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Abstract: The purpose of this work was the creation of a statistical modeling able to replace the process used to setup of the 
ovens of the quench hardening and tempering that is traditionally accomplished through adjustments made based on the results 
of mechanical properties as tested in laboratory and required in customer specifications. We sought to understand the influence 
of the input variables (factors) on the mechanical properties tensile strength and hardness, in SAE 9254 draw steel wires, with 
diameters 2.00 mm and 6.50 mm, used in the manufacture of valve springs and clutch for automobile tracking. Were 
investigated the input variables of the process speed and tempering temperature. Design of Experiments with block Analysis, 
Quadratic Multiple Regression, Analysis of Variance (ANOVA) and Response Surface Methodology (RSM). For the 
optimization of statistical models were used the Generalized Reduced Gradient methods (GRG), Genetic Algorithm (AG) and 
the Meta-heuristics Simulated Annealing (SA). The results revealed that all variables considered have significant influence and 
models obtained were validated using appropriate statistical methods. This new modeling and its optimization, if properly 
implemented and enforced, could lead scientific advances which would provide the automation of this process, and 
consequently cause great impact on increasing productivity and product quality. 

Keywords: Heat Treatment, Generalized Reduced Gradient, Design of Experiments, Response Surface Method,  
Genetic Algorithms, Meta-Heuristic 

 

1. Introduction 

The ferrous alloys, especially carbon and special steels, 
have fundamental importance in mechanical construction, 
due to its properties of strength, among others. The job of 
these alloys is very diverse and their selection, in General, 
very carefully. To produce them with mechanical properties 
that meet the requirements of applications originally 
envisaged, it is necessary that the main parameters of the 
process are well known and adjusted properly. 

The requirements of special steels market, led by 
manufacturers of automobiles and spare parts, require 
steelmakers to produce steels that meet the requirements 

related to mechanical properties obtained by means of heat 
treatment quenching and tempering. 

Grosselle et al. (2010) studied the influence of process 
parameters on the properties of aluminium alloys fused and 
this methodology was employed successfully by using the 
design of experiments and analysis of variance to establish 
the relationship between four parameters of the casting 
process, in which three of them were tested on two levels and 
one with three levels, for studies on microstructure and 
mechanical properties in the manufacture of engine blocks. 
With the implementation of the experimental planning held, 
it was possible to consider the relationship between variables 
and understand the contribution of each variable, or their 
interactions, on the desired results.  
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Gunasegaram et al. (2009) studied the process parameters 
that contribute to the formation of shrinkage defects in an 
aluminum cast of complex geometry, produced by the 
permanent mold process. The experiment Design was 
supported by numerical simulations, having studied the 
behavior of five factors at two levels each. The solution has 
led to a reduction of 13 (percent) product scrap level. 

Among the most widely used testing to measure the 
hardenability the Jominy methods and the method DI 
(diameter ideal critic), developed by the Caterpillar company 
(manufacturer of machines), which is based on multiple 
regression of the steel chemical elements to estimate the 
depth of quenching and thus correlate it with the mechanical 
properties hardness and tensile strength limit (YAMADA, 
2007). However, the technique is used most often in 
tempered steel with quenching 50 (percent) and cannot meet 
the need of the process in question, because in the process 
studied is performed to temper in 100 (percent), that is, the 
material is hardened the surface to the core. 

Blondeau et al. (2000) showed the application of 
mathematical models in regressive prediction of mechanical 
properties of steel bars. Although the model have shown 
good results in bars, the research in question comes to drawn 
wires that have very different characteristics. 

Hodgson and Gibbs (1992) have shown the influence of 
the elements carbon (C) and manganese (Mn) in the 
mechanical properties of steel bars, as well as mathematical 
modeling for this process, also restricted the steel bars. 

Ribeiro (2006) stated that the mechanical properties of 
SAE 4140 steel were influenced by tempering parameters, in 
particular for the temperature and time of heat treatment. 

According to Camarão (1998), the mechanical properties 
are totally influenced by the temperature of quenching and 
Stein (2004) found that the rapid austenitising sensibly 
affects mechanical properties and microstructure of steels 
with carbon content above 0.4 (percent), in quenched and 
tempered condition, as well as, studied the effect of 
austenitizing quick on the mechanical properties of 1045 
steel, hardened and tempered. Experimental variables used 
were: austenitising temperatures (soak times and intervals of 
tempering) and austenitizing temperature and tempering. 

Through the research cited above, it was possible to obtain 
some hypotheses of what factors may influence the process of 
hardening and tempering. However, all articles and 
dissertations previously cited were studies for steel bars, drawn 
steel wires, about the studies are very scarce. Besides that, the 
use of polymer quenching medium (from water polymer 
solution), replacing the traditional quenching in oil, is still very 
recent and few scientific studies on the subject are found. 

Studies that address the application of statistics in the 
process of quenching and tempering of SAE 9254 steel wires 
are, however, relatively few in the literature, hence the 
present research. 

The results of limit of tensile strength and hardness 
obtained in this step are used to setting of the oven inside 
which makes a second pilot sample, to confirm that the 
settings of the process were enough so that the product would 

achieve the mechanical specifications. This implies 
considerable operating routine analysis and waiting time, 
reducing the productivity of the process due to low income, 
since the oven remains inoperable until it is configured. 

2. Heat Treatment and Mechanical 

Properties 

Quenching is related to sudden cooling after heating steel 
to the austenitizing temperature and aims to obtain a 
microstructure that gives mechanical properties, such as 
hardness and tensile strength limit for specific applications 
that require this condition. During the cooling stage in 
quenching the temperature drop promotes structural changes 
that result in the emergence of internal tensions and so it is 
necessary the realization of tempering. The tempering 
involves a series of micro structural transformations that tend 
to thermodynamic equilibrium. It is, therefore, a thermally 
activated process and thus direct function of time and 
temperature. This process is performed in addition to 
quenching being particularly important in the manufacture of 
steel for springs. It consists of heating the quenched material 
between 250°C to 650°C for a certain time, to increase the 
ductility and elastic (CALLISTER, 2012). 

