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Abstract: Extreme events and the clustering of extreme values provide fundamental information which can be used for 

risk assessment in finance. When applying extreme value analysis to financial time series we handle two major issues, bias 

and serial dependence. The main objective of the study will be to model the extreme values of the NSE all share index using 

EVT method thus contributing to empirical evidence of the research into the behavior of the extreme returns of financial 

series in East Africa and specifically Kenya. This study will model the extreme values of the Nairobi Securities Exchange 

all share index (2008-2015) by applying the Extreme Value Theory to fit a model to the tails of the daily stock returns data. 

A GARCH-type model will be fitted to the data to correct for the effects of autocorrelation and conditional 

heteroscedasticity before the EVT method is applied. The Peak-Over-Threshold approach will be employed with the model 

parameters obtained by means of Maximum Likelihood Estimation. The models goodness of fit will be assessed graphically 

using Q-Q and density plots. 

Keywords: Extreme Value Theory (EVT), Generalized Pareto Distribution (GPD), Peaks-Over-Threshold (POT),  

Nairobi Securities Exchange (NSE), NSE All Share Index (NASI) 

 

1. Introduction 

1.1. Background of the Study 

Extreme Value Theory (EVT) deals with events that are 

more extreme or in the probability sense have a low 

probability i.e. inferences are made beyond the sample data 

and to do that one would need those observations which are 

extreme in some sense. However, one should be careful in 

distinguishing between an outlier and an extreme value. In 

Extreme Value Theory (EVT), the role of the Normal and the 

Stable distributions of classical statistics are played by two 

distributions these are the Generalized Extreme values 

(GEV) and the Generalized Pareto Distribution (GPD). What 

makes the EVT very appealing is the fact that the nature of 

the asymptotic distribution does not necessarily depend on 

the exact distribution of returns. This study employed 

secondary data which was obtained from the Nairobi 

Securities Exchange (NSE). The data consisted of daily 

closing prices of NSE All Share Index (NASI) spanning the 

years January 2008 to April 2016. This index is a weighted 

index based on the values of securities of each of the 

companies listed on the NSE. 

1.2. Statement of the Problem 

Despite NSE playing a vital role in contributing to 

economic prosperity and capital market development in East 

Africa and specifically Kenya, it faces a number of 

challenges. Among this challenges include the low market 

confidence with high level of inflation among others. The 

issues of concern to most risk managers and financial 

analysts are the events that occur under extreme market 

conditions. This is to mean events which have a tendency to 

produce huge unexpected losses that can lead to bankruptcy. 

The available body of knowledge focuses more on VaR and 

expected shortfall as risk measures while studies on NSE 

have not necessarily addressed EVT methods thus the need to 

examine the performance of the extreme value methods in 

the analysis of the stock market with reference to NSE. 
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1.3. Justification of the Study 

EVT-based estimates of VaR directly concentrates on the 

tails of the distribution, thus avoiding a major flaw of 

parametric approaches, whose estimates are somehow biased 

by the credit they give to the central part of the distribution, 

thus underestimating extremes and outliers, which are exactly 

what one is interested in when calculating VaR. Also EVT 

allows one to concentrate on each one of the two tails of the 

distribution independently, thus allowing a flexible approach 

which can take skewness (a typical feature of financial time 

series) of the underlying distribution into account. 

1.4. Objectives 

1.4.1. General Objective 

To model the extreme values of the NSE all share index 

using Extreme Value Theory. 

1.4.2. Specific Objective 

1. To fit an EVT model on NSE all share index. 

2. To construct a risk measure based on the EVT approach. 

2. Literature Review 

EVT provides a firm theoretical foundation on which we 

can build statistical models describing extreme events. The 

foundations of the theory were laid down by Fisher [1] and 

Gnedenko [2], who proved that the distribution of the 

extreme values of an independent and identically distributed 

(iid) sample from a cumulative distribution function �(�), 
when adequately rescaled, can converge (and indeed does 

converge, for the majority of known cumulative distribution 

functions �(�) ) to one out of only three possible 

distributions. These limiting distributions are Fréchet, 

Gumbel and Weibull families. Furthermore, these three types 

of distributions can be nested into a single class of 

continuous probability distributions called the GEV 

distribution given by Hξ (x) Embrechts [3]. 

Based on the Pickands-Balkema-de Haan theorem [7-8] 

the POT model focuses on the distribution of exceedances 

above some high threshold µ. The interest here is the 

distribution of the values of x above the threshold µ. 

