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Abstract: Three problems often encountered when bilateral interaction data are analyzed by means of the log-normal gravity 

model: the bias created by the logarithmic transformation, the failure of the homoscedasticity assumption and the treatment of 

zero valued flows. When the interaction are count data type that takes non-negative integer values, to overcome these problems 

the literature suggests to use a Poisson gravity model instead of log-normal model. In this paper, using a real interaction 

phenomenon a comparative analysis of the two models is carried out. The most important results obtained highlights that if the 

phenomenon is correctly specified, the two specification of the gravity model have a very similar behaviour. 
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1. Introduction 

The analysis of interactions (or flows) phenomena of any 

type is an area of particular interest. Its aim is to describe, 

explain and predict the interactions that arise between the 

units of a collective. 

So many models have been developed for this purpose in 

the literature that it is impossible to list them here. However, 

put briefly, it is possible to cluster them into two classic 

categories: stochastic models and econometric models. 

The former are probabilistic models of Markov type, and 

they aim to highlight the fundamental constants of the 

interactions (see for example [1]). The latter are all those 

models characterized by a number of variables (covariates) 

considered explanatory, and they try to explain and predict 

the interactions. 

Belonging in the latter group is the gravity model, which 

is considered one of the most important models for the 

analysis of interaction phenomena, and to which the 

literature has devoted close interest especially from an 

empirical point of view (as in: [2], [3], [4], [5], [6], [7], [8], 

[9], [10] and[11]). 

The idea underlying this model is that the interaction 

which arises between two units of a collective, in 

conformity with Newton’s gravitational law, is directly 

proportional to the masses of those units and inversely 

proportional to the distance between them. In its classic 

form, the model is set out as follows: 

fij=β
0

p
i

β1p
j

β2

d
ij

β3
ε��                                   (1) 

Where fij is the interaction whose origin is the i-th unit 

whose destination is the j-th unit; pi and pj represent the 

masses of the two units; dij is the distance between them; and 

εij is the residual variable. Finally, β0 is a constant of 

proportionality which, together with the parameters β1, β2 

and β3, is subject to estimation. 

Considering the logarithm of (1) a double log-linear model 

(henceforth ‘log-normal model’) is easily estimated with the 

Ordinary Least Squares method: 

lg(fij)=lg(β0)+β1lg(pi)+β2lg(pj)+β3lg(dij)+lg(εij)        (2) 

The literature has highlighted that the log-normal model (2) 

based on the classic hypothesis has a series of potential 

drawbacks (see for example [12] and [13]). In particular: 

� The use of the logarithmic transformation produces 

estimates of the logarithm of the covariates, not of the 

covariates themselves. The antilogarithms are biased 

estimates (because of Jensen’s inequality). A 

consequence of this is the underprediction of large 

flows. 

� Model (2) assumes the homoscedasticity of the residual 

variable and, as in [12],the variance of lg(fij)is identical 

for all ij pairs. Thus, an observed flow of 2in relation to 

an estimate of 1is as likely as an observed flow of 200 
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in relation to an estimate of 100. This property, 

homoscedasticity, is implausible for data sets where 

there is a wide variation in the size of interaction flows. 

The first consequence is that the standard errors of the 

least-squares estimates of the regression parameters are 

incorrect, and the confidence intervals and tests of 

hypotheses that use them are invalid. Since standard 

computer software packages use these formulas, they 

are inappropriate when heteroscedasticity is present. 

The second consequence is that the OLS estimators of 

the parameters of the regression model lose some of 

their desirable statistical properties. They remain 

unbiased but no longer have minimum variances even if 

the correct formulas are used to estimate these 

variances. This is so because it can be shown that the 

estimators with minimum variance are the generalized, 

not the ordinary, least-squares estimators. Generalized 

least-squares (GLS) is usually applied by an appropriate 

transformation of the regression model that makes the 

resulting disturbances homoscedastic ([14]); 

� When the flows are zeros, the logarithmic 

transformation cannot be computed. To avoid this 

problem, a small positive constant α∈(0; 1] is added to 

all observations. However, as in [12], when there are 

many zero flows, the choice of this constant has a 

considerable impact on the parameters of the model and 

on its explanatory power. 

� If the residual variable of model (2) is normal 

distributed, also the lg(fij) is normal and fij is log-normal 

distributed. This is unlikely because the flows are 

nonnegative integer values. 

When the dependent variable is of a count data type that 

takes non-negative integer values – for example the number 

of people that move from one place to another – to avoid 

these pitfalls the literature suggests using a Poisson 

regression model. 

This model (see [15]) is based on the hypothesis that if the 

probability of interaction between two generic units is small 

and constant, then it is possible to assume that fij is a 

realization of the variable Fij with Poisson probability 

distribution and mean λij. Thus the probability that Fij=fij is: 

Pr(F
ij
=fij)=

e
-λijλ

ij

���

���!
                                    (3) 

Moreover, the parameter λij is logarithmically linked with 

the covariates: 

λij=e
β0+β1lg(pi)+β2lg(pj)-β3lg(dij)                          (4) 

If on the one hand, the Poisson gravity model does not 

present the drawbacks previously mentioned, on the other 

also this model has some pitfalls. The most important of 

them is that the model is characterized by one parameter 

which represents the mean and variance distribution. 