In a test of tensile strength limit the body of proof shall be 
on the head of a testing machine that applies an effort which 
tends to lengthen it up to the break, being measures the 
deformation by means of a device called a strain gauge. The 
test is performed on a body of proof with standardized 
dimensions, so that the results obtained can be compared, 
reproduced and measured on the machine itself. Usually the 
test occurs until the break of the material (what ranks as 
destructive) and allows you to measure the resistance of the 
material and the deformation as a function of applied voltage. 
This variation is extremely useful for engineering, and is 
determined by the route of the stress-strain curve. Above a 
certain level of tension, the materials begin to deform 
plastically until the break, at which point you get the limit of 
tensile strength (CHIAVERINI, 2012). 

Steel industries are very used the universal testing machine 
of traction and it is common for the units of force used are 
kilogram-force per square millimeter (kgf/mm2) or 
MegaPascal (MPa). The technical standards used for the 
execution of mechanical tests are elaborated by the ASTM 
(American Society for Testing and Materials). 

According to Chiaverini (2012), the hardness is a measure 
of the resistance of a metal to penetration. The most common 
methods to determine the hardness of a metal are the Brinell, 
Vickers and Rockwell. In this project will only be used the 
method Brinell Hardness (BH). 

The mechanical properties hardness and tensile strength 
limit are directly related. In general the higher the hardness, 
the greater the tensile strength and limit how often the 
hardness is proportional to the wear resistance and durability 
in steel, she is used as a measure of the resistance to abrasion 
(PAULA, 2013). 
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Figure 1. Illustration of the method of Brinell hardness (BH). 

Getting the values of Brinell Hardness (BH), as shown in 
Figure 1, is made by dividing the applied load by the area of 
penetration. The penetrator diameter (D) is a hardened steel 
ball to medium or low hardness materials, or tungsten 
carbide, for materials of high hardness. The test machine has 
a light microscope that makes measuring the diameter of the 
circle (d, in mm) that corresponds to the projection of the 
spherical Cap printed in the sample. Brinell hardness (BH) 
will be given by the applied load (P, in kg) divided by the 
print area as (in formula 1): 

2

2 2
Brinell hardness 

P 2 kgf mm

D D D dπ

 
    

  
 

=
− −                                                         (1) 

3. Statistical Methods and Optimization 

Response surface methodology is based on the empirical 
mathematical models construction usually uses quadratic 
polynomial functions to offer conditions optimization for 
systems. According to Silva (2013) the response surface 
Methodology or RSM is a statistical technique to model 
processes and optimize the response variables, seeking a 
maximum or a minimum of income on which to optimize. 
Typically, using a factorial planning 2², investigating two 
factors, to research the region great, by the way of maximum 
or minimum rise, depending on what if you want to optimize 
and the method of least squares is used to estimate the 
parameters of the quadratic model (polynomial), used to find 
the best fit of the factors, which will provide achieve the best 
response variable. 

According to Neto et al. (2007), response surface 
methodology (or RSM) is an optimization technique based on 
factorial planning and has been used with great success in the 
modeling of various types of industrial processes. 
Application of response surface Methodology is necessary 
two phases, modeling, and offset. That must be carried out so 
often if you do need to, until you obtain the optimal surface 
region investigated. This modeling is accomplished using 
linear or quadratic models adjustment, in which the responses 
are obtained through the execution of planning factorials. The 
offset is made through the path of maximum rise of 
inclination of a given model, which is the path on which the 
variable response varies, and may cause bending, which 
occurs when a particular answer is increased gradually until 
at some point, begins to suffer a fall, this is called point of 
curvature of the response. 

Like most issues involving the response surface is 
unknown, the first procedure is to find an approximation to 
the true relationship between the response variable (y) and 
independent variables (factors) and usually uses a 
mathematical modelling by means of a regression polynomial 
(quadratic). The following is presented that polynomial 
regression model of second order (in formula 2): 

      (2) 

at where: 
� β0 represents the average response variable; 

�  represents the linear effect; 

�  represents the quadratic effect; 

�  represents the effect of the interaction. 

As Rosa et al. (2009) and belt and Correia (2011), to 
analyze statistically the results obtained through design of 
experiments and response surface Methodology (RSM), the 
most recommended method is the analysis of variance 
(ANOVA), by means of which, you can compare two or more 
factors and also test the significance of the regression, 
making use of the F-test to establish which factors and 
interactions between them are really significant in the process 
as well as testing the significance of the curvature. From the 
parameters calculated on ANOVA can create eou validate 
statistical models, as well as calculate the coefficients 
necessary for process modeling through multiple regression 
can be linear, quadratic or interaction terms.  

The Generalized Reduced Gradient method (GRG) has its 
structure based on an algorithm for solving nonlinear 
programming problems with constraints. Basically, the 
method provides only the use of linear or non-linear 
constraints of equality. However, for situations where the 
constraints are inequalities, solves the problem by 
introducing slack variables (if the constraint is of type ≤), or 
excess variables (in the case of restrictions of the type ≥). 

