCL LCL UCL 

20 
10 1.0349 1.4462 4.3642 0.8841 1.6737 -2.6101 5.5791 -0.3429 3.3429 
15 1.6676 1.6068 2.4254 0.4323 0.8316 -1.5680 4.5370 0.2112 2.7887 

50 
20 1.3241 1.4792 1.6817 0.3864 0.6517 -1.0572 4.0262 0.2817 2.1783 

40 1.5392 1.2672 1.1076 0.1958 0.3950 -0.5783 3.5472 0.6325 2.3675 

100 
50 1.8236 1.3161 0.5689 0.1184 0.1979 0.0049 2.9641 0.8257 2.1742 

80 1.3900 1.5574 0.4647 0.0799 0.1572 0.1484 2.8406 0.9460 2.0540 

From the above table, it is observed that irrespective of the censoring rate and at which point the censored units are removed 

from the sample, for increasing sample size; 

a the estimated value of the parameter converge to the true value, 

b the variances and covariance of the MLEs decrease. 

It is also observed that, for the case when n is fixed (i.e. n = 20), we note that as m increases (i.e. from 10 to 15) the 

variances and the covariance values decrease (also see table 5).  

Table 5. The MLEs, Variances, covariance and 95% confidence limits of the MLEs for the parameters of Poisson-exponential distribution under progressive 

type II censored sample when ( 1.5,  =2)= =β θ λ . 

n m θ̂  λ̂  ˆvar( )θ  ˆvar( )λ  ˆ ˆcov( , )λ θ  
CL( θ ) CL( λ ) 

LCL UCL LCL UCL 

20 
10 1.2113 1.4259 3.0293 0.3955 0.8517 -1.9267 4.8959 0.7673 3.2327 

15 1.2024 1.7038 2.3895 0.3516 0.7415 -1.5453 4.5153 0.8378 3.1624 

50 
20 1.7095 1.3944 1.8924 0.2146 0.5302 -1.2128 4.1809 1.0920 2.9080 

40 1.5662 1.7159 0.9372 0.1422 0.2984 -0.4130 3.3820 1.2610 2.7390 

100 
50 1.3479 1.4699 0.6956 0.0876 0.2002 -0.1502 3.1191 1.4192 2.5810 

80 1.4799 1.7093 0.4574 0.0692 0.1445 0.1589 2.8101 1.4844 2.5156 
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From the above table, it is observed that irrespective of the 

censoring rate and at which point the censored units are 

removed from the sample, for increasing sample size; 

a the estimated value of the parameter converge to the 

true value. 

b the variances and covariance of the MLEs decrease. 

Table 6. Confidence intervals of ( 1.5,  =1.5)= =β θ λ . 

n m Width of C. I ( θ ) Width of C. I ( λ ) 

20 
10 8.1891 3.6858 

15 6.1049 2.5774 

50 
20 5.0835 2.4366 

40 4.1256 1.7350 

100 
50 2.9591 1.3486 

80 2.6722 1.1080 

From the above table, it is observed that the widths of 95% 

confidence intervals tend to be narrower for an increasing 

sample size. 

Table 7. Confidence intervals of ( 1.5,  =2)= =β θ λ . 

n m Width of C. I ( θ ) Width of C. I( λ ) 

20 
10 6.8227 2.4354 

15 6.0596 2.3245 

50 
20 5.3926 1.8160 

40 3.7950 1.4780 

100 
50 3.2693 1.1617 

80 2.6512 1.0313 

From the above table, it is also observed that the widths of 

95% confidence intervals tend to be narrower for an 

increasing sample size. 

Table 8. The MLEs, Variances, covariance and 95% confidence limits of the MLEs for the parameters of Poisson-exponential distribution under progressive 

type II censored sample when ( 2.3,  =2)=β θ λ  with different sample size but fixed number of failures completely observed. 

n m θ̂  λ̂  ˆvar( )θ  ˆvar( )λ  ˆ ˆcov( , )λ θ  
CL( θ ) CL( λ ) 

LCL UCL Width ( θ ) LCL UCL Width ( λ ) 

20 

15 

1.7231 1.8731 2.0768 0.3193 0.6386 -0.5074 5.1334 5.6409 0.8925 3.1075 2.2151 

30 1.3858 1.4527 1.5537 0.2397 0.4489 -0.1300 4.4761 4.8861 1.0405 2.9595 1.9190 

40 1.5681 1.6230 1.0741 0.2070 0.2973 -0.2817 4.3443 4.0625 1.0626 2.8918 1.7836 

 

From the above table, it is observed that irrespective of the 

censoring rate and at which point the censored units are 

removed from the sample with fixed number of failures 

completely observed for increasing sample size; 

a the estimated value of the parameter converge to the 

true value. 

b the variances and covariance of the MLEs decreases. 

4. Conclusions 

This study has addressed the problem of estimation of 

parameters of the Poisson-exponential distribution based on 

progressive Type-II censored data. The maximum likelihood 

estimators of the scale and shape parameters were obtained 

by using EM algorithm. 

A comparison of the MLEs and their variances as well as 

their confidence intervals was made by simulation for 

different censoring schemes. It was observed that: 

(i) for an increasing sample size, the estimated value of the 

parameter becomes closer to the true value, the variances and 

covariance of the MLEs decrease and the widths of the 

confidence intervals become narrower. 

(ii) reducing the number of units to be removed in the censoring 

scheme, leads to better estimates for a fixed sample size. 

The results provide the EM algorithm that is relatively 

robust against the initial values. It guarantees a single 

uniform non-decreasing likelihood trial from the initial value 

to the convergence value. Moreover, with the EM algorithm, 

there is no need to evaluate the first and second derivatives of 

the log-likelihood function, which helps save the central 

processing unit (CPU) time of each iteration. The 

Expectation Maximization algorithm is computational stable, 

easy to implement and asymptotic variances and covariance 

of estimates are also obtained. 
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