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Abstract: The performance of four discriminant analysis procedures for the classification of observations from unknown 

populations was examined by Monte Carlo methods. The procedures examined were the Fisher Linear discriminant function, the 

quadratic discriminant function, a polynomial discriminant function and A-B linear procedure designed for use in situations 

where covariance matrices are equal. Each procedure was observed under conditions of equal sample sizes, equal covariance 

matrices, and in conditions where the sample was drawn from populations that have a multivariate normal distribution. When the 

population covariance matrices were equal, or not greatly different, the quadratic discriminant function performed similarly or 

marginally the same like Linear procedures. In all cases the polynomial discriminate function demonstrated the poorest, linear 

discriminant function performed much better than the other procedures. All of the procedures were greatly affected by 

non-normality and tended to make many more errors in the classification of one group than the other, suggesting that data be 

standardized when non-normality is suspected. 

Keywords: Apparent Error Rates, Fisher’s Linear Discriminant, Quadratic Discriminant Function,  

A-B Discriminant Function, Polynomial Discriminant Function 

 

1. Introduction 

Many practical problems can be reduced to the assignment 

of various objects to different classes. For example in the case 

of the medical diagnosis, it is a question of recognizing the 

pathology of a given patient, the purposes correspond to the 

patients and the classes with various pathologies. In the 

economy field, a bank wants to know if a customer applying 

for a loan is a good or bad customer while being based on 

several variables like the age, the profession, former fidelity, 

the required credit. A review of these appears in [16]. In 

assignment problems in biomedical research, one or more of 

these techniques is often used. The assumptions underlying 

these techniques are not always evident to the user, nor are the 

consequences of their violation. The assumptions include 

multivariate normality, common covariance matrices and 

correct assignment of the initial groups [17], [18] and [19]. 

While a good deal is known in the two group situation, the 

robustness of these procedures under non-optimal conditions 

for binary variable is essentially unknown. The purpose of this 

paper is to compare and delineate these problems 

systematically and to suggest useful areas of research. 

The problem of classifying an individual into one of two 

concerned groups (called populations), arises in many areas, 

typically in anthropology, education, psychology, medical 

diagnosis, biology, engineering, etc. An anthropometrician 

may wish to identify ancient human remains in two different 

racial groups or in two different time periods by measuring 

certain skull characters [2]. A plant breeder discriminates a 

desired from an undesirable species by observing some 

heritable characters [14]. A company hires or rejects an 

applicant frequently based on a certain measurement. 

Similarly a college accepts or denies a prospective student 

usually based on his entrance examination scores. In a hospital, 

a patient maybe diagnosed and classified into a certain 

potential disease group by a battery of tests, usually it is 

assumed that there are two populations, say 
1π  and 

2π , the 

individual to be classified comes from either 
1π or 

2π ; 

furthermore, it is assumed that from previous experiments or 

records we have in our possession the characteristic 

measurements of 
1

n  individuals who were known to belong 

to 
1π , and of 

2
n  individuals who were known to belong to 

2π . Based on the available data obtained from previous 
1

n +
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2
n  individuals and the corresponding characteristic 

measurements of a new individual, we would like to classify 

the new individual into either 1π or 2π  by using certain 

criterion. The case of more than two populations will not be 

considered in this paper. 

In this inferential setting, the researcher can commit one of 

the following errors. An object from 1π  may be 

misclassified into 2π likewise, an object from 2π  may be 

misclassified into 1π . If misclassification occurs a loss 

would be suffered. Let ( )C i j  be the cost of misclassifying 

an object jπ , into iπ . For the two population setting, we have 

that (2 1)C  means cost of misclassifying an object into 2π  

given that it is from 1π . 

(1 2)C is the cost of misclassifying an object into 1π  

given that it is from 2π . The relative magnitude of the loss 

( , )L j i  = ( )C i j  depends on the case in question: for 

example failure to detect an early cancer in a patient is costlier 

than stating that a patient has cancer and discovering 

otherwise. 