The GRG is an algorithm applied to optimization problems 
and was developed by Leon Lasdon, University of Texas at 
Austin, and Allan Waren, Cleveland State University. For 
optimization through the Generalized Reduced Gradient 
Algorithm (GRG), you can use Microsoft Excel Solver, 
which is used for optimizing nonlinear problems, through 
this method (SACOMAN, 2012). Microsoft Excel Solver 
uses iterative numerical methods involving assessment values 
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for the adjustable cells and observes the results calculated by 
cells of restrictions. Each attempt is called an interaction. 
Because in a trial-and-error approach would require an 
extremely long time (especially for problems involving 
several adjustable cells and constraints). However, the 
Microsoft Excel Solver performs comprehensive analysis of 
observed results and change fees as are varied to guide the 
selection of new evaluation values. 

The Genetic Algorithms (GA) have a wide application in 
many scientific areas, among which may be mentioned 
problems solutions optimization, machine learning, 
developing strategies and mathematical formulas, analysis of 
economic models, engineering problems, diverse applications 
in biology as simulation of bacteria, immune systems, 
ecosystems, discovery of format and properties of organic 
molecules (ZINI, 2009). 

According to Holland (1975), the fittest individuals have a 
greater number of descendants, unlike those individuals least 
able. The requirements for the implementation are: 

a) Representations of possible solutions of the problem in 
the form of a genetic code; 

b) Initial population containing diverse enough to allow 
the algorithm to combine features and produce new 
solutions; 

c) Existence of a method to measure the quality of a 
potential solution; 

d) combination of solutions to generate new individuals in 
the population; 

e) A choice of solutions that will remain in the population 
or it will be removed; 

f) A procedure to introduce periodically changes to some 
solutions. In this way the diversity of the population 
and the possibility to produce innovative solutions to be 
evaluated on criteria of selection of the fittest. 

The basic principle of genetic operators is to transform the 
population through successive generations, extending the 
search to reach a satisfactory result. Genetic operators are 
necessary for the population if diversify and keep the 
adaptation features acquired by previous generations. 
Through the crossing are created new individuals, mixing 
characteristics of two parents. This mixture is done trying to 
imitate the reproduction of genes into cells and the result of 

this operation is an individual that potentially combine the 
best features of individuals used as base (HOLLAND, 1975). 

According to Silva (2013), the Meta-heuristics are 
advanced methods that manage interactions between local 
refinement procedures and high-level strategies to create a 
process able to escape from great local situations, and 
provide a search optimal solutions. 

Its origin is related to the adjustment of mechanical 
properties through a controlled cooling process, in which the 
product is heated to a certain temperature and then cooled in 
cooling, according to the desired result. If the goal is to obtain 
hardness and rigidity, the temperature is decreased abruptly. If, 
on the contrary, we want flexibility, the reduction is made 
slowly, until the ambient temperature (JUNIOR, 2008). 

According to Barros and Moccellin (2004), the use of 
Simulated Annealing is justified by the ability to perform 
movements "up the Hill" in the space of feasible solutions of 
the problem, exploring the "valleys" in an attempt to obtain a 
global optimal solution to the problem. The Simulated 
Annealing can be considered a generalization of the method 
"descendant", in which the search is extended to a global 
minimum is completed after a local minimum be obtained, 
and may be classified as heuristic random search method in 
the neighborhood. 

According to Yamamoto (2004), an important feature of 
Simulated Annealing is the acceptance of settings that have a 
higher energy, which can look worse, but allows the method 
does not converge to a local minimum, and could converge to 
a better result. 

4. Results 

4.1. Material and Selection of Factors 

The material used in this study was the SAE 9254 cold 
drawn steel, used for the manufacture of Springs valves and 
clutch Springs applied to the automotive segment, with 
diameters 2.00 mm and 6.50 mm, subjected to the process of 
hardening and tempering. 

The chemical analysis of the SAE 9254 material used in 
the study is presented in table 1. 

Table 1. Chemical Composition (SAE 9254). 

Chemical Elements C Mn Si P S Cr Ni Mo Cu Al V 

(percentage) 0.554 0.64 1.22 0.022 0.018 0.58 0.04 0.03 0.01 0.009 0.005 

 

The factors investigated were: 
a) Speed of passage of wire inside the oven (in meters per 

second)- Factor A; 
b) Lead in tempering temperature (in°C)- Factor B; 
The factor A and B were experienced by means of factorial 

planning, using the array called 22 with center point and the 
star experiment values that will be used for quadratic 
modeling (in table 2 and formula 3) and the values were 
transformed to standardized variables. To conduct the 
experiments planning, standardized variables were used (β) 

rather than physical variables (real adjustments) of the 
investigated factors in order to protect sensitive data from 
funding research firm. The standardization of the variables 
was calculated using the physical value (α) that want to test 
subtracted from the mean (µ) between the minimum and 
maximum values of settings of factors. The result divided by 
half the amplitude (R) between the minimum and maximum 
values of settings of factors. Thus, the dimensionality of the 
standardized variables was restricted to the interval [-1, 1], 
which concentrates the minimum, average and maximum 
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values. To values that will be used for quadratic modelling was used -1.41 and 1.41 (to star experiment). 

Table 2. Physical variables and standardized variables (multiple responses). 

Input variables Values (physical units) Values (standardized variables) 

Speed (meters per second) Minimum Star / Minimum / Center point/ Maximum/ Maximum Star -1.41 / -1 / 0/ 1/ 1.41 

Lead temperature (°C) Minimum Star / Minimum / Center point / Maximum/ Maximum Star -1.41 / -1 / 0/ 1/ 1.41 

 

2

R

µαβ −=
                                      (3) 

4.2. Application of Response Surface Methodology 

(diameter 2.00 mm) 

4.2.1. Response Surfaces for the Limit of Tensile Strength 

(2.00 Mm) 

First of all, to analyze the response surface, only the 

response variable tensile strength limit to the diameter of 
2.00 mm, was called Star experiment, which refers to a 
sequence of planned experiments in the region which is the 
curvature, seeking a quadratic modeling of the process. The 
star, was studied only the two main factors (A and B) as 
together, explain most of the influence generated in response 
limit of tensile strength. The result of the experiment and the 
results obtained after execution of the experiments are 
presented in table 3. 