When real data are used the variance is often greater than 

the mean (over-dispersion) and the Poisson regression may 

not be appropriate for count data. 

Another problem with Poisson regression is the excess of 

zeros, i.e. real data have more zeros than a Poisson regression 

would predict. 

Referring for the details to the numerous econometric 

manuals existing in the literature, the aim of this paper is to 

analyzethese two models by means of a real phenomenon in 

order to identify theirshared characteristics and those specific 

to each of them. 

In particular,the paper will focus on the problem of zero 

values and that of homoscedasticity of the residual variable 

in the normal gravity model. The main result obtained is that 

the normal gravity model is still a reference scheme of 

undoubted interest for describing and interpret the 

interactions phenomena and, contrary to several claims in the 

literature, the benefits of using the Poisson regression are 

minor and only theoretical. 

The paper is organized as follows: section 2 describes the 

data used and the results obtained, section 3 concludes. 

All the analysis were performed using the SAS System 

software ver. 9.3. 

2. Data and Results 

To compare the log-normal gravity and the Poisson gravity 

models the analysis reported by this paper considered as 

interaction phenomena the migratory flows of resident 

foreigners for the year 1995 among the Italian regions (see 

Figure 1 of the appendix) corresponding to the second level 

of the Nomenclature of Territorial Units for Statistics (NUTS 

2). 

We are aware that the data used are not really recent. 

However, this does not limit the goodness of the obtained 

results that are independent from the age of the data. 

Table 10 in the Appendix reports the data used for the 

inquiry. Excluding the movements within the Italian regions 

(i.e., fii for i=1,..,20) from the analysis, the following Table 1 

shows the frequency distribution of the observed flows: 

Table 1. Frequency distribution of the observed flows. 

Class interval Number of flows Frequency (%) 

0≤fij≤20 253 65.58 

20<fij≤50 52 13.68 

50<fij≤100 40 10.53 

fij>100 35 9.21 

Total 380 100 

As will be seen, in 1995, the mean size of flows of resident 

foreigners among the Italian regions was 33.9 and the 

variance was 3673.52. Furthermore, 65.58% of the flows did 

not exceed 20 movements and 9.21% were greater than 100. 

The largest flow was recorded from Lazio to Lombardia and 

involved 398 migrants. By contrast, 11.32% (43/380) of the 

flows were zeros. 

The distinctive features of the data set considered are that 

it includes a very large number of zero and small flows, so 

that it is particularly suited to the type of experimentation 

carried out in this paper. 

When real phenomena are analysed, the gravity model is 

usually extended in order to consider, besides the classic 
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determinant, other potential factors that may influence the 

phenomenon under investigation. 

Consequently, as reported by a large body of literature (see 

for example: [16], [17], [18], [19] and [20]), migratory 

phenomena are influenced not only by masses and distance 

but also by economic, social and demographic disparities 

among the territorial units considered. Hence, for the 

purposes of the analysis, it was decided to consider, for each 

Italian region, 18 variables (see the Appendix), in that they 

were deemed able to measure the principal aspects of the 

characteristics just mentioned. 

Preliminary examination of these indexes revealed the 

presence of correlations such to counsel against their direct 

use in the gravity regression model. Consequently, the 18 

indicators were synthesised by means of factor analysis. 

The results of this analysis are set out in Table13 of the 

appendix. They show that the factor structure identified has a 

considerable power of synthesis. The first two factors, 

considered on the basis of the usual criteria for factorial 

choice, can be immediately interpreted. 

The high and positive coefficients of correlation between 

the first factor and all the variables of an economic nature 

suggest identification of this factor as a complex index of the 

economic structure, while the close correlations of the second 

factor with the remaining indexes suggest its identification as 

a complex index of the demographic structure. 

For the purposes of the analysis, the following log-normal 

gravity model(5) was considered, where F1i, F1j are the first 

factor (economic factor) in the origin and the destination 

regions of flows, while F2i, F2j are the second factor 

(demographic factor) in the origin and the destination regions 

of flows. Finally, lg(β0) and βi(for i=1,…,7) are the 

parameters of the model. 

lg(fij)=lg(β0)+β1lg(pi)+β2lg(pj)-β3lg(dij)+β4F1i+β5F1j+β6F2i+β7F2j +lg(εij)                                       (5) 

In order to estimate the model parameters, the masses (pi 

and pj) were calculated as the geometric average of the 

population at the beginning and at the end of the year. The 

distances (dij) between the regions were instead calculated by 

considering the Euclidean distance between the demographic 

barycentres of each region. The pairs of co-ordinates 

identifying each regional demographic barycentre were 

determined by calculating the arithmetic average, weighted 

with the population, of the latitude and longitude of each 

provincial capital in the same region. 

Since some observed flows were zeros, as in[12], the 

following experimentation was conducted: a constant α 

taking values from 0.1 to 1 by 0.1 was added to all flows, and 

model (5) was fitted. 

The results of this analysis are shown in Table 2, which, as 

said above, does not consider the intra-region flows (i.e. the 

fii for i=1,..,20). 