2. Classification Procedures 

2.1. The Fisher’s Linear Discriminat Function (FLDF 

Rules) 

The linear discriminant function for discrete variables is 

given by 

)121212
ˆˆ()ˆˆ(

2

1
)ˆˆ()(ˆ

kk

kj

iik

kj

ii
ki

ppsppxsppxL +−ΣΣ−−= ΣΣ (1) 

Where kjs are the element of the inverse of the pooled 

sample covariance matrix 
1i

p and 
2̂ j

p are the elements of the 

sample means in 1π  and 2π  respectively. The 

classification rule obtained using this estimation is classify an 

item with response pattern X into π 

If 0ˆˆ()ˆˆ(
2

1
)ˆˆ( )121212 >+−ΣΣ−−ΣΣ kk

kj

iik

kj

ii
ki

ppsppxspp and to 2π

or otherwise (2) 

2.2. The Quadratic Discriminant Function 

When an observation vector x, is drawn from a MVN 

distribution with mean vector µI and covariance matrix ΣI, the 

MVN density function f (x), can be expressed as: 

[ ])()(exp)2()(
1'

2
12

1
2

iiiii xxxf
k µµπ −Σ−−Σ= −−−

(3) 

In the case of two groups an individual is classified as 

belonging to population 1 if 
1 1 2 2
( )/ ( ) 1,p f x p f x >  that is, if 

1 2 2 1
( ) / ( ) .f x f x p p>  Alternatively, an individual is 

assigned to population 2 if ,1)(/)( 2211 ≤xfpxfp that is, if 

1221 )()( ppxfxf ≤ .Where 
1

p and 
2

p  are the 

proportions of individuals from the two groups in the 

populations [7].When the two groups have a common 

covariance matrix, Σ , and mean vectors 1µ  and 2µ  the 

above rule becomes 

[ ])2(
1'

)2(2
1)1(

1'
)1(2

1exp)(2)(1 uxuxuxuxxfxf −−Σ−+−−Σ−−=            (4) 

= exp [ ])21(
1'

)21(2
1)21(

1'
uuuuuux −−Σ+−−−Σ  

And taking logarithms, the rule is to assign an individual to population 1 if 

[ ] )
12

()21(
1'

)21(2
1)()](

2
)(

1
[)( ppInuuuuxxfxfInxtD >−−Σ+−==         (5) 

And to the group 2 otherwise. The sample analogue of the above equation is 

1'1
1 2 1 22( ) [ ( )] ( )

s
D x x x x s x x

−

= − + −                                (6) 

And the coefficients 






 −

−
−

−

−

−
21

1
xxs  are seen to be identical to Fisher’s result for the LDF. 

When covariance matrices are unequal and cannot be pooled, but the population distributions are multivariate normal, the 

classification rule has the form
 

1 2 2 1
( ) [ ( ) ( )] [ ]

t
Q x in f x f x In p p= >                                 (7) 
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In these cases, the discriminant function is quadratic, since the term 
2

2
1

1
−Σ−−Σ  is still present [7]. From the above with 1u ,

2u , 1ΣΣ  and 2Σ  estimated bytheir respective mean vectors and covariance matrices 1 2,x x , 
1
s and 

2
s  the sample analogue 

of ( )
t

Q x is 

' 1 ' 1
1 1 2 21 2 1 2 2 1

( ) ( ) ( ) ( ) ( ) ( ) 2 ( )
s

Q x In s s x x s x x x x S x x In p p− −
= − − − + − − >            (9) 

In each of the conditions of the present study the 

proportions of each group is the population were assumed to 

be equal to each other and not proportional to sample size 

since the true proportion are not usually know in most areas 

of psychological research. When population proportions are 

equal the quadratic decision rule is the to classify an 

individual into population 1 if ( )
s

Q x > 0 or into population 2 

if 0)( ≤xsQ since
2 1
( ) 0In p p =  

2.3. The A-B Discriminant Function 

[1] proposed a Linear discriminant function of the form 
'
,b x  with 

'

1
[ ,. . . ., ]

p
b b b= chosen so that x  is classified 

as from population 1 if 
'
,b x > c and from population 2 if 

,,
'

cxb ≤ where c is also suitably determined. With this 

procedure, the misclassification probabilities are: 

,)
1

(1)1
'

(.Pr
1

ypopxcxbobP Φ−=≤= ε  And 

'
Pr . ( 2) 1 ( ),2 2P ob b x c x pop yε Φ= > = −  (10) 

Where Φ is the cumulative distribution function of a 

standard normal variable. The 
1

y  and 
2

y  are determined 

by 

2
1

)
1

'
(

1
'

1

bb

ubc
y

Σ

−
=  and 

2
1

)
2

'
(

2
'

2

bb

ubc
y

Σ

−
=     (11) 

