
 

American Journal of Theoretical and Applied Statistics 
2015; 4(3): 185-191 

Published online May 26, 2015 (http://www.sciencepublishinggroup.com/j/ajtas) 

doi: 10.11648/j.ajtas.20150403.25 

ISSN: 2326-8999 (Print); ISSN: 2326-9006 (Online) 

 

Modeling Panel Data: Comparison of GLS Estimation and 
Robust Covariance Matrix Estimation 

Victor Muthama Musau, Anthony Gichuhi Waititu, Anthony Kibira Wanjoya 

Department of Statistics and Actuarial Science, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya 

Email address: 
vmuthama2@gmail.com (V. M. Musau) 

To cite this article: 
Victor Muthama Musau, Anthony Gichuhi Waititu, Anthony Kibira Wanjoya. Modeling Panel Data: Comparison of GLS Estimation and 

Robust Covariance Matrix Estimation. American Journal of Theoretical and Applied Statistics. Vol. 4, No. 3, 2015, pp. 185-191.  

doi: 10.11648/j.ajtas.20150403.25 

 

Abstract: The proliferation of panel studies which has been greatly motivated by the availability of data and greater capacity 

for modeling the complexity of human behavior than a single cross-section or time series data has led to the rise of challenging 

methodologies for estimating the data sets. Much controversy on these methodologies is the under-estimation of the standard 

errors leading to wrong conclusions of the involved hypothesis test as well as making inappropriate inference to the underlying 

model parameters. This is due to the heteroscedasticity and autocorrelation nature of the disturbance term in the classical linear 

regression model. This study sought to estimate linear-panel model parameters using conventional regression techniques which 

have the capacity to address the correlation and heteroscedasticity problem. By relaxing the homogeneity and non-correlation 

properties of the disturbance term in the classical linear regression model, we employed the generalized least squares method to 

estimate the model parameters. Using the available White Heteroscedasticity Consistent estimators i.e. HC0, HC1, HC2, HC3 

and HC4, we also obtained estimates for the generalized ordinary least squares covariance matrix. 
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1. Introduction 

Panel data refers to a data containing both time series 

dimension and cross section dimension in such a way that 

there are N entities followed over T time periods. If the time 

periods for which we have data are the same for all N 

individuals then we have a balanced panel. For cases where 

the time periods or the length of the time series varies, the 

data set is referred to as an unbalanced panel. Panel data 

analysis is at the breaking point of time series and 

cross-section data analysis. 

By combining the time series and cross-sectional 

dimensions, panel datasets have enabled researchers to 

study dynamic relationships and to model the heterogeneity 

among subjects. Most of research works have found their 

original motivation in panel studies due to their greater 

capacity for modeling the complexity of human behavior 

than a single cross-section or time series data. Other areas 

of studies have showed their interests in analyzing panel 

data as a way to remove components of variance and 

estimate causal models. 

2. Review of Previous Studies 

The term panel study firstly came about in a marketing 

context when Lazarsfeld and Fiske (1938) considered the 

effect of radio advertising on product sales. Usually, hearing 

radio advertisements was thought to increase the possibility 

of purchasing a product. Lazarsfeld and Fiske sought to find 

out whether those who bought the product would be more 

likely to hear the advertisement, or vice versa. They 

proposed repeatedly interviewing a set of people (the ‘panel’) 

to clarify the issue. For the first time Marschak (1939) 

suggests a method to combine cross section and time series 

information in demand studies. In his later studies Marschak 

states that “pooling" is the answer to the discussion as to 

whether cross section or time series methods of demand 

analysis are preferable Marschak (1943). 

The findings of Tobin (1950) contend that the demand 

function should be consistent with both kinds of observations. 

He points out that there are both economic and statistical 

reasons for basing quantitative demand analysis on a 

combination of time series and cross section data. Wishart 

(1938), Rao (1965), Potthoff and Roy (1964) introduced the 
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use of multivariate analysis for analyzing growth curves. 

Particularly, they considered the problem of fitting 

polynomial growth curves of serial measurements from a 

group of subjects. Grizzle and Allen (1969), made 

advancements on this approach by introducing covariates, 

explanatory variables, into the analysis. Laird and Ware 

(1982) made the other significant transition from 

multivariate analysis to regression modeling by introducing 

the two-stage model that allows for both fixed and random 

effects. 