Table 3. Experimental Matrix quadratic modelling of limit of tensile strength (MPa). 

SPEED (A) TEMPERATURE (B) TENSILE STRENGTH -REPLICAS 

-1 -1 2149 2146 2148 2161 2167 2160 

1 -1 2157 2157 2155 2151 2157 2157 

-1 1 1924 1920 1922 1921 1920 1918 

1 1 1924 1922 1924 1943 1945 1945 

-1.41 0 1700 1750 1750 1750 1700 1730 

1.41 0 1600 1600 1600 1600 1580 1600 

0 -1.41 2010 2010 2010 2010 2012 2010 

0 1.41 1680 1700 1700 1700 1680 1700 

0 0 2046 2040 2041 2049 2047 2053 

 

After completion of the experiments with the purpose of 
quadratic modeling was carried out a new test of significance 
(using Tstudent statistic). Through of this test (in table 4), it 
was found that the factors (A) and (B) are influential, as well 
as the quadratic terms of A and B. However, quadratic 
modelling, it was observed that the interaction term was not 
considered influential under the conditions tested. 

Table 4. Test of significance for quadratic modeling (limit of tensile strength 

– Diameter 2.00 mm). 

Terms Coefficient T p 

Constant 2046.0 131.048 0.000 

(A) 14.18 2.569 0.013 

(B) -145.91 -26.433 0.000 

(A)(A) -45.21 -4.939 0.000 

(B)(B) 42.17 4.607 0.000 

(A)(B) 3.13 0.400 0.691 

For a better understanding of the tensile strength limit, was 
built the 3D graph (in Figure 2) showing the behavior of the 
response surface in relation to adjustments of the factors. 
Looking at Figure 2, you can see that the reduction factor 
adjustment (B) from level 1 to -1, it causes increase in tensile 
strength limit. The same occur with factor (A) from -1 to zero 
(0), increasing the same property. When increased up to 

overcome the zero point (0), it was observed that the 
mechanical property suffers fall, indicating that the speed 
above the point zero (0) causes the processing time who is 
insufficient to cause the hardening and tempering in material, 
making it impossible for the micro structural transformation.  

 

Figure 2. Response surface of - Diameter 2.00 mm (MPa). 

4.2.2. Response Surfaces for Hardness (Diameter 2.00 mm) 

It was made the star experiment in the region which is the 
curvature for mechanical property hardness, seeking a 
quadratic modeling of the process. For the star experiment (in 
table 5), has also been studied only the two main factors (A 
and B). 
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Table 5. Experimental Matrix quadratic model of the limit of Hardness - Diameter 2.00mm (BH). 

SPEED (A) TEMPERATURE (B) HARDNESS -REPLICAS 
   

-1 -1 608 606 606 611 611 611 
1 -1 608 608 608 608 608 608 
-1 1 544 542 542 542 542 542 
1 1 544 544 542 550 550 550 
-1.41 0 530 532 533 533 537 530 
1.41 0 550 553 554 548 551 556 
0 -1.41 630 628 627 628 633 638 
0 1.41 517 520 516 520 522 519 
0 0 578 575 578 578 578 581 

 

Through the test of significance (using statistics Tstudent), 
presented in table 6, it was found that the factors (A) and (B) 
are influential, as well as the quadratic term, with P values 
less than 0.05 (for reliable 95). However, it was observed that 
the term B² and interaction do not have significant influence. 

Table 6. Significance test for hardness quadratic modelling - Diameter 2.00 

mm (BH). 

Terms Coefficient T p 

Constant 578,0 135.067 0.000 
(A) 3,885 2.568 0.013 
(B) -35.719 -23.608 0.000 
(A)(A) -13.396 -5.339 0.000 
(B)(B) 2.896 1.154 0.254 
(A)(B) 1.292 0.604 0.549 

Looking at Figure 3, you can see that the reduction factor 
(B) from level 1 to -1 causes increase in hardness. It was 
observed that the increase in factor (A) from level -1 to zero 
causes an increase in hardness. However, the hardness had a 
crash, when the increase was above the zero point, because 
the processing time was insufficient to tempering in the 
material, making it impossible for the micro structure 
transformation. With that, it was found the maximum speed 

permitted for obtaining the greatest result of hardness. 

 

Figure 3. Response surface hardness- Diameter 2.00 mm (BH).4.3. 

Application of Response Surface Methodology (Diameter 6.50 mm) 

4.3.1. Response Surfaces for Limit of Tensile Strength 

(6.50 mm) 

To analyze the response surface, only the response variable 
tensile strength limit, to 6.50 mm diameter, it was made the 
star experiment. The star experiment, have also been studied 
only the two main factors (A and B) because together, 
explain most of the influence generated in response. The 
results obtained after execution of the experiments are shown 
in table 7. 

Table 7. Experimental Matrix quadratic model of the limit of tensile strength- Diameter 6.50 mm (MPa). 

SPEED (A)  TEMPERATURE (B) TENSILE STRENGTH -REPLICAS 

-1 -1 1968 1974 1962 1971 1971 1974 
1 -1 1980 1976 1988 1978 1980 1988 
-1 1 1771 1764 1763 1773 1771 1764 
1 1 1796 1784 1797 1781 1796 1784 
-1.41 0 1700 1750 1750 1750 1700 1730 
1.41 0 1600 1600 1600 1600 1580 1600 
0 -1.41 2010 2010 2010 2010 2012 2010 
0 1.41 1680 1700 1700 1700 1680 1700 
0 0 1850 1847 1849 1848 1844 1846 

 

Table 8. Test of significance of the quadratic model of the limit of tensile 

strength- Diameter 6.50 mm (MPa). 