Where 1u  and 2u  are the means of population 1 and 

population 2, Now 
1

y can be expressed as” 

 ,

2
1

)1
'

(

2
1

)2
'

(2)21(
'

1

bb

bbyuub
y

Σ

Σ−−−
=     (12) 

The b  is then chosen which maximizes 
1

y  for a given

2
y . By differentiating 

1
y  withrespectto b . It can be show 

that the solution consists of solving the following equations 

in b  and a scalar t: 

),21(]2)1(1[ uubtt −=Σ−+Σ and 

2
1

)2
'

()1(2 bbty Σ−=            (13) 

The solution to these equations is obtained by a trial – and- 

error procedure and c is then obtained by: 

bbtubbbtubc 2

'

2

''

1

'

1

'
)1( Σ−−=Σ+=  (14) 

Now y1 can be obtained from 

2
1

)1
'

(1 bbty Σ=             (15) 

[1] also considered an alternative method when the two 

misclassification probability are equal, i.e. 
1 2

y y= . In this 

case, b  and tare found from: 

2
'2

)1(
1

'22
2

2
1

0 Σ−−Σ=−= btbbtyy  

]2
2

)1(1
2

[
' Σ−−Σ= ttb .    (16) 

The determination of the value of t was accomplished by 

using the result due to [3], in which 
21 ΣΣ and were 

expressed as: 

ΛΝΝ=Σ '
1 , and 

ΝΝ=Σ '
2

,                (17) 

Where =Λ diag pandp λλλλλλ ,...,2,1,...,2,1[ are 

the roots of the determinantalequation
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2
)

2
1(.0

21
ttif −=∨=Σ−Σ λ , then ∨ must lie 

between the minimum and maximum roots of the above 

characteristic equation. 

In the present study the optimal value of t was 

approximated by evaluating t for ∨  equal to the minimum 

and maximum characteristic roots and computing the vector 

b in each case from the equation (13). The value of c was 

then calculated from Equation (14). And the observation 

population 1 if 
'

b x c> or population 2 if 
'

b x c< . In 

this manner, the interval ]max,[min, 11 λλ was 

successively bisected, and for reach value of t, the proportion 

of correct classification calculated. The interval was bisected 

a maximum of five times or until classification did not 

improve. The resultant discriminant function was then 

applied to the cross validation sample, and the proportion of 

correct classifications was calculated. 

2.4. The Polynomial Discriminant Function 

In this case, the discriminant function was constructed by 

estimating the probability density function for each sample 

directly from the observed data, as described in [15]. This 

was accomplished by expanding the estimate 

ˆ( ) , ( )p x of p x  in in a series which represents the 

probability density function of the ith  population, 

1
( ) ).p x pop Tou and Gonzalez show that if it is required that 

the estimate of the probability density function minimize a 

mean –square error function defined as: 

,
2

])(ˆ)([)( xdxxpxwxR Ρ−∫=      (18) 

Where w ( )x is a waiting function, then ( )p x may be 

expanded in the series 

)(
1

)(ˆ xjjc
m

j
x Φ

=
Σ=Ρ            (19) 

Where the 
j

c  are coefficient to be determined, and the

1
})({ mxjΦ are a set of specified basis functions. 

A set of univariate basis functions associated with the 

normal distribution from which multivariate basis functions 

can be obtained, are Hermite polynomials, ( ) ,
n

xΗ  

generated by the recursive relation 

1,0)(12)(2)(1 ≥Κ=−ΚΚΗ+Η−+ΚΗ xx
k

xx  (20) 

Where 
0 1
( ) 1 ( ) 2x and x xΗ = Η = . The first few 

Hermite polynomials are:
0
( ) 1xΗ = : 

1

2

2

3

3

4 2

4

( ) 2 ;

( ) 4 2;

( ) 8 12 ;

( ) 16 48 12.

Η =

Η = −

Η = −

Η = − +

x x

x x

x x x

x x x

        (21) 

Substituting the expansion of ( )xΡ  into the mean-square 

error function yields 

,
2

)](
1

)([)( xdxjjc
m

j
xxwXR Φ

=
Σ−Ρ∫=   (22) 

And minimizing R with respect to the coefficient,

mCR ,...,1,0 =Κ=Κ∂∂  yields. 