The need for efficient and consistent estimates challenged 

the ingenuity of many researchers to come up with models 

that yielded consistent and efficient estimates. Kleiber and 

Zeileis (2010) follow the history of Grunfeld data and 

present replication files to selected results from various 

studies as well as for the Grunfeld's thesis. In this study GLS 

and robust covariance matrix estimation techniques were 

used to model this data set. 

3. Methodology 

3.1. The Linear Panel Model 

The basic linear panel models can be described through 

suitable restrictions of the following general model: 

��� = �� + ��	��� + �
	
�� + ⋯ ��	��� + 
��     (1) 

Where i=1, 2…n is the individual (group, state...e.t.c) index, 

t=1, 2…T is the time index and 
�� is a random disturbance 

term of mean zero. To model for individual heterogeneity, one 

often assumes that the disturbance term comprises of two 

separate components, one of which is specific to the individual 

and doesn't change over time (time invariant). This is usually 

referred to as the unobserved heterogeneity component. The 

other component, conventionally known as the idiosyncratic 

error component is usually assumed to be independent of both 

the regressors and the individual error components. 

3.2. Generalized Least Squares (GLS) 

GLS is normally designed to produce an optimal unbiased 

estimator of β for the situation with heterogeneous variance. 

The standard linear model to be considered is of the form: 

� = �� + 
                 (2) 

where y is the � × 1 response vector, X is a � × � model 

matrix, � is a � × 1 vector of parameters to be estimated 

and 
 is a � × 1 vector of errors. 

3.2.1. Parameter Estimation 

To obtain the parameter estimates for model … we use the 

maximum likelihood approach, where we write the 

log-likelihood of a single observation i (where i=1, 2 ...n) in 

terms of the unknown regression parameter �  and the 

variance covariance matrix,∑ ; 

( ) ( )' 1

i i( , ) / 2 log (2 ) 0.5log (det ) 0.5 y yi e e i iy n x xβ π β β−
∑ = − − ∑ − − ∑ −  (3) 

The log-likelihood for the entire dataset becomes; 

1
( , ) ( , )n

i i
L lβ β=∑ = ∑ ∑             (4) 

The vector of scores is now calculated by taking the 

derivatives with respect to the parameters to obtain; 

( ) ( )' 1 ' 1

1 1/n n

MLE i i i i i ix y x xβ − −
= == ∑ ∑ ∑ ∑      (5) 

3.2.2. Estimation of ∑  Using FGLS 

To generate the estimate for the variance-covariance 

matrix,∑ , OLS was first applied to the model. This gave 

consistent estimates of β and the residuals were then 

estimated as; 

y xε β= −                   (6) 

These residual values are also expected to be consistent 

and they are therefore, used to estimate the 

variance-covariance matrix by multiplying a vector of the 

residuals with its transpose. 

3.3. Robust Covariance Matrix Estimator 

Panel data sets are characterized by autocorrelation and 

heteroscedasticity of unknown form thus resulting to 

non-spherical disturbances. To make inference from the 

models generated by such data sets, it is essential to use 

robust covariance matrix estimators that can consistently 

estimate the covariance of the model parameters. 

Suitable heteroscedasticity consistent (HC) and 

heteroscedasticity and autocorrelation consistent (HAC) 

estimators received much attention in the panel literature 

Zivot and Wang (2003). 

3.3.1. Eicker-White Heteroscedasticity Consistent (HC) 

Covariance Matrix Estimate 

Generally, the error-covariance matrix for heteroscedastic 

and non-autoregressive errors models is given by; 

2 2 2 2

1 2 3
( , , ... )

T
diag σ σ σ σ∑ =             (7) 

If the nature and form of heteroscedasticity is not known 

then efficient GLS estimator cannot be computed. However, 

if the OLS estimator is to be obtained then a consistent 

estimate for the generalized OLS covariance matrix is needed 

for proper inference. 

A heteroscedasticity consistent estimate of the asymptotic 

variance matrix of the OLS estimate due to Eicker (1967) and 

White (1980) is; 

' 1 ' 1var ( ) ( ) ( )HC HCa x x S x xβ − −=           (8) 

where; 

2 '

1( ) /T

HC t t t tS x x T nε== ∑ −            (9) 

Taking the square root of the diagonal elements of the 

asymptotic variance matrix estimate gives the Eicker-White 
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heteroscedasticity consistent standard errors (HCSEs) for the 

least squares estimates. 