Table 2. Results of the log-normal gravity model for various values of α. 

α values Intercept lg(pi) lg(pj) lg(dij) F1i F1j F2i F2j 

0.1 -28.83 1.06 1.16 -0.80 -0.05 0.70 -0.02 0.13 

 (<.0001) (<.0001) (<.0001) (<.0001) (0.715) (<.0001) (0.439) (0.055) 

0.2 -26.21 0.97 1.07 -0.74 -0.03 0.68 -0.03 0.12 

 (<.0001) (<.0001) (<.0001) (<.0001) (0.574) (<.0001) (0.504) (0.017) 

0.3 -24.64 0.91 1.02 -0.71 -0.01 0.67 -0.04 0.11 

 (<.0001) (<.0001) (<.0001) (<.0001) (0.810) (<.0001) (0.357) (0.017) 

0.4 -23.49 0.87 0.98 -0.69 0.00 0.65 -0.05 0.10 

 (<.0001) (<.0001) (<.0001) (<.0001) (0.994) (<.0001) (0.270) (0.018) 

0.5 -22.58 0.84 0.95 -0.67 0.01 0.64 -0.05 0.10 

 (<.0001) (<.0001) (<.0001) (<.0001) (0.833) (<.0001) (0.213) (0.020) 

0.6 -21.830 0.82 0.92 -0.65 0.02 0.63 -0.05 0.09 

 (<.0001) (<.0001) (<.0001) (<.0001) (0.702) (<.0001) (0.174) (0.021) 

0.7 -21.18 0.80 0.90 -0.64 0.02 0.63 -0.06 0.09 

 (<.0001) (<.0001) (<.0001) (<.0001) (0.596) (<.0001) (0.147) (0.023) 

0.8 -20.61 0.78 0.88 -0.62 0.02 0.62 -0.06 0.09 

 (<.0001) (<.0001) (<.0001) (<.0001) (0.509) (<.0001) (0.126) (0.025) 

0.9 -20.10 0.76 0.86 -0.61 0.03 0.61 -0.06 0.08 

 (<.0001) (<.0001) (<.0001) (<.0001) (0.438) (<.0001) (0.110) (0.027) 

1 -19.64 0.74 0.85 -0.60 0.03 0.60 -0.06 0.08 

 (<.0001) (<.0001) (<.0001) (<.0001) (0.379) (<.0001) (0.097) (0.029) 

Legend: p-values in parenthesis 

For various values of α, the estimates of the constant 

(intercept) and the parameters associated with the population 

size of the regions (lg(pi) and lg(pj)), as well as the parameter 

relative to the distance (lg(dij)), were always highly 

significant. The parameter sign of the latter variable was 

negative and consistent with expectations. 

The estimates of the parameters associated with the 

economic factor (F1i) in the regions of origin were always 

not significant. By contrast, in the destination regions of 

flows (F1j) they were always highly significant. 

According to the signs, this factor was a push determinant 

in the regions of origin and a pull determinant in the 
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destination regions of flows, while in the absolute values a 

predominant effect of the pull rather than push determinant 

was evident. 

Consideration of the demographic factor of the places of 

origin (F2i) and of the places of destination (F2j), found that 

the estimates of the associated parameters were non-

significant. 

Moreover (Table 3), the White and the Kolmogorov-

Smirnov tests showed that the regression residuals were, 

respectively, homoscedastic and normally distributed. Finally, 

the index of determination (corrected R
2
) was found to be 

very high (from 77% to 81%). 

Similarly the results in [12], also in this analysis if the 

constant α increases, the parameter estimates associated with 

the intercept, the masses of the regions, and the distance 

decrease. 

However, due to the inclusion of the two factors, the 

parameters estimates of the model, contrary to the results in 

[12], are much more stable, highlighting a quasi-constant 

effect of α. 

Even if we admit that an α-effect exists on the parameters 

of the model, this is a problem easily solved because the 

criteria shown in Table 3 indicated that α=1 should be 

assigned as the optimal value. 

This choice concurs with that of several studies which 

have recommended the use of the lowest possible non-zero 

count in this situation (see, for example, [21]). 

Table 3. Criteria for assessing goodness of fit of the log-normal gravity model for various values of α. 

α values 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

R2 0.77 0.79 0.80 0.80 0.81 0.81 0.81 0.81 0.81 0.81 

White test of heteroskedasticity 
71.82 62.41 55.11 50.88 47.92 45.74 44.02 42.58 41.32 40.20 

(0.00) (0.01) (0.02) (0.04) (0.07) (0.11) (0.14) (0.18) (0.21) (0.25) 

Kolmogorov test of normality 
0.07 0.06 0.06 0.05 0.05 0.05 0.04 0.04 0.04 0.04 

(<0.01) (<0.01) (<0.01) (0.03) (0.02) (0.06) (0.10) (0.10) (0.08) (0.11) 

Log likelihood -531.7 -483.8 -456.2 -437.0 -422.5 -410.9 -401.2 -392.9 -385.8 -379.4 

AIC 1081.4 985.6 930.4 982.1 863.0 839.8 820.4 803.9 789.5 776.8 

BIC 1116.9 1021.1 965.8 927.5 898.5 875.2 855.87 839.4 824.9 812.3 

Pearson Chi-Square 5525.6 5218.3 5146.1 5141.0 5162.6 5196.5 5235.9 5278.1 5321.0 5363.8 

Legend: p-values in parenthesis 

Table 4 shows a more detailed analysis of the goodness of 

fit of the log-linear model. In particular, it reports the cross 

tabulation between the fitted and the observed flows. As will 

be seen, about 57% (the sum of the frequencies on the main 

diagonal) of the predicted flows match the observed flows 

because they are classified in the same classes. By contrast, 

17% (frequencies above the main diagonal) are 

overestimated and 26% are underestimated. This latter 

situation is stronger for the flows greater than 40. 