.)()()()()()(
1

xdxxxwxdxxxwc kxjxj

m

j
ΡΦ∫=ΦΦ∫Σ Κ=

 (23) 

The right side of this equation is the definition of the 

expected value of the function ( ) ( )w x x
Κ
Φ  and may be 

approximated from the sample average 

)()(
1

)()()( 1
11

i

n

i
jxj

m

j
xxwxdxxxwc Κ=Κ=

ΦΣ
Ν

=ΦΦ∫Σ (24) 

Since the basic functions })({ xjΦ are orthonormal 

and are chosen orthogonal with respect to the weighting 

function ( )w x , the coefficients may be determined from 

mix
n

i
c ,...,2,1,)(

1

1
=ΚΚΦ

=
Σ

Ν
=Κ    (25) 

And the resultant density may be obtained from 

)(
1

)(ˆ xjjc
m

j
x Φ

=
Σ=Ρ ,           (26) 

By using Bayes’ formula 

)(

)1()1(
)

1
(

x

PopxPop
xPop

Ρ

ΡΡ
=Ρ  (27) 

Where ( )
i

PopΡ  is the probability of the ith  population, 

the discriminant function for this problem are then given by: 

),1()1(ˆ)(1 PopPopxxd ΡΡ= and     (28) 

),2()2(ˆ)(2 PopPopxxd ΡΡ=        (29) 

And if ),1(PopΡ )2(PopΡ= , the decision boundary 

is given by 
1 2
( ) ( ) 0d x d x− = . 

In the present study a two-dimensional set of orthogonal 
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function was obtained by forming pairwise combinations of 

the one-dimensional functions. Six terms were used to 

appreciate the density function and were constructed as 

follows: 

;1)2(0)1(0)2,1(1)(1 =ΗΗ=Φ=Φ xxxxx  

;12)2(0)1(1)2,1(2)(2 xxxxxx =ΗΗ=Φ=Φ  

;22)2(1)1(0)2,1(3)(3 xxxxxx =ΗΗ=Φ=Φ  

2121112144 4)()(),()( xxxxxxx =ΗΗ=Φ=Φ   (30) 

;2
2
14)2(0)1(2)2,1(5)(5 −=ΗΗ=Φ=Φ xxxxxx  

;2
2
24)2(2)1(0)2,1(6)(6 −=ΗΗ=Φ=Φ xxxxxx  

The set of original functions for the six-variable case was 

constructed in the same manner as for the bivariate case by 

forming the product of one dimensional Hermite 

polynomials. In order for the estimates of the density 

functions to be polynomials of degree two for all the 

variables, 28 terms were constructed as follow: 

;1)
6

(
0

...)
2

(
0

)
1

(
0

)
6

,...,
1

(
1

=ΗΗΗ=Φ xxxxx  

;12)6(0...)2(0)1(1)6,...,1(2 xxxxxx =ΗΗΗ=Φ  

.

.

.

 

;
6

2)
6

(
1

...)
2

(
0

)
1

(
0

)
6

,...,
1

(7 xxxxxx =ΗΗΗ=Φ  

;214)6(0...3(0)2(1)1(1)6,...,1(8 xxxxxxxx =ΗΗΗΗ=Φ  

.

.

.

 

;654)6(1)5(1)4(0...)1(0)6,...,1(22 xxxxxxxx =ΗΗΗΗ=Φ  

;2
2
14)6(0...)2(0)1(2)6,...,1(23 −=ΗΗΗ=Φ xxxxxx  

.

.

.

 

2( , . . . , ) ( ) ( ) . . . ( ) ( ) 4 2;50 0 028 1 6 1 2 2 6 6x x x x x x xΦ Η Η Η Η= = − (31) 

The vector of coefficients c, was then computes for each 

sample from equation (25), and the polynomial estimates of 

the density functions were constructed as in Equation (26). 

The two estimates of the density functions were the 

subtracted to form the polynomial discriminant function, 

which was then applied to the observations in each of the 

original and cross-validation samples. Finally, the proportion 

of correct classification was calculated. 