A number of heteroscedasticity consistent estimators of the 

asymptotic variance matrix have been proposed whose 

difference is on the effect imposed to the squared OLS 

residual. They include; 

' 1 ' 2 ' 10 ( ) ( ) ( )
i

HC x x x diag x x xε− −=        (10) 

This estimator is arrived at by placing the thi squared error 

into the thi row of the diagonal of the variance-covariance 

matrix, using the OLS residuals as estimators of the errors. 

The entries on the main diagonal of this estimator are the 

estimated squared standard errors of the regression 

coefficients. 

The second estimator on the other hand, given by; 

' 1 ' 2 ' 11 ( ) ( ) ( ) / 1iHC n x x x diag x x x n pε− −= − −    (11) 

focuses on adjusting the degrees of freedom for HC0. For 

HC1 every squared OLS residual is now multiplied by a 

factor of / 1n n p− − . 

The third estimator is closely similar to HC1 but instead of 

a degree-of-freedom adjustment, the thi  squared OLS 

residual is now weighted by the reciprocal of (1 )
ii

h− where 

ii
h  are the leverage values and are the diagonal elements of 

the matrix
' 1 '( )x x x x−

. 

' 1 ' 2 ' 12 ( ) ( /1 ) ( )
i ii

HC x x x diag h x x xε− −= −    (12) 

The use of leverage adjusted residuals is justified by the 

finite-sample bias of HC0 (Cribari-Neto, 2004 and Carroll, 

2001) which is touted to be caused by the existence of points 

of high leverage in the x matrix. 

The fourth estimator suggest to weight each squared OLS 

residual by the reciprocal of 
2(1 )

ii
h− rather than (1 )

ii
h− . 

' 1 ' 2 2 ' 13 ( ) ( / (1 ) ) ( )
i ii

HC x x x diag h x x xε− −= −   (13) 

This estimator guarantees best performance to small 

samples as it gives less weight to high influential 

observations, Long and Ervin (2000). 

The most recent estimator, HC4, derived by Cribari - Neto 

(2004) was developed with the aim of taking large leverage 

values into consideration before constructing the asymptotic 

variance matrix estimator. 

' 1 ' 2 ' 14 ( ) ( / (1 ) ) ( )i

i iiHC x x x diag h x x x
δε− −= −    (14) 

where; 

min(4, / 1)
i ii

nh pδ = +  

The exponent i
δ controls the “discounting” level for the 

thi observation and with the point of truncation set at 4; the 

maximum amount of weighting is twice as much as HC3. 

3.3.2. Newey-West Heteroscedasticity and Autocorrelation 

Consistent (HAC) Covariance Matrix Estimate 

In several applications of panel regression, it is realized 

that the disturbance term may be both serially correlated and 

conditionally heteroscedastic. In such cases the error 

covariance matrix happens to be non-diagonal. 

Considering certain assumptions about the nature of the 

error heteroscedasticity and serial correlation a consistent 

estimate of the generalized OLS covariance matrix can be 

computed. The most popular estimate, due to Newey and 

West (1987) has the form; 

' 1 ' 1var ( ) ( ) ( )
HAC HAC

a x x S x xβ − −=     (15) 

where; 

2 ' ' '

1 1 1( )T q T

HAC t t t t l l t l t t t l t l t l t l t t
S x x w x x x xε ε ε ε ε= = = + − − − −= ∑ +∑ ∑ +  

Is the estimated, long-run, non-parametric variance and 

l
w  is the Bartlett weight function given by; 

1 / 1
l

w l q= − +  

4. Results and Discussion 

4.1. Introduction 

This study used secondary datasets named Grunfeld in R 

under the package AER. To aid in the analysis of our datasets, 

several packages including, “nlme”, “car”, “AER”, “zoo”, 

“plm”, “systemfit” and “lmtest” were loaded. “Sandwich” 

package was also employed when estimating the robust 

covariance matrix estimates. Descriptive analysis was 

performed and then specification testing of the panel model 

which involved testing for poolability, for individual or time 

unobserved effects and for correlation between the individual 

specific component and the regressors was then carried out 

before fitting the suggested models. 

4.2. Descriptive Statistics 

A descriptive analysis was first carried out with the aim of 

exploring our data sets in order to understand the underlying 

complex relationships. A coplot was first obtained which is a 

“conditioning” plot to show the distribution of investments 

over different years given the firms. Each bar of the eleven 

conditioning variables (firm) corresponds to one scatter plot. 

This correlation begins on the left-hand side of figure 1 for 

the firms, and this first bar (AR) corresponds to the scatter 

plot on the left-hand side. The scatter plots are then read from 

left to right. 