Terms Coefficient T p 

Constant 1847.33 67.523 0.000 
(A) -19.36 -2.002 0.050 
(B) -105.33 -10.889 0.000 
(A)(A) -62.08 -3.870 0.000 
(B)(B) 32.17 2.005 0.050 
(A)(B) 2.58 0.189 0.851 

After the completion of the experiments with the purpose 
of quadratic modeling was performed significance testing (in 

table 8), which made possible to complete that the factors (A) 
and (B) are influential, as well as the quadratic terms of A 
and B, with P values of (0.05) of significance. However, for 
the quadratic modeling, it was observed that the interaction 
was not influential. 

For better understanding of the response surface of 
6.50mm diameter, for the mechanical property limit of tensile 
strength, it was built the 3D graph (in Figure 4), showing the 
behavior of the response in relation to adjustments of the 
factors. 
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Figure 4. Response surface of tensile strength- Diameter 6.50 mm (MPa). 

Analyzing the Figure 4, it was possible to observe that the 

reduction factor (B) from 1 to -1 causes increase in tensile 
strength limit. On the other hand, the influence of the factor 
(A) it was significant when increased from -1 to zero (0), 
which was reflected in the increase in the tensile strength limit 
because with the increased above the point called curvature 
(zero), it was observed that the mechanical property crash, 
indicating that the speed above the zero point cause an 
insufficient processing time for the modification structural. 

4.3.2. Response Surfaces for Hardness (Diameter 6.50 mm) 

For mechanical property hardness in diameter 6.50 mm, it 
was made the star experiment, in the region which is the 
curvature. For the star experiment (in table 9), was studied 
only the two main factors (A and B). 

Table 9. Experimental Matrix quadratic modelling of hardness- Diameter 6.50 mm (BH). 

SPEED (A)  TEMPERATURE (B) HARDNESS -REPLICAS 

-1 -1 556 558 556 556 556 558 
1 -1 558 558 561 558 558 561 
-1 1 500 497 497 500 500 497 
1 1 508 503 508 503 508 503 
-1.41 0 480 482 480 485 490 484 
1.41 0 400 400 410 405 400 400 
0 -1.41 580 590 590 580 580 582 
0 1.41 410 410 413 400 410 400 
0 0 522 522 522 522 519 522 

 

After the completion of the experiments with the purpose 
of quadratic modeling was performed significance testing (in 
table 10) which made possible to complete that the factors 
(A) and (B) are influential, as well as the quadratic terms of 
A and B, with P values of (0.05) of significance. However, 
for the quadratic modeling, it was observed that the quadratic 
term of B and the interaction does not have significant 
influence on this response variable. 

Table 10. Test of significance for quadratic modeling- Diameter 6.50 mm 

hardness (HB). 

Terms Coefficient T p 

Constant 521.500 33.325 0.000 
(A) -13.152 -2.377 0.021 
(B) -45.159 -8.162 0.000 
(A)(A) -24.073 -2.624 0.012 
(B)(B) 2.135 0.233 0.817 
(A)(B) 1.167 0.149 0.882 

For better understanding of the response surface, 
mechanical property hardness, it was presented the 3D graph 
(in Figure 5), showing the behavior of the response in 
relation to adjustments of the factors. 

Looking at Figure 5, you can see that the reduction factor 
(B) from 1 to -1 causes increase in tensile strength limit. 
However, increasing the factor (A) from -1 to zero, 

consequently will cause increasing hardness. However, it was 
observed that the mechanical property suffered crash when 
the speed has been increased above the point of curvature 
zero, indicating that the speed above the zero point cause an 
insufficient processing time for the modification structural.  

 

Figure 5. Response surface hardness- Diameter 6.50 mm (BH). 

  

Using the coefficients for the diameter 2.00 mm was 
possible to create quadratic models that represent the process, 
referring to limit tensile strength and hardness (in Formulas 4 
and 5): 

Tensile strength = 2046+14.18(A) -145.91(B) - 45.21(A²) + 42.17(B²)                                    (4) 

hardness = 578 + 3.885(A) - 35.719(B) -13.396(A²)                                                       (5) 

Afterwards, will be presented the quadratic modeling for 6.50 mm diameter (in Formulas in 6 and 7): 

Tensile strength = 1847.33-19.36(A) -105.33(B) - 62.08(A²) + 32.17(B²)                                   (6) 
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hardness= 521.500 -13.152(A) - 45.159(B) - 24.073(A²)                                                     (7) 

5. Optimization of the Quadratic Model 

To the optimization of the process through the application 
of methods Generalized Reduced Gradient (GRG), Genetic 
Algorithm (GA) and the Meta-heuristics Simulated 
Annealing. For this we used the Solver tool contained in 
Excel software; CrystalBall Software and the Scilab 
Software. In this step, the optimization will occur for the two 
diameters studied (simultaneously), optimizing the results for 
three customers of this product. That way, you can test the 

model Quadratic optimizing for three different methods in 
different situations by checking the error level obtained in 
each method. 

In Table 11 in the programming Worksheet are all 
informations necessaries for the development and application 
of optimization methods. As well as the specifications listed 
in assigned to mathematical models, levels of factors, 
predictions generated by the model and results achieved for 
each mechanical property and diameter. 

Table 11. Worksheet for application of the optimization methods. 