 

2.5. Testing Adequacy of Discriminant Coefficient 

Consider the discriminant problems between two 

multinomial populations with mean 21, µµ  and common 

matrixΣ. The coefficient of the MLD discriminant function 

��  are given by 21
1 µµδδα −=−Σ= where  in 

practice of course the parameters are estimated by 

2

,})1()1{(,

21

2211

1

21

−+=
+−= −

nnmwhere

snsnmSandxx .   (32) 

Letting, the coefficient of sample MLDF given by 
1a MW d−=  

A test of hypothesis H0: 1
0α =  using the sample 

Mahalanobis distance 
2 1 1 2 1

1 11 1p t
D MdW d and D MdW d−
= =  

has been proposed by [12] this test statistics uses the statistic: 

{ }22
(

221
pDcmtDpDC

kp

pm
+−

−

+









    (33) 

Where
1 22

n n
c

n
= , under the null hypothesis has 

, 1
p k

F m p
−

− + distribution and we reject H0 for large value 

of this statistics. 

2.6. Evaluation of Classification Functions 

One important way of judging the performance of any 

classification procedures is to calculate the errors rates or 

misclassification probability [13]. When the forms of parent 

populations are known completely, misclassification 

probabilities can be calculated with relative ease. Because 

parent populations are rarely know, we shall concentrate on 

the error rates associated with the sample classification 

functions. Once this classification function is constructed a 

measure of its performance in future sample is of interest. 

The total probability of misclassification (TPM) is given as: 

dxfRPdxfRPTPM
2

2
21

,
1

1
∫+∫=     (34) 

The smallest value of this quantity by a judicious choice of 

1 2
R and R  is calculated the optimum error rate (OFR) 

OFR = Minimum TPM 

2.7. Probability of Misclassification 

In constructing a procedure of classification, it is desires to 

minimize on the average the bad effects of misclassification 

[10], [13] and [11]. Suppose we have an item with response 

pattern x from either 
21 ππ or . We think of an item as a 

point in a r-dimensional space. We partition the space R into 

regions 
21 RandR  which are mutually exclusive. If the 
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item falls in 
1

R , we classify it as coming from 1π  and if it 

falls in 
2

R we classify it as coming from 2π .In following a 

given classification procedure, the researcher can make two 

kinds of errors in classification. If the item is actually from 

1π  the researcher can classify it as coming from 2π .Also 

the researcher can classify an item from 2π  as coming from

1π . We need to know the relative undesirability of these two 

kinds of errors in classification. Let the prior probability that 

an observation comes from 1π be 
1

q , and from 1π  be 

2
q .Let the probability mass function of 1π  be 

1
( )f x  and 

that of 2π be 
1
( )f x . Let the regions of classifying into 1π

be
1

R .Then the probability of correctly classifying an 

observation that is actually from 
1
π  into 

1
π is;  

)(
1

2

)11( xf

R

p ∑=
           (35) 

Similarly, the probability of correctly classifying an 

observation from 
1
π is 

)(
1

2

)12( xf

R

p ∑=
            (36) 

Similarly, the probability of correctly classifying an 

observation from 
2π  into 

2π  is
)(1

2

)22( xf

R

p ∑=
and the 

probability is misclassifying an item from 
1π  into 

2π  is 

)(
1

2

)21( xf

R

p ∑=
             (37) 

The total probability of misclassification using the rule is 

)(1

1

2)(1

2

1)( xf
R

qxf

R

qRTPMC Σ+∑=
     (38) 

In order to determine the performance of a classification 

rule R in the classification of future items, we compute the 

total probability of misclassification know as the error rate. 

[7] defined the following types of error rates. 

i. Error rate for the optimum classification rule .opt
R . 

When the parameter of the distributions are known the errors 

is 
)(

1

1

2
)(

1

2

1
)( xf

R
qxf

R

qRTPMC Σ+∑=
 which is 

optimum for this distribution. 

ii. Actual error rate: The error rate for the classification 

rule as it will perform in future samples 

iii. Expected actual error rate: The expected error for 

classification rules based on sample size c from 1π and 2π

from 2π . 

iv. The plug-in estimate of error rate obtained by using the 

estimated parameters for 1π and 2π . 

v. The apparent error rate: This is defined as the fraction of 

items in the initials sample which is misclassified by the 

classification rule. 

Table 1. Confusion matrix of Apparent error rate. 