Heterogeneity plots were also obtained and non-constant 

average of investments across the firms and the years as 

shown in figure 2 and figure 3 proved the presence of 

heterogeneity. 
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Figure 1. Coplot for Grunfeld data set. 

 

Figure 2. Heterogeneity across the Firms. 

 

Figure 3. Heterogeneity across the Firms. 

4.3. Specification Test Results 

4.3.1. Test for Poolability 

The application of Pooltest on our datasets returned an 

observed F-statistic of 5.72distributed as F (20,187). The 

associated p-value is less than 0.0001leading to rejection of 

the null hypothesis implying that our model parameters; 

constant and slope coefficients vary across individual firms 

and therefore individual effects have to be considered. 

4.3.2. Tests for Individual and Time Effects 

A test for the presence of individual and time effects in our 

datasets returned a chi-square test statistic of 874.752, with a 

p-value less than 0.0001 leading to rejection of the null 

hypothesis in favor of the alternative hypothesis. The study 

therefore, concludes that there are significant individual and 

time effects in the residuals. 

After establishing the presence of individual and time 

effects in the residuals, we now check on the relationship 

between the individual-specific component and the regressors. 

This is with the aim of finding the optimal model for our 

datasets between random effects model and fixed effects 

model. Our choice between fixed and random effects 

specifications is based on Hausman-type tests, which 

compares the two estimators under the null of no significant 

difference (Hausman 1978). 

Application of the Hausman test to our datasets returned a 

chi-square test statistic of 3.9675with a p-value of 

0.1376which is greater than 0.05thus we fail to reject the null 

hypothesis. The study therefore, concludes that endogeneity 

is not a problem for the random effects estimator implying 

that both random and fixed effects estimators are consistent 

but random effects estimator is efficient. 

4.3.3. Tests for Cross-Sectional Dependence 

Application of this test to our data sets returned a test 

statistic, Z=5.695and an associated p-value less than 

0.0001leading to rejecting the cross-sectional independence 

hypothesis of the test. 

4.3.4. Tests for Heteroscedasticity 

Application of the Breusch-Pagan test of homoscedasticity 

in our data sets returned a test statistic, BP=342.2976and an 

associated p-value less than 0.0001leading to rejection of the 

homogenous hypothesis. 

The study therefore, concludes that our residuals have 

non-constant variance across all the cross-sections. This can 

further be examined by looking at the group specific 

variances as shown in table 1. 

From the results in table 1, sandwich estimators returned 

the smallest variances followed by the estimators under 

heteroscedastic feasible generalized least squares and then 

the estimators under pooled ordinary least squares except for 

a few firms where this was not the case. Three firms; General 

motors, US steel and General electric returned the highest 

variances indicating that they had the biggest difference 

between the predicted values and the observed values as 

compared to the other firms. 
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Table 1. Group Specific Variances under different Models. 

Firms OLS Het FGLS Sandwich 

General Motors 22289.39 41092.053 22459.814 

US Steel 30271.57 40175.892 9130.961 

General Electric 34204.25 22528.607 2753.116 

Chrysler 452.894 578.942 187.501 

Atlantic Refining 3673.75 736.040 162.188 

IBM 138.173 71.976 23.276 

Union Oil 803.455 97.420 30.739 

Westinghouse 2383.15 1549.59 296.051 

Goodyear 2529.13 836.079 138.454 

Diamond Match 34.533 27.264 3.748 

American Steel 147.524 58.039 8.927 

The heteroscedasticity and autocorrelation so far 

established leads to non-spherical disturbance. We therefore, 

result to using conventional regression-based strategies to 

address this problem. 

4.4. Generalized Least Squares Results 

The parameter estimates of the GLS model fitted in our 

data sets are as shown in table 2. 

Table 2. Parameter Estimates of GLS Model. 

 Value Std.Error t-value p-value 

Value 0.09149933 0.00719557 12.716067 0 

Capital 0.28637486 0.03385900 8.457866 0 

From the results in table 2 we note that both of the 

regressor variables (value and capital) have p-values which 

are less than 0.05and therefore they are significant in 

explaining the dependent variable of our data sets 

(investment). Both value and capital influence investment 

positively as their associated coefficients have a positive 

magnitude. A single unit change in value which is marked as 

the price of common shares causes investment, defined as 

additions to plant and equipment plus maintenance and 

repairs, to increase by 0.09149933millions of dollars. Also a 

single unit change in capital, marked as the stock of plant and 

equipment, causes investment to increase by 

0.28637486millions of dollars. 