According to Nortey [9] on Ghana stock exchange index they 

concluded that the daily returns of the Ghana stock exchange 

all-share index data was from a distribution with fat-tails and 

asymmetric in nature as a result of the observed volatility in 

the daily returns data, the conditional EVT approach was 

preferred for the study. A similar realization was made by 

Polakow [10] when they compared the conditional and 

unconditional approaches in the modelling of a volatile South 

African stock market, and the conditional approach provided 

better results compared to the unconditional approach. 

Djakovic [11] concluded that in emerging markets, different 

characteristics are observed at each of the tails of the return 

distributions which indicates that risk and reward are not 

equally likely in these markets. Giles [12] however concluded 

that the GPD performs very well in modelling both the positive 

and negative returns of the tails distributions. It was further 

indicated by Gencay [13] that EVT based VaR estimates were 

more accurate at higher quantiles. Moreover, they reveal that 

the different daily return distributions have different moment 

properties at their right and left tails, and as some studies, 

including Krehbiel [14] concluded, the upper and lower tails 

behave differently, and thus should be treated separately while 

estimating risk measures. 

Results of the empirical analysis on Montenegrin stock 

exchange show that the assessments of Value at Risk based 

on extreme value theory outperform econometric and 

quantile evaluations according to Cerovic [15] concluding 

that econometric evaluations prove to be on the lower bound 

possible Value at Risk movements. 

Despite the general assertions that financial data 

specifically stock price data are fat-tailed according to 

Louangrath [16] empirical test of data from Thailand’s Stock 

Exchange shows that the stock market price distribution 

contains no extreme values under the standard score formula 

approach for verifying exceedances. Hence suggesting that 

price volatility index is a better indicator for risk 

management. Mwamba [17] found that the Islamic market 

index exhibits fat tail behavior in its right tail with high 

likelihood of windfall profit during extreme market 

conditions probably due to the ban on short selling strategies 

in Islamic finance. However, the conventional stock markets 

are found to be more risky than the Islamic markets, and 

exhibit fatter tail behavior in both left and right tails. Their 

findings suggest that during extreme market conditions, short 

selling strategies lead to larger financial losses in the right 

tail than in the left tails. 

3. Research Methodology 

3.1. Introduction 

The two main methods under EVT approach are the Block 

Maxima methods and the Peak-Over-Threshold (POT). The 

distribution of block maxima can be modeled by fitting the 

GEV to the set of block maxima although according to Ren 

[5] this may be an issue whenever one block contains more 

extremes than another hence the use of a more modern and 

more powerful tool for modeling extreme events referred to 

us the peaks-over-threshold (POT) method. POT method will 

be preferred since it utilizes more of the data thus producing 

more reliable findings compared to the Block Maxima 

approach Frey [6]. 

3.2. Preliminary Data Analysis 

3.2.1. Quantile-Quantile Plot 

A popular tool in conducting exploratory data analysis is the 

Q-Q plot. The QQ-plot is a graphical technique to check 

whether our sample data is consistent with some known 

distribution and thus can be used to assess goodness of fitting. 

A QQ-plot compares the quantiles of the empirical distribution 

function with the quantiles of the reference distribution model. 

If the data is from an exponential distribution, the points on the 

graph would lie along a positively sloped straight line. If there 
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is a concave presence, this would indicate a fat-tailed 

distribution, whereas a convex departure is an indication of a 

short-tailed distribution Ren [5]. 

3.2.2. The Mean Excess Function 

A second useful tool for discrimination in the tail is the 

mean excess function (MEF) defined by: 

��(�) �
∑ (
���)


���
�����

, � � �����|��
� � μ�        (1) 

Where ��(μ) is the sample mean excess function, � � �  
1 is the number of observations exceeding the threshold µ 

Gencay [13]. 

3.3. Threshold Determination 

3.3.1. Plot of Mean Excess 

The choice of the threshold is critical in order to adopt the 

POT method to model the tails of the distribution of daily 

returns and a graphical tool that is very helpful for the 

selection of the threshold µ is the sample mean excess plot. 

The sample excess function, which is an estimate of the mean 

excess function, �(μ) is defined as: 

�(μ) � "(� � μ|� � μ) � #�$�

��$
, %  &μ � 0       (2) 

this property is then used as a criterion for the selection of µ. 

3.3.2. Hill Plot 

Another tool in threshold determination is the Hill-plot. It 

is based on the � upper order statistics of an iid sample. By 

ordering the data with respect to their values as 

��,�, �(,�, … , ��,�  where ��,� * + * ��,�  the Hill’s 

estimator of the tail index ξ is 

&, � -.�� � �

�
∑ ln��,� � ln��,��
�1�                 (3) 

Where � � �(�) 2 ∞ is upper order statistics (the number 

of exceedances), n is the sample size and α=1/ξ is the tail 

index. A Hill-plot is constructed such that estimated ξ is 

plotted as a function of �  upper order statistics or the 

threshold. A threshold is selected from the plot where the 

shape parameter ξ is fairly stable. 