Table 4. Cross-tabulation between the fitted Vs observed flows of the log-linear model. % frequencies. 

    Fitted flows    

Observed flows up to10 (10-20] (20-30] (30-40] (40-50] (50-100] (100-200] (200-300] Total 

up to10 40 4.74 1.05 0 0 0 0 0 45.79 

(10-20] 6.05 7.89 4.47 0.79 0.53 0 0 0 19.74 

(20-30] 1.05 2.37 1.32 2.37 0.53 0 0 0 7.63 

(30-40] 0 0.79 1.32 0.53 0 0.53 0 0 3.16 

(40-50] 0 0.26 0.53 1.05 0.53 1.05 0 0 3.42 

(50-100] 0 1.05 1.58 0.79 2.89 3.95 0.79 0 11.05 

(100-200] 0 0 0 0.26 1.05 2.63 2.37 0 6.32 

(200-300] 0 0 0 0 0 0.53 0.53 0.53 1.58 

over 300 0 0 0 0 0 0 0.53 0.79 1.32 

Total 47.11 17.11 10.26 5.79 5.53 8.68 4.21 1.32 100 

 

For comparative purposes, the following Poisson gravity 

model (6) was estimated and Table 5 shows the results 

obtained: 

lg(λij)=β0
+β

1
lg(p

i
)+β

2
lg(p

j
)-β

3
lg�dij	+β

4
F1i+β

5
F1j+β

6
F2i+β

7
F2j                                           (6) 

Also in this case, the estimates of the intercept, the 

parameters associated with the population size of the regions 

(lg(pi) and lg(pj)), and that relative to the distance (lg(dij)), 

are significant. 

The estimate of the parameter associated with the 

economic factor (F1i) in the regions of origin is not 

significant; by contrast, in the destination regions of flows 

(F1j) it is highly significant. 

According to the signs, this factor is a push determinant in 

the regions of origin and a pull determinant in the destination 

regions of flows, while in the absolute values a predominant 

effect of the pull rather than push determinant is evident. 

When consideration was made of the demographic factor 

of the places of origin (F2i) and of the places of destination 
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(F2j), the estimates of the associated parameters were found to be non-significant. 

Table 5. Results of the Poisson gravity model. 

Parameter Estimates Wald 95% Confidence Limits Wald Chi-Square Pr > Chi-Square 

Intercept -22.32 -24.19 -20.45 549.21 <.0001 

lg(pi) 0.86 0.77 0.94 391.73 <.0001 

lg(pj) 0.91 0.82 1.00 418.65 <.0001 

lg(dij) -0.54 -0.64 -0.43 103.52 <.0001 

F1i 0.00 -0.07 0.06 0.00 0.9546 

F1j 0.72 0.64 0.80 302.89 <.0001 

F2i -0.09 -0.15 -0.02 6.75 0.0094 

F2j 0.06 0.00 0.12 4.32 0.0376 

Scale 2.98     

Criteria for assessing goodness of fit 

Criterion Value   

Pearson Chi-square 3791.66   

Pseudo R2 0.87   

Log likelihood -2416.96   

AIC 4849.31   

BIC 4881.44   

 

Also in this case, the parameters associated with the 

population size of the regions, the distance, and the economic 

factor in the destination region of the flows are highly 

significant. Therefore, from this point of view, the two 

models are equivalent. 

The Chi-square and pseudo R
2
 indices show that also the 

Poisson gravity model has high explanatory power. This 

result is confirmed in Table 6, where, similarly to the 

previous situation, the cross tabulation between the fitted and 

the observed flows is reported. In synthesis, 56% of the fitted 

flows match the observed flows;17% are underestimated; and 

27% are overestimated. 

Table 6. Cross-tabulation between the fitted Vs observed flows of the Poisson model. % frequencies. 