The resulting fitted GLS model is; 

1 2
0.09149933X 0.28637486XY = +  

where; 

Y=investment, X1=Value, X2=Capital 

4.5. Feasible Generalized Least Squares Results 

The GLS results obtained are based on the assumption of 

known variance-covariance matrix of the error term, which is 

usually not the case. In a scenario where this matrix is not 

known, one has to result into using feasible GLS where 

ordinary least squares is first applied to the model and then 

the residuals are estimated. These residuals are expected to 

be consistent and they are used to estimate the 

variance-covariance matrix. 

The parameter estimates of the FGLS model fitted in our 

data sets are as shown in table 3. 

Table 3. Parameter Estimates of FGLS Model. 

 Value Std.Error t-value p-value 

Value 0.103122 0.003957 26.06 < 2.0×10-16 

Capital 0.116644 0.011540 10.11 < 2.0×10-16 

From the results in table 3 we note that both of the 

regressor variables (value and capital) have p-values which 

are less than 0.05 and therefore they are significant in 

explaining the dependent variable (investment). Both value 

and capital influence investment positively as their associated 

coefficients have a positive magnitude. A single unit change 

in value causes investment to increase by 0.103122millions 

of dollars. Similarly, a single unit change in capital causes 

investment to increase by 0.116644millions of dollars. 

The resulting fitted FGLS model is; 

1 2
0.103122X 0.116644XY = +  

where; 

Y=investment, X1=Value, X2=Capital 

To compare the efficiency of the parameter estimates from 

the GLS and FGLS models we comparatively study their 

variances as shown in table 4. Those parameter estimates that 

have smaller variances are deemed to be more efficient. This 

is due to their small deviance from the true mean. 

Table 4. A Comparison between the Variance and Covariance of GLS and 

FGLS Estimates. 

 
Value Capital 

GLS FGLS GLS FGLS 

Value 3.0824×10- 5 1.5658×10- 5 -9.0776×10- 5 -3.0587×10- 5 

Capital -9.0776×10- 5 -3.0587×10- 5 5.3378×10- 4 1.3317×10- 4 

From the results in table 4 we observe that FGLS estimates 

have smaller variances as compared to the GLS estimates 

implying that they are more efficient. This can be attributed 

to the fact that, the GLS estimates are obtained under the 

assumption of known variance-covariance matrix of the error 

term which is normally not the case, while for FGLS model 

the variance-covariance matrix is data driven and therefore, 

no assumptions were made about its structure. 

4.6. Robust Covariance Matrix Estimation Results 

4.6.1. Heteroscedasticity Consistent (HC) Estimates 

The function vcovHC was used to estimate four types of 

White’s heteroscedasticity-consistent covariance matrix 

(known as the sandwich estimator). All the types assume no 

correlation between errors of different groups while allowing 

for heteroscedasticity across groups, so that the full 

covariance matrix of errors is a diagonal matrix. 

To determine the most efficient Heteroscedasticity 

Consistent estimator for all the types, the study compares 

their standard errors as shown in table 5.The estimator with 
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the smallest standard error is touted to be the most efficient. 

Table 5. Standard errors given different types of HC. 

 Value Capital 

HC0 0.007117160* 0.04548306* 

HC1 0.007149733 0.04569122 

HC2 0.007302228 0.04844756 

HC3 0.007498911 0.05168857 

HC4 0.007884342 0.05898951 

Where * indicates the smallest standard error. From the 

results in table 5, Heteroscedasticity consistent type 

HC0returned the smallest standard errors for the estimates of 

both value and capital indicating that it is the most efficient 

estimator of all the heteroscedasticity consistent types. 

4.6.2. Heteroscedasticity and Autocorrelation Consistent 

(HAC) Estimate 

We note that the residuals in our data sets were both 

heteroscedastic and serially correlated thus leading to an 

error covariance matrix that is non-diagonal. 

We therefore use the function vcovHAC to obtain a 

heteroscedasticity and autocorrelation consistent (HAC) 

covariance matrix estimate. The results of this estimate are 

shown in table 6. 

Table 6. Heteroscedasticity and Autocorrelation Consistent (HAC) Estimate. 

 Value Capital 

Value 0.0002133486 -0.0003059557 

Capital -0.0003059557 0.0050457394 

The square root of the leading diagonal elements of the 

HAC estimate in table 