3.4. Parameter Estimation 

The maximum likelihood method for estimating 

parameters for a statistical model was used. In this method 

the probability density function 4(�) can be unknown but the 

joint density function for the data is assumed to come from a 

known family of distributions. For an independent and 

identically distributed sample of size �  the joint density 

function looks like 

4(��, �(… , ��|5) � 4(��|5) 6 4(�(|5) 6 … 6 4(��|5)      (4) 

where 5  are the parameters of the model and ��  are the 

observed variables. Thus the observed variables �� are known 

whereas the parameters given by 5 are to be estimated. The 

likelihood function is then given by 

7(5|��, … ��) � 4(��, �(… , ��|5) � ∏ 4(��|5)�
�1�          (5) 

And the often used log-likelihood function is given by 

ln 7(5|��, … ��) � ∑ ln 4(��|5)�
�1�                 (6) 

The estimated parameters are then given by the set which 

maximizes the likelihood function, equation (5) or (6). 

3.5. Description of the Data 

In this study, the data consisted of daily closing prices of 

NASI spanning the years January 2008 to May 2016. The 

reasoning being it represents a measure of the overall 

performance of the stock market, thus enhancing the 

possibility of performing accurate estimates of the 

parameters governing the tail behavior of the distribution. 

Since financial markets usually only provide the raw data of 

the realized values of the various financial indices, the daily 

log-returns will be used interchangeably with returns 

4. Results and Discussion 

4.1. Introduction 

Different packages that deal with extreme in R have been 

used including fExtremes, rugarch and ismev. This chapter 

describes how extreme values of the NSE all share index 

where modeled using extreme value approach. 

The yearly progression of the data is illustrated by a 

logarithmic time series plot as in figure 1. The volatility of the 

financial returns over the period January 2008 to beginning of 

May 2016 is examined. It can be seen clearly that the Kenyan 

stock market experienced some periods of relatively calm and 

periods of high volatility. Volatility clustering can be observed 

where periods of high or low changes in the return are 

accompanied by other high or low changes. 

 

Figure 1. Log returns of daily NSE-All Share Index. 

Table 1 presents a descriptive statistics of the returns data. 

The data has a positive mean and a positive skewness value 

which indicate that the bulk of the data is on the right tail of 

the distribution of the data. The series also has a high kurtosis 

value higher than the normal distribution value of 3 which 
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indicates presence of fat tails of the returns data. The Jargue-

Bera test for normality showed a p value of 0.0000 hence 

leading to the rejection of the hypothesis of the data being 

normally distributed. 

Table 1. Descriptive Statistics. 

Description Values 

Mean 0.020363 

Median 0.010492 

Maximum 7.485723 

Minimum -5.265558 

Standard Deviation 0.898864 

Skewness 0.662822 

Kurtosis 10.196425 

Jarque-Bera Test 9145.812 

(Probability) 0.0000 

Number of Observations 2071 

The presumption of financial returns having fat tails was 

made from an examination of the histogram of returns, figure 

2. The histogram shows that relatively more observations lie 

to the right of the mean of the distribution, compared to the 

left. This is consistent with the positive skewness value 

obtained and the high peak corresponding to the large 

kurtosis value obtained. The curve represents the density 

curve of the returns. From the graph it can be observed that 

the density curve has a very high peak around its mean and 

relatively fatter tails compared to the normal curve. This 

further confirms that the data deviates from normality. 

 

Figure 2. Histogram of Returns of daily NSE-All Share Index. 

Stationarity was tested by performing Phillips-Perron and 

Augmented Dickey-Fuller unit root test and it was found that 

the returns data is fairly stationary since the ρ- value (0.01) < 

0.05. It is recommended that the data be iid before applying 

Extreme Value Method, therefore a Box-Ljung test for 

autocorrelation was performed. The presence of significant 

autocorrelation in the return series was present. Further a 

Lagrangian Multiplier test was performed to test for 

Autoregressive Conditional Heteroscedastic (ARCH) effects 

and this reveled presence of significant ARCH effects in the 

data. 

According to McNeil [18] in order to produce a complete 

iid process with relatively no autocorrelation and no 

heteroscedastic effects one would need to fit a GARCH-type 

model to the data. Therefore, different combinations of 

ARMA (p, q)-GARCH (m, s) models were fitted and based 

on BIC and AIC values, the ARMA(1, 1)-GARCH(1, 1) 

model was found to be the best fitting. The model parameters 

are shown in Table 2. A standardized iid series was then 

calculated by dividing the residual terms at time t with the 

corresponding conditional standard deviation. 