    Fitted flows     

Observed flows up to10 (10-20] (20-30] (30-40] (40-50] (50-100] (100-200] (200-300] over 300 Total 

up to10 38.16 8.95 1.84 0.26 0 0 0 0 0 49.21 

(10-20] 2.89 6.84 3.95 2.37 1.05 0.26 0 0 0 17.37 

(20-30] 0.79 1.84 1.05 1.84 1.05 0.26 0 0 0 6.84 

(30-40] 0.26 0.53 0.79 0.53 0.26 0.53 0 0 0 2.89 

(40-50] 0 0 0.53 1.05 0.26 1.58 0.53 0 0 3.95 

(50-100] 0 0.79 1.05 1.05 1.32 5.26 1.32 0 0 10.79 

(100-200] 0 0 0 0 0.26 2.63 2.37 0.79 0 6.05 

(200-300] 0 0 0 0 0 0 0.79 0.26 0.53 1.58 

Over 300 0 0 0 0 0 0 0 0.53 0.79 1.32 

Total 42.11 18.95 9.21 7.11 4.21 10.53 5 1.58 1.32 100 

 

On comparing the estimates of the Poisson model with the 

corresponding estimates of the log-normal model (Table 2), 

in general, no substantial differences are apparent. In 

particular, using the Euclidean distance between the 

parameters of the two models as the similarity index, Table 7 

shows that for α=0.5 and for α=0.6 the Poisson and log-

normal models are extraordinarily coincident. But, if the 

constant of proportionality is excluded, the similarity 

between the two models is more marked, with values which 

decrease with those of the constant. The maximum similarity 

is reached when the constant is equal to 1. 

Table 7. Similarity (ED) between the Poisson model and the log-normal 

model for various values of α. 

With the intercept 

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

ED 6.5 3.9 2.3 1.2 0.3 0.5 1.1 1.7 2.2 2.7 

Without the intercept 

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

ED 1.9 1.8 1.7 1.6 1.6 1.5 1.5 1.5 1.5 1.4 

Another important characteristic is that the particular 

similarity between the two models tends to weaken if α 

approaches 0.1 or 1. 

Since the criteria shown in Table 3 and the results set out 

in Table 7indicated that α=1, a performance analysis was 

conducted on the predictive power of the Poisson and log-

normal (for α=1) models. 

Tables8 and 9report respectively the predicted (or fitted) 

flows (fij

 ) of the log-normal gravity and the Poisson gravity 

model. On analysing these two tables, once again a uniform 

behaviour of the two models is apparent. 

In particular, Table 8 reports a classification of the 

predicted flows of the two models according to whether they 

are greater (overestimated) or smaller (underestimated) than 

the observed flows. 

The Poisson model overestimates 63.68% and 

underestimates 36.32% of the observed flows. Consequently 

this model is inclined to overestimate the flows. By contrast, 

the log-linear model exhibits more uniform behaviour. 

Moreover, 84.48% of the predicted flows of the two 
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models are concordant i.e. 36.32% are underestimated and 

48.16% are overestimated. 

Table 8. Cross tabulation between the predicted flows of the two models. 

 Poisson model 

Log-normal model 
(α=1) 

Underestimate 

(fij

<fij) 

Overestimate 

(fij

>fij) 

Total 

Underestimate (fij

<fij) 138 (36.32%) 59 (15.52%) 

197 

(51.84%) 

Overestimate (fij

>fij) 0 (0.00%) 183 (48.16%) 

183 

(48.16%) 

Total 138 (36.32%) 242 (63.68%) 
380 

(100.0%) 

A more detailed analysis is set out Table 9,which shows 

the cross tabulation between the fitted and observed flows of 

the two models. 

As will be seen, about 73% of the fitted values of the two 

models are concordant (that is, classified in the same classes) 

while 27% are discordant (that is, classified in different 

classes). 

Moreover, considering the flows with a discordant 

classification, it is very clear that the Poisson fitted flows are 

in general less than the log-normal fitted flows. 

Table 9. Cross tabulation between the fitted flows of Poisson model Vs fitted flows of log-normal (α=1) % frequencies. 

   
Fitted flows of the log-normal model 

  
Fitted flows of the Poisson 

model 
up to10 (10-20] (20-30] (30-40] (40-50] (50-100] (100-200] (200-300] Total 

up to10 41.58 0.53 0 0 0 0 0 0 42.11 

(10-20] 5.53 13.42 0 0 0 0 0 0 18.95 

(20-30] 0 3.16 6.05 0 0 0 0 0 9.21 

(30-40] 0 0 4.21 2.89 0 0 0 0 7.11 

(40-50] 0 0 0 2.11 2.11 0 0 0 4.21 

(50-100] 0 0 0 0.79 3.42 6.32 0 0 10.53 

(100-200] 0 0 0 0 0 2.37 2.63 0 5 

(200-300] 0 0 0 0 0 0 1.58 0 1.58 

Over 300 0 0 0 0 0 0 0 1.32 1.32 

Total 47.11 17.11 10.26 5.79 5.53 8.68 4.21 1.32 100 

 

Put briefly, from the experimentation conducted it clearly 

emerges that in regard to the phenomenon analyzed: 

� The problem of zeros flows may be easily solved, and 

the solution is in line with those in the literature: a 

constant greater or equal to 0.5 is a good choice but the 

optimal choice is a constant equal to 1 

� All the classical hypothesis on the residual variable of 

the log-normal gravity model are verified. 

� The estimates of the parameters of the two types of 

regression considered are very similar. 

� The log-normal model tends slightly to underpredict the 

flows, whereas the Poisson model tends to overpredict 

the flows. 