 
A B C D E F G 

1 
 

Constant A B A² B² Error Tensile strength (%)-2.00mm 

2 
 

2046 14.18 -145.91 -45.21 42.17 =(C4 - C7)*100/C7 

3 Tensile strength Adjustment Factor 
    

4 Diameter 2.00mm Prediction Model 
   

Average error (%)-2.00mm 

5 
 

Objective Function =G5 
   

=Average(G2;N9) 

6 
 

Factor specification -1 1 
   

7 Specification of Mechanical Property 1930 (Minimum) 2040 (Target) 2150 (Maximum) 
 

 
H I J K L M N 

8 
 

Constant A B A² B² Error Hardness (%)-2.00mm 

9 
 

578 3885 -35719 -13396 - =(J11 - J13)*100/J13 

10 Hardness Adjustment Factor 
    

11 Diameter 2.00mm Prediction Model 
    

12 
 

Factor specification -1 1 
   

13 Specification of Mechanical Property 545 (Minimum) 572 (Target) 600 (Maximum) 
 

 
O P Q R S T U 

14 
 

Constant A B A² B² Error Tensile strength (%)-6.50mm 

15 
 

1847.33 -19.36 -105.33 -62.08 32.17 =(Q17 - Q20)*100/Q20 

16 Tensile strength Adjustment Factor 
    

17 Diameter 6.50mm Prediction Model 
   

Average error (%)-6.50mm 

18 
 

Objective Function = U18 
   

=Average(U15;β22) 

19 
 

Factor specification -1 1 
   

20 Specification of Mechanical Property 1770 (Minimum) 1875 (Target) 1980 (Maximum) 
 

 
V W X Y Z α β 

21 
 

Constant A B A² B² Error Hardness (%)-6.50mm 

22 
 

521.5 -13152 -45159 -24073 - =(X24 - X26)*100/X26 

23 Hardness Adjustment Factor 
    

24 Diameter 6.50mm Prediction Model 
    

25 
 

Factor specification -1 1 
   

26 Specification of Mechanical Property 500 (Minimum) 530 (Target) 560 (Maximum) 
 

 

5.1. Optimization by Generalized Reduced Gradient  

(GRG)-Quadratic Model 

For the application of this method was necessary for the 
definition of: 

a) Specifications: specifications (in Table 11) concerning 
the response variable tensile strength limit, 2.00mm 
diameter, will be located in cells B7, C7 and E7. While 
for 6.50 mm diameter are in cells P20, Q20 and S20. To 
the specifications relating to the response variable 

hardness, diameter 2.00 mm, Non cells, J13 and L13. 
While for 6.50 mm diameter are in cells, W26 X26 and 
Z26. However, these cells are only the locations of data 
placement, varying specifications of three customers, as 
they are being simulated situations. 

b) Decision variables: in this case, refers to the values of 
the settings, and B, to be afforded the best condition of 
meeting the specifications of the mechanical responses. 
In this case the corresponding cells are: response 
variable tensile strength limit, 2.00 mm diameter (cells 
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C3 and D3); response variable tensile strength limit, 6.50 
mm diameter (cells Q16 and R16); response variable 
hardness, diameter 2.00 mm (cells J10 and K10); 
response variable hardness, diameter 6.50 mm (cells 
X23 and Y23); 

c) Restrictions: some restrictions (in Table 11) were 
charged in solver, such as, the values of the factors A 
and B (cells C3 and D3, J10 and K10, Q16 and R16, X23 
and Y23) were restricted to a minimum and a maximum 
of -1 to 1 (corresponding to the reduced variable study). 
While the values of model predictions (cells: C4, J11, 
Q17 and X24) were restricted to your specifications, in 
relation to the mechanical property and the diameter 

d) Objective function: the objective function was used To the 
distance Average Percentage, which is the average distance 
of the predictions of responses, that is, for each response 
predicted by the model subtracts the value "target"; so if it 
gets a error unit between the prediction and the nominal 
specification, which shall be multiplied by one hundred, 
for use in percentage. In this case, the objective function is 
the minimisation of the average of those "errors", seeking 
a condition that reduces to the maximum values of the 
distances simultaneously of two variables simultaneously 
for a given diameter answers, seeking a balance between 
the best fit of the answers. The objective function for the 
diameter 2.00 mm appear in cell C5 and for the diameter 
6.50 mm in cell Q18 (in Table 11). 

With the use of Solver tool contained in Excel software 
(2010 version). It was possible to allocate all the information 
previously mentioned. In this way, one can obtain the results 
of optimization that will be analyzed later. 

5.2. Optimization by Genetic Algorithm (GA)-Quadratic 

Model 

The application of the Genetic Algorithm method (AG) to 
quadratic modelling similarly to optimization by (GRG) held 
previously, it was also used in Table 11 and followed the 
same steps for use of specifications, decision variables and 
constraints and objective function. The data were imputed in 
CrystalBall software which is a complementary Software to 
Excel software (version 2010) and owns the resource 
optimization by Genetic Algorithm (GA). Five thousand 
simulations were performed in each desired condition and 
analysis concerning the optimization by Genetic Algorithms 
(AG) will be held later. 

5.3. Optimization by Simulated Annealing-Quadratic Model 

For optimization of the quadratic models was used the 
Meta-heuristics Simulated Annealing in order to find the best 
fit possible for optimization factors of multiple mechanical 
responses (limit of tensile strength and hardness). 

The Simulated Annealing method was applied using Scilab 
software Enterprises (for numerical computation), as shown 
in table 12. 

The simulations using Simulated Annealing were 
performed primarily for the diameter 2.00 mm in which were 

held 2245 simulations until it was achieved the best condition 
for obtaining adjustments of responses (in table 12). The 
simulations are presented in summary form and y1 and y2 
values of mechanical properties tensile strength limit and 
hardness being A (Speed factor) and B (lead temperature 
factor). 

Table 12. Simulated Annealing (Scilab), diameter 2.00 mm - quadratic 

Modeling (example application). 