Table 2. Results from ARMA-GARCH model. 

Optimal Parameters Estimate Standard Error ρ-value 

Mu 0.05091 0.02147 0.0177 

AR (1) 0.46231 0.05659 0.000 

MA (1) -0.12836 0.06434 0.0460 

Omega 0.05340 0.01121 0.0000 

Alpha 1 0.23761 0.03096 0.0000 

Beta 1 0.68603 0.04006 0.0000 

No autocorrelation existed also no evidence of volatility 

clustering in the series and no conditional heteroscedastic 

terms in the standardized series after performance of 

autocorrelation and conditional heteroscedasticity tests. The 

series was therefore considered suitable for application of 

extreme value analysis. 

4.2. Threshold Determination 

 

 

Figure 3. Hill plots with right tail on the left and left tail on the right. 
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The first step under Peak-Over-Threshold approach under 

EVT is to determine the threshold. This was performed 

graphically in this study by use of hill plots, shape parameter 

plots and mean excess plots. The hill plots for the tails of the 

standardized series are shown in figure 3. The last 290 order 

statistics are plotted for the right tail and the last 390 for the 

left tail leaving more than 10% of the data for analysis. The 

interest with the hill plot was to find a relatively steady area 

on the plot where the order statistics obtained is sufficiently 

large and the threshold selected be relatively steady and 

provide sufficient exceedances to be fitted by the GPD. The 

area on the right tail plot was determined to be between 189 

and 224 order statistics and on the left tail plot the area was 

determined to be between 327 and 356 indicated by vertical 

lines in both plots. Therefore a sufficient threshold was 

expected to lie within these ranges. 

The shape parameter plots in figure 4 showed that plots are 

relatively steady in the ranges determined by the hill plots. 

These ranges have also been indicated by vertical lines on the 

plot. The dotted vertical line on the right tail of the shape 

parameter plot further separates the more steady area within 

the ranges determined by the hill plot above. The 

corresponding thresholds determined for the right tail plot 

were between 1.120-1.165 and for the left tail plot 0.838-0.877. 

 

 

Figure 4. Shape Parameter plot with the right tail on the left. 

Finally, the mean excess plots were graphed as in figure 5, 

and based on the hill and shape parameter plots above; the 

thresholds were expected to lie in a particular range. Upon 

close examination of the plot of mean excesses, a threshold 

value of 1.15 for the right tail plot and 0.84 for the left tail 

plot was determined. 

 

 

Figure 5. Mean Excess plot with the right tail on the left. 

It can be noticed that the plots are relatively stable up to the 

points selected and from there slight variations are observed. It 

should be noted that this thresholds lie within the ranges 

determined by the hill plots and shape parameter plots. 

4.3. Fitting a Generalized Pareto Distribution 

Number of observations above the selected threshold left 

for modelling on the right tail was 195 and 354 for the left 

tail. This were more than 10% of the total number of 

observations in each of the tails thus considered fit for fitting 

a GPD. It can also be noted that the slopes above the selected 

threshold have an upward slope thus will be well 

approximated by the GPD with positive shape parameter. 

Table 3 reports the shape 9ξ,; and the scale (%.) parameters 

from the fitted GPD to the tails of the standardized series, 

and there corresponding standard errors. It was observed that 

the standard errors of the right tail were greater compared to 

the left tail. This is an indication that the GPD provided 

better fit for the left tail compared to the right. There are only 

positive shape parameters for both the left and right tail this 

is an indication of the NSE-All Share Index having fatter tails 

than the normal distribution. 
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Table 3. Results from the fitted Generalized Pareto Distribution. 

Estimates MLE 

 Right tail µ=1.15 Left tail µ=0.84 

Shape Parameter 0.204217 0.048170 

Std Error 0.256639 0.113611 

Scale Parameter 0.578913 0.578579 

Std Error 0.175336 0.088531 

4.4. Model Checking 

Figure 6 shows plots of the estimated GPD models fitted 

against the empirical excesses over the selected thresholds. 

Since all points lie close to the curve of empirical excesses 

then it can be concluded that the estimated GPD models 

provide a good fit to the extreme values. 

 

 

Figure 6. Plots for fitted GPD model with the right tail on the left. 

Figure 7 provides the plots of the probability for the left 

and right tail of the goodness of fit of the GPD models on the 

empirical excesses. Although both models provide good fits, 

the GPD model of the left tail fits better than the right tail fit. 

This is because the plot of the right tail indicates more 

departures from the straight line compared to the left tail plot. 

 

 

Figure 7. Probability plots for the fitted GPD with the right tail on the left. 

Q-Q plots are represented on figure 8 the plots show that 

the points do not deviate significantly from the straight line. 

The plots of the density in figure 9 verifies the conclusion 

obtained from the probability plots that the GPD models 

provide good fits to the exceedances but the model on the left 

tail provides a better fit since the right tail shows a few 

departures from the curve. 

 

 

Figure 8. Q-Q plot for the fitted GPD model with the right tail on the left. 
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Figure 9. Density plots with the right tail on the left. 

Return level plots are considered desirable if there are no 

significant departures from the curve or no points outside the 

confidence bands represented above and below the curve by 

blue curves. Figure 10 presents the return level plots for both 

tails. It can be seen from the plots that no points lay outside 

of the confidence bands. 

 

 

Figure 10. Return level plots with the right tail on the left. 

4.5. Risk Measure 

Risk measures related with the right and left tails after 

fitting the GPD are presented on Table 4 which is presented 

in percentages. 

Table 4. Risk Measures. 

Probability VaR ES 

Measure of Risk (right tail)   

0.9900 3.485851 4.812761 

0.9950 4.272103 5.800784 

0.9990 6.590082 8.713611 

0.9995 7.848366 10.294801 

0.9999 11.557960 14.956364 

Measures of Risk (left tail)   

0.9900 2.902482 3.614718 

0.9950 3.380319 4.116737 

0.9990 4.553328 5.349109 

0.9995 5.087214 5.910013 

0.9999 6.397817 7.286942 

The results indicate that with probability of 0.01 hence a 

99.0% level of confidence, the expected market return would 

not gain by more than 3.49% and if it does by any chance 

increase by more than 3.49% then an average gain of 4.81% 

is expected within a one day period. If for any reason a loss is 

experienced then it will not exceed 2.90% with probability 

0.01 and the loss if it does exceed 2.90% then the expected 

loss will be 3.61%. 

With probability 0.005 thus a 99.5% level of confidence, the 

daily market gain will not be more than 4.27% but if it does go 

beyond then it will not exceed 5.80%. In the case of losses 

with probability 0.005 the loss will not exceed 3.38% but if it 

does exceed this then the loss is expected to be 4.12%. 

For the higher quantiles with probability 0.0005 that is 

99.95% level of confidence the expected market gain is 

7.85% and if it does exceed this then it is expected to be 

10.29%. On the other hand a loss of 5.09% is expected but if 

it does exceed this then the expected loss is 5.91%. 

Additionally, with probability 0.0001, 99.99% level of 

confidence the expected gain is 11.56% if it exceeds this then 

it is expected to be 14.96%. A loss is not expected to go 

beyond 6.40% with probability 0.0001 but if it exceeds this 

then it is expected to be 7.29%. 

These results indicate that for an investment in the NSE, 

the probability of losses is lower compared to the possibility 

of gains. 

5. Conclusion 

This study makes use of the peak-over-threshold method 

(POT) based on the Generalized Pareto distribution in 

modelling the tails of the empirical distribution of the NSE-

All Share Index. The main objective of the study was to 

model the extreme values of the NSE-All Share Index using 

extreme value theory. To achieve this objective the study 

begun by calculating the logarithmic returns from the daily 

closing prices of the index. The yearly progression of the 

data was shown by use of a logarithmic time series plot. 

Presumption of the data having fat tails was illustrated by a 
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histogram of returns which showed that most of the data lied 

on the right this was consistent with the high positive value 

of kurtosis (leptokurtic). The returns data was tested for 

stationarity and was found to be fairly stationary. The 

presence of ARCH effects was observed after performing the 

Lagrangian multiplier test. To produce a complete iid process 

with no ARCH effects an ARMA (1, 1)-GARCH (1, 1) was 

fitted to the data. The threshold was determined by use of the 

Hill plot, Shape parameter plot and the mean excess plot for 

each of the tails. The right tail was found to be 1.15 and the 

left tail was 0.84. These thresholds were then used to fit a 

Generalized Pareto distribution with the parameters shape 

9&,; and scale (%.)  being estimated by maximum likelihood 

estimation. 

The model was then checked for goodness of fit and it was 

concluded that both the right tail and left tail fitted the data 

well but the left tail fitted better compared to the right. Risk 

measures of VaR and ES were also performed and this 

indicated that for an investment in the Nairobi Securities 

Exchange, the probability of losses is lower compared to that 

of gaining if one was to invest in the NSE. 
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