In conclusion, if the gravity model, as usually happens in 

real analysis, is extended in order to consider, besides the 

classic determinant, other potential factors that may influence 

the phenomenon under investigation,the log-normal model 

and the Poisson model have the same behaviours and, 

contrary to claims in the literature, there are no reasons to 

prefer one model to the other, especially when the analysis is 

of explanatory type: that is, determining the covariates that 

influence the interactions. 

3. Conclusion 

In the analysis of interaction phenomena of count data type, 

the literature (see e.g. [12]) suggests using the Poisson 

regression instead of the log-normal regression because the 

former model does not have certain drawbacks and seems to 

perform better in real analysis. 

Starting from the hypothesis that the results in the 

literature are not completely convincing owing to the use of a 

model that suffers from omitted variables, this paper has 

compared the two regression models by means of a real 

interaction phenomenon. 

In particular, the comparison was carried out usingthe 

migratory flows of foreign residents among the Italian 

regions. Following the literature, in addition to the classic 

covariates of the gravity model, also the economic, social and 

demographic disparities among the territorial units were 

considered. 

The most important result obtained is that the two models 

show, in general, very similar behaviours in terms of both 

parameter estimates and goodness of fit. The only differences 

are that the Poisson model tends to overestimate small flows, 

while the log-linear model tends to underestimate the largest 

flows. 

However, in contrast with the literature, the residual 

variable of the log-normal gravity model satisfies all the 

classic hypotheses, and the presence of the zero flows is an 

easily resolvable problem which does not restrict the model’s 

operability. 

In conclusion, if the empirical analysis is of explanatory 

type, i.e. the goal is only to identify the covariates 

influencing the interaction phenomena, then both models are 

equally valid for use in practice. However, since the log-

normal gravity model is richer with statistical properties and 

easier to interpret, it may be preferred to the Poisson model. 

By contrast, if the analysis is of predictive type, because 

the Poisson model guarantees non-negative prevision, it may 
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be preferable if the data do not show over or under-dispersion, 

and taking into account that the model overestimate the small 

flows. 

Appendix 

 

Figure 1. Political map of Italy by regions (NUTS-2). 

Table 10. Migratory flows of foreign residents between the Italian regions Year 1995. 

 
Destination region 

Origin region R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 

Piemonte (R1) 2439 16 382 17 114 18 85 97 79 20 37 74 7 1 5 12 1 8 31 14 

Valle d'Aosta (R2) 13 77 4 - 2 - - 5 5 - 2 - - - - - - - - - 

Lombardia (R3) 290 4 8699 59 304 69 109 382 207 14 73 160 19 3 34 33 2 19 57 21 

Trentino-Alto A. (R4) 12 - 68 919 75 28 4 23 10 4 7 4 6 - 5 4 - - 5 2 

Veneto (R5) 48 3 281 63 3955 99 12 157 45 10 18 88 6 - 14 11 3 6 13 24 

Friuli-V. G. (R6) 9 - 69 12 165 754 10 28 21 - 3 15 - 1 2 5 - 1 2 2 

Liguria (R7) 82 3 155 4 26 6 488 36 100 2 18 12 1 - 10 1 3 2 6 4 

Emilia-Romagna (R8) 67 - 325 41 135 26 20 3000 90 13 54 46 10 1 11 13 2 6 28 2 

Toscana (R9) 46 1 190 14 107 16 49 161 2254 54 50 115 11 4 18 11 - 22 13 10 

Umbria (R10) 16 - 58 5 18 7 3 46 65 467 59 75 7 1 4 3 1 2 1 2 

Marche (R11) 26 - 52 4 26 10 6 70 21 20 969 16 36 - 8 7 - - 11 1 

Lazio (R12) 69 2 398 65 224 24 48 189 155 88 113 1740 64 6 61 17 2 25 44 9 

Abruzzo (R13) 24 - 59 17 38 - 3 42 29 11 73 45 431 10 7 8 3 - 4 2 

Molise (R14) 6 1 16 2 1 2 - 4 6 1 11 16 12 28 1 7 - 2 - - 

Campania (R15) 33 - 191 11 107 10 11 112 77 15 20 75 9 1 582 14 4 6 18 5 

Puglia (R16) 49 - 272 19 131 17 10 137 89 9 45 50 21 10 14 371 10 12 5 1 

Basilicata (R17) 7 - 34 3 13 4 6 12 6 - 6 5 3 - 15 22 35 8 5 1 

Calabria (R18) 26 4 127 15 37 7 5 33 15 6 13 26 1 1 7 19 3 229 22 1 

Sicilia (R19) 61 5 283 15 131 10 15 173 73 9 66 53 7 6 15 14 4 26 796 14 

Sardegna (R20) 25 - 130 8 51 7 8 27 30 6 6 18 1 3 6 4 1 1 14 305 

REGIONI DI 
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Table 11. Flows predicted by the log-normal gravity model for α=1. 