 
1
π  2

π  
 

1
π  11

n  12
n  1

n  

2π  11
n  22

n  11
n  

 
1
π  2

π  n  

The table above is called the confusion matrix and the 

apparent error rate is given by 

12 21ˆ( )
n n

P mc
n

+
=           (39) 

[6] called the second error rate the actual error rate and the 

third expected actual error rate. Hills showed that the actual 

error rate is greater than the optimum error rate and it in turns, 

is greater than the expectation of the plug –in estimate of the 

error rate. [9] proved a similar inequality. An algebraic 

expression for the extract bias of the apparent error rate of the 

sample multinomial discriminant rule was obtained by [5], 

who tabulated it under various combinations of the sample 

size 
1n  and 

2
n the number of multinomial cells and the cell 

probabilities. Their result demonstrated that the bound 

described above is generally loose. 

3. The Simulation Experiments and 

Results 

The four classification procedures are evaluated at each of 

the 118 configurations of n, r and d. The 118 configurations 

of n, r and d are all possible combinations of n = 40, 60, 80, 

100, 200, r = 3, 4, 5 and d = 0.1, 0.2, 0.3, and 0.4. A 

simulation experiment which generates the data and 

evaluates the procedures is now described. 

(i) A training data set of size n is generated via R-program 

where 21
nn =  observations are sampled from 1π  which 

has multivariate Bernoulli distribution with input parameter 

1
p  and 22

nn =  observations sampled from 1π , which is 

multivariate Bernoulli with input parameter 
2
, 1...p j r= . 

These samples are used to construct the rule for each 

procedure and estimate the probability of misclassification 

for each procedure is obtained by the plug-in rule or the 

confusion matrix in the sense of the full multinomial. 

(ii) The likelihood ratios are used to define classification 

rules. The plug-in estimates of error rates are determined for 
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each of the classification rules. 

(iii) Step (i) and (ii) are repeated 1000 times and the mean 

plug-in error and variances for the 1000 trials are recorded. 

The method of estimation used here is called the 

resubstitution method. 

The following table contains a display of one of the results 

obtained 

Table 2(a). Mean apparent error rates. 

Sample sizes A-B Polynomial LDA Quadratic 

40 0.157125 0.110074 0.110787 0.204512 

60 0.161900 0.127855 0.127958 0.207491 

100 0.163290 0.143526 0.143680 0.209940 

140 0.162967 0.149837 0.150407 0.209826 

200 0.162565 0.156384 0.155280 0.211542 

Table 2(b). Actual Error rates. 

Sample sizes A-B Polynomial LDA Quadratic 

40 0.040271 0.052706 0.037112 0.041686 

60 0.032751 0.042691 0.031487 0.033007 

100 0.027786 0.037015 0.026152 0.027125 

140 0.022462 0.031623 0.022112 0.024082 

200 0.017981 0.026657 0.018218 0.019071 

Tables 2(a) and (b) present the mean apparent error rates 

and standard deviation (actual error rates) for classification 

rules under different parameter values. The mean apparent 

error rates increases with the increase in sample sizes and 

actual error rate decreases with the increase in sample sizes. 

From the analysis, linear discriminant function is ranked first, 

followed by A-B Discriminant, Quadratic function and 

Polynomial discriminant function came last. 

Table 3. Performance of classification rules by rank. 

Classification Rule Performance/rank 

Linear Discriminant 1 

A-B  Discriminant 2 

Quadratic function 3 

Polynomial Discriminant function 4 

4. Discussion and Conclusion 

The results in table 3.1b indicate that, in general, with 

samples drawn from MVN populations with equal 

covariance matrices, the fisher LDF, the A-B procedure, the 

Quadratic Discriminant function (QDF) and Polynomial 

discriminant function (PDF) performed similarly, but as the 

degree of heterogeneity increases (not shown in the table), 

the QDF outperformed the other procedures. These results 

are consistent with those of [8] and [4], since it can be 

observed that the fisher LDF performed well, with respect to 

the QDF, for mild departures from homogeneity of 

covariance matrices, but as the degree of heterogeneity 

increased, the QDF outperformed the fisher LDF, A-B 

procedure and Polynomial discriminant function. 

However, we obtained two major results from this study. 

Firstly, using the simulation experiments we ranked the 

procedures as follows: Linear Discriminant Function, A-B 

Discriminant function Quadratic and Polynomial 

Discriminant function. The best method was the linear 

discriminant procedure. Secondly, we concluded that it is 

better to increase the number of variables because accuracy 

increases with increasing number of variables. Moreover, our 

study showed that the linear discriminant function is more 

flexible in such a way to allow the analyst to incorporate 

some priori information in the models. Nevertheless, this 

does not exclude the use of other statistical techniques once 

the required hypotheses are satisfied. 
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