Programming line 1: Enter the largest value of X =1 

Programming line 2: Enter the lowest value of X =-1 

Programming line 3: Enter the temperature value =1d10 

Programming line 4: Enter the value of the cooling rate =0.95 

Programming line 5: Enter the number of repetitions =500 

Programming line 6: Enter the number of solutions =100 

1. Factor A. Factor B  

3. - 0.0085217 0.0478239  

2243. - 0.9923138 - 0.3241123  

2245. - 0.9923138 - 0.3241123 (best fit) 

y1 = 2039.1292 Mpa 

y2 = 572.52735 BH 

The same procedure was performed for the simulations for 
the diameter 6.50 mm in (in table 13). 2245 simulations were 
carried out also until it was achieved the best condition of 
adjustments to obtain the mechanical responses variables (y1 
and y2). 

Table 13. Simulated Annealing (Scilab), diameter 6.50 mm - quadratic 

Modeling (example application). 

Programming line 1: Enter the largest value of X =1 

Programming line 2: Enter the lowest value of X =-1 

Programming line 3: Enter the temperature value =1d10 

Programming line 4: Enter the value of the cooling rate =0.95 

Programming line 5: Enter the number of repetitions =500 

Programming line 6: Enter the number of solutions =100 

1. Factor A Factor B 

3. - 0.0819624 0.0250652 

2243. 0.3870487 - 0.3803127 

2245. 0.3870487 - 0.3803127 (best fit) 

y1 = 1875.2367 

y2 = 529.97938 

5.4. Evaluation of Optimization Methods – Quadratic 

Modeling 

After verification of the results obtained by optimization of 
mechanical responses variables by means of Generalized 
Reduced Gradient methods (GRG), Genetic Algorithm (GA) 
and Simulated Annealing it will be performed simulations for 
the three major customers of this product, for the verification 
of the power of optimization of multiple responses through 
these methods. In Table 14 are the specifications of the 
customers of this product (referring to the limit of tensile 
strength and hardness), for diameter 2.00 mm. They were 
also assigned values to each customer target and achieved in 
each method optimization. 
 



36 Cristie Diego Pimenta et al.:  Tempering Process Optimization in Sae 9254 Wires Through Generalized Reduced Gradient, 
Genetic Algorithms and Simulated Annealing 

 

Table 14. Comparison of results of the methods of optimization (diameter 2.00 mm). 

 Customers 1 Customers 2 Customers 3 

 
Tensile strength 

(MPa) 

Hardness 

(HB) 

Tensile 

strength (MPa) 

Hardness 

(HB) 

Tensile strength 

(MPa) 

Hardness 

(HB) 

Prediction by Simulated Annealing-
(Scilab) 

2030 573 1970 555 2100 590 

Prediction by GRG-(Solver) 2028 572 1966 555 2100 587 
Prediction by GA-(CrystalBall) 2040 572 1970 585 2100 555 
Minimum specification 1930 545 1900 530 1900 500 
Maximum specification 2150 600 2050 580 2300 700 
Specification (target) 2040 572 1975 555 2100 600 
Adjust Factor A (Simulated Annealing) - 0.99 0.11 0.11 
Adjust Factor A (GRG) 0.90 1.00 1.00 
Adjust Factor A (GA) -1.00 0.20 0.12 
Adjust Factor B (Simulated Annealing) - 0.32 0.65 - 0.33 
Adjust Factor B (GRG) -0.04 0.38 -0.51 
Adjust Factor B (GA) -0.33 0.65 -0.33 

Tabela 15. Comparison of Errors of optimization methods (diameter 2.00mm). 

 Customers 1 Customers 2 Customers 3 

 
Tensile strength 

(MPa) 

Hardness 

(HB) 

Tensile strength 

(MPa) 

Hardness 

(HB) 

Tensile strength 

(MPa) 
Hardness (HB) 

Error % (Simulated Annealing)- 
Scilab 

0.04 % 0.08 % 0.25 % 0.00 % 0.00 % 1.60 % 

Error % (GRG)- Solver 0.59 % 0.00 % 0.46 % 0.00 % 0.00 % 2.17 % 
Error % (GA)-CrystalBall 0.00% 0.00% 0.25% 5.41% 0.00% 7.50% 
Error Medium (%) (Simulated 
Annealing) 

0.06 % 0.125 % 0.80 % 

Error Medium (%) (GRG) 0.29 % 0.23 % 1.08 % 
Error Medium (%) (GA) 0.00% 2.83% 3.75% 
Error Medium (%) of the three 
customers 

(Simulated Annealing) (GRG) (GA) 
0.32 % 0.53 % 2.19 % 

Table 16. Comparison of results of the methods of optimization (diameter 6.50 mm). 

 Customers 1 Customers 2 Customers 3 

 
Tensile strength 

(MPa) 

Hardness 

(HB) 

Tensile 

strength (MPa) 

Hardness 

(HB) 

Tensile 

strength (MPa) 

Hardness 

(HB) 

Prediction by Simulated Annealing- (Scilab) 1875 530 1763 490 1889 526 
Prediction by GRG-(Solver) 1875 530 1763 490 1857 525 
Prediction by AG-(CrystalBall) 1873 530 1760 490 1870 525 
Minimum specification 1770 500 1670 450 1800 510 
Maximum specification 1980 560 1850 530 1980 540 
Specification (target) 1875 530 1760 490 1890 525 
Adjust Factor A (Simulated Annealing) 0.38 - 0.99 0.99 
Adjust Factor A (GRG) 0.38 -1.00 0.13 
Adjust Factor A (GA) -0.80 -0.87 -1.00 
Adjust Factor B (Simulated Annealing) -0.38 0.46 - 0.91 
Adjust Factor B (GRG) -0.37 0.46 -0.13 
Adjust Factor B (GA) -0.30 0.55 -0.32 

Table 17. Comparison of optimization methods (6.50 mm diameter). 