 
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 

R1 - 9.9 278.2 21.8 69.3 20.8 77.9 103.7 69.6 11.9 17.9 54.6 9.9 2.3 16.5 10.6 2.6 5.1 14.6 9.5 

R2 11.7 - 16.2 1.4 4.5 1.4 3.7 6.4 4.3 0.8 1.2 3.6 0.7 0.2 1.1 0.7 0.2 0.4 1.0 0.6 

R3 245.3 12.1 - 60.5 179.2 47.9 113.5 274.4 155.2 25.4 39.1 112.8 20.8 4.7 33.4 21.5 5.3 10.2 28.3 17.0 

R4 28.7 1.6 90.4 - 53.7 12.0 13.8 50.0 25.7 4.9 8.0 21.2 4.1 0.9 6.4 4.2 1.0 1.9 5.2 2.8 

R5 82.5 4.6 241.8 48.6 - 44.3 41.5 183.8 90.4 17.8 29.9 74.3 14.6 3.2 21.8 13.9 3.4 6.3 17.0 9.0 

R6 23.6 1.4 61.8 10.3 42.3 - 11.7 40.1 24.3 5.8 11.1 25.4 5.5 1.2 8.1 5.4 1.3 2.4 6.1 2.9 

R7 74.5 3.0 123.1 10.0 33.4 9.8 - 54.0 38.9 6.1 8.9 27.7 4.9 1.1 8.1 5.1 1.3 2.5 7.0 4.8 

R8 81.0 4.3 243.1 29.6 120.7 27.6 44.1 - 116.5 16.4 24.6 67.6 12.3 2.7 18.6 11.5 2.8 5.4 14.8 8.5 

R9 71.1 3.7 179.8 20.0 77.6 21.9 41.5 152.4 - 17.3 23.1 71.2 12.0 2.6 18.1 10.8 2.7 5.1 14.4 8.9 

R10 17.6 1.0 42.7 5.5 22.1 7.6 9.4 31.1 25.1 - 13.1 43.5 6.5 1.2 8.0 4.3 1.1 2.0 5.4 2.7 

R11 25.2 1.4 62.3 8.5 35.3 13.7 13.1 44.3 31.7 12.4 - 47.2 11.6 1.9 12.4 6.9 1.8 3.1 8.0 3.7 

R12 77.1 4.3 180.7 22.7 88.2 31.5 40.9 122.3 98.4 41.4 47.5 - 33.1 6.4 44.8 21.4 5.7 10.3 28.4 13.4 

R13 20.9 1.2 49.8 6.6 25.8 10.1 10.8 33.3 24.7 9.2 17.3 49.3 - 2.6 15.1 7.2 1.9 3.2 8.1 3.4 

R14 6.6 0.4 15.4 2.0 7.6 3.0 3.4 9.8 7.2 2.3 3.9 13.0 3.5 - 9.4 3.1 0.9 1.3 3.2 1.1 

R15 61.9 3.6 142.5 18.3 68.7 26.7 31.7 89.5 66.7 20.3 33.1 119.1 27.0 12.4 - 29.7 9.0 14.1 33.7 10.9 

R16 40.4 2.4 92.6 12.1 44.4 18.1 20.2 55.9 40.0 10.9 18.7 57.6 12.9 4.1 30.0 - 9.8 11.9 22.3 6.7 

R17 9.9 0.6 22.6 2.9 10.8 4.4 5.0 13.8 10.0 2.8 4.7 15.1 3.4 1.2 9.1 9.7 - 3.1 5.7 1.7 

R18 23.6 1.4 53.0 6.7 24.4 9.5 11.9 31.6 23.1 6.2 10.0 33.5 6.9 2.1 17.2 14.4 3.8 - 19.6 4.2 

R19 47.7 2.8 105.0 12.9 46.8 17.6 24.1 62.1 46.3 12.0 18.6 65.9 12.6 3.6 29.4 19.2 5.0 14.0 - 9.5 

R20 32.3 1.8 65.4 7.2 25.6 8.7 17.2 37.1 29.5 6.2 8.9 32.1 5.4 1.3 9.9 6.0 1.5 3.1 9.8 - 

Table 12. Flows predicted by the Poisson gravity model. 

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 

R1 - 9.9 378.3 26.1 88.6 24.8 82.4 130.6 82.8 12.5 19.8 72.4 10.3 2.1 17.9 11.4 2.5 5.1 16.1 9.8 

R2 9.1 - 15.0 1.2 3.9 1.1 2.7 5.5 3.4 0.5 0.9 3.2 0.5 0.1 0.8 0.5 0.1 0.2 0.7 0.4 

R3 326.8 14.1 - 76.9 245.4 62.2 137.0 369.3 200.9 29.3 47.2 164.3 23.6 4.6 40.0 25.4 5.5 11.1 34.4 19.4 

R4 31.3 1.5 107.0 - 54.4 11.7 13.6 52.5 26.3 4.4 7.5 24.0 3.6 0.7 5.9 3.8 0.8 1.6 4.9 2.5 

R5 107.8 5.2 345.5 55.1 - 50.5 48.7 225.0 108.1 18.5 32.4 98.7 15.0 2.8 23.8 15.0 3.2 6.4 19.1 9.6 

R6 26.6 1.3 76.9 10.4 44.4 - 11.8 43.5 25.2 5.2 10.0 28.5 4.7 0.9 7.4 4.9 1.0 2.0 5.8 2.6 

R7 75.8 2.8 145.9 10.4 36.8 10.2 - 58.2 39.2 5.5 8.5 31.6 4.4 0.9 7.6 4.7 1.0 2.1 6.7 4.3 

R8 97.5 4.4 318.9 32.6 138.1 30.4 47.2 - 124.6 15.8 25.0 83.4 11.9 2.2 19.0 11.6 2.5 5.0 15.5 8.4 

R9 86.0 3.9 241.6 22.7 92.3 24.5 44.3 173.4 - 16.5 23.4 86.5 11.4 2.1 18.4 10.9 2.4 4.8 15.0 8.7 

R10 18.8 0.9 50.8 5.4 22.9 7.3 8.9 31.8 23.8 - 10.7 42.2 5.0 0.8 6.7 3.6 0.8 1.6 4.8 2.3 

R11 28.9 1.4 79.6 9.0 38.8 13.7 13.4 48.9 32.8 10.4 - 50.8 9.4 1.4 11.1 6.2 1.4 2.6 7.5 3.3 

R12 107.9 5.2 283.2 29.7 120.8 39.6 51.1 166.3 124.0 41.9 52.0 - 33.0 5.6 48.0 23.5 5.4 10.4 32.0 14.5 

R13 24.5 1.2 65.3 7.2 29.4 10.5 11.3 37.9 26.2 8.0 15.4 52.9 - 1.8 13.3 6.4 1.5 2.6 7.6 3.1 

R14 6.7 0.3 17.5 1.9 7.5 2.7 3.1 9.7 6.7 1.8 3.1 12.3 2.5 - 6.6 2.3 0.6 0.9 2.5 0.9 

R15 93.8 4.7 242.3 25.9 102.3 36.2 43.1 133.2 92.6 23.5 39.8 168.8 29.1 10.7 - 33.1 8.6 14.6 39.5 12.8 

R16 59.6 3.0 153.3 16.6 64.4 23.7 26.8 81.3 54.6 12.6 22.2 82.1 14.1 3.7 33.0 - 8.6 11.7 25.3 7.7 

R17 11.4 0.6 29.2 3.2 12.3 4.5 5.1 15.6 10.6 2.5 4.4 16.7 2.9 0.8 7.6 7.6 - 2.4 5.1 1.5 

R18 32.4 1.6 81.8 8.6 33.2 11.7 14.6 42.9 29.4 6.6 11.2 44.4 7.0 1.8 17.7 14.2 3.2 - 19.9 4.5 

R19 71.2 3.6 176.7 18.2 69.5 23.9 32.3 92.0 64.0 14.1 22.9 95.4 14.1 3.4 33.4 21.5 4.9 13.9 - 10.8 

R20 40.8 2.0 94.1 8.8 33.0 10.3 19.4 47.2 34.9 6.4 9.6 40.8 5.4 1.1 10.2 6.2 1.4 3.0 10.2 - 

 

Table 13. Results of the factor analysis. 

Factor I II 

Variance explained 60.7 17.6 

Correlations between the variables and the first two factors 

X1 0.96 0.02 

X2 0.97 -0.12 

X3 0.93 -0.26 

X4 0.97 -0.10 

X5 0.93 -0.19 

X6 0.57 0.38 

X7 -0.85 0.01 

X8 -0.03 -0.46 

X9 0.86 -0.18 

X10 0.86 -0.41 

X11 0.94 -0.01 

X12 -0.28 0.70 

X13 -0.57 0.64 

X14 0.78 0.53 

X15 0.73 0.56 

Factor I II 

X16 0.49 0.81 

X17 0.77 -0.25 

X18 0.80 0.51 

Socio-economic and demographic variables 

X1) Employment rate = Employed resident population / 

Total population resident in the region. 

X2) Added value per capita = Regional added value / Total 

population resident in the region. 

X3) Added value per person employed = Regional added 

value / Employed resident population. 

X4) GDP per capita = Regional GDP/ Population resident 

in the region. 

X5) GDP per person employed = Regional GDP/Employed 

resident population. 

X6) % of employed in industry = Share of population 

resident in the region employed in industry. 
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X7) % of employed in agriculture = Share of population 

resident in the region employed in agriculture. 

X8) % of employed in other activities = Share of 

population resident in the region employed in activities other 

than industry and agriculture. 

X9) Consumption per capita = Resident population 

consumption / Total population resident in the region. 

X10) Income per capita = Resident population income / 

Total population resident in the region. 

X11) Units of labour per inhabitant = Number of regional 

labour units / Total population resident in the region. 

X12) Size of unit of labour = Number of employed in the 

region / Number of regional labour units. 

X13) Age dependency ratio = Regional resident population 

aged 65+ / Regional resident population aged 15-64. 

X14) Index of turnover in the active population = Regional 

resident population aged 15-19 / Regional resident 

population aged 60-64. 

X15) Portion of persons aged 65 and over = Regional 

resident population aged 65+/ Regional resident population. 

X16) Old-age dependency ratio = Regional resident 

population aged 65+ / Regional resident population aged 15-

64. 

X17) % of resident foreigners to total population = 

Number of foreigners resident in the region / Total population 

resident in the region. 

X18) Index of active population structure = Regional 

resident population aged 40-64 / Regional resident 

population aged 15-39. 
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