 Customers 1 Customers 2 Customers 3 

 
Tensile 

strength (MPa) 

Hardness 

(HB) 

Tensile 

strength (MPa) 

Hardness 

(HB) 

Tensile 

strength (MPa) 

Hardnes

s (HB) 

Error % (Simulated Annealing)- Scilab 0.00 % 0.00 % 0.17 % 0.00 % 0.05 % 0.19 % 
Error % (GRG)- Solver 0.00 % 0.00 % 0.17 % 0.00 % 1.75 % 0.00 % 
Error % (GA)-CrystalBall 0.11 % 0.00 % 0.00 % 0.00 % 1.06 % 0.00 % 
Error Medium (%) (Simulated Annealing) 0.00 % 0.09 % 0.12 % 
Error Medium (%) (GRG) 0.00 % 0.09% 0.87 % 
Error Medium (%) (GA) 0.05 % 0.00 % 0.53 % 

Error Medium (%)of the three customers 
(Simulated Annealing) (GRG) (GA) 
0.07 % 0.32 % 0.19 % 
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Figure 6. Comparison of optimization methods Errors (diameter 2.00 mm). 

You can see that the errors presented to the optimization of 
models regarding diameter 2.00 mm to all specifications of 
customers and through all optimization methods applied, 
were small and in any of them has reached the maximum 
value of 3 percent, which is considered a low index for this 
process (in Table 15). However, analyzing the average errors 
for each method of optimization in Figure 6, it can be 
concluded that the most effective method of optimization for 
the diameter 2.00 mm was the Simulated Annealing heuristic, 
which obtained an average error of 0.32 percent. 

The same procedure of comparison of optimization 
methods was conducted to 6.50 mm diameter and the results 
were similar. In table 16 are presented the results of the 
simulations for the optimization of power check multiple 
responses through these methods. 

 

Figure 7. Comparison of optimization methods (diameter 6.50 mm). 

Analysing the results contained in the table 17 for 
optimization of models relating 6.50 mm diameter, it is found 
that the errors were still minors and in none of them this error 
reached the value of 1 between the target value and the value 
achieved showing the effectiveness of these methods of 
optimization for the quadratic modeling of this process. 
However, analyzing the average errors for each method of 
optimization (Figure 7), it can be concluded that the most 
effective method of optimization for the 6.50 mm diameter 
was the Simulated Annealing heuristic which we got error 
average of 0.07 percent. 

6. Conclusion 

It was concluded through experimental analyses all factors 

(speed, temperature and concentration of the polymer) are 
influential in the process of hardening and tempering in steel 
drawn wires SAE 9254 and that these factors interact with 
each other, significantly, being the lead temperature factor of 
greatest impact on increasing or reducing the mechanical 
values obtained. 

It was observed that the best way of modeling this process 
is by quadratic modeling, by response surface Methodology 
because this provided a stable model and modelling able to 
obtain predictions ranging within specifications. As well as, 
understand that the best optimization for that modeling was 
by Meta-heuristics Simulated Annealing. However, the 
Generalized Reduced Gradient methods (GRG) and Genetic 
Algorithm (GA) achieved excellent results for the quadratic 
modeling and can also be used if necessary.  

Taking into consideration that all methods tested for 
quadratic modeling optimization achieved good performance 
then the justification of the choice of Meta-heuristics 
Simulated Annealing was at the lowest average index error 
and also for ease of modification of the Scilab Software 
simulation programming because with only the change of the 
"line" regarding programming specifications a new 
simulation can be performed. 

The implementation of this process modeling from 
simulations and the use of optimization methods studied can 
mean the automation of tempering furnaces, causing potential 
productivity gains, the reduction of waiting for laboratory 
results, less sampling for checks and shorter stops in 
furnaces. 

It was concluded that the statistical and optimization 
methods studied in academic environment often employed 
only on a small scale in research laboratories in universities 
or in simulators they apply perfectly inside an industrial 
environment solving complex problems and being of great 
value for future innovations in industries. 

Complete through the experience gained by the researcher 
who carried out this project, the experimental implementation 
in industrial environment requires a lot of care, which are of 
extreme importance to the proposed results are attained with 
efficiency and, in this case, this planning was carried out with 
two years in advance so that there were no errors during the 
trial and analysis of data. 

Planning before all the experimental phase was very strict, 
addressing in detail the economic aspects, such as: 
investments needed for the purchase of raw material (drawn 
steel wire), stopping the production process for the execution 
of the experiments (which represents shifts without 
production), maintenance of furnaces, tempering and 
measuring equipment to prevent failures during the trial, 
direct involvement of the Department of production planning 
for the correct Organization of the availability of inputs used 
in experiments (polymer, lead liquid to tempering, 
antioxidant, etc). 

In this project, other costs were also very significant, such 
as: electrical energy, for heating phases of tempering furnaces 
use electricity for its operation (and energy costs are 
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relatively high), use of the physical laboratory for mechanical 
tests (involving all the equipment and methods for 
investigation of results), high costs to employees for the 
execution of experiments and for carrying out the laboratory 
tests, logistics costs of inputs and the finished product to the 
appropriate places and also with the wages of a researcher 
who planned the whole experimental sequence and analyzed 
the data. 

It was concluded that the statistical and optimization 
methods studied in academic environment often employed 
only on a small scale, research laboratories in universities, 
simulators eou apply perfectly in an industrial environment, 
solving complex problems and being of great value for future 
innovations in industries. However, the Organization in an 
industrial environment requires a lot of work in the planning 
phase and choice of appropriate methods that will be 
employed during and after the trial, because a mistake could 
mean the impossibility of realization of the project definitely, 
as are employed high financial resources in all stages of 
completion and it affects directly to the departments 
involved, because these must interact from planning and 
execution until data analysis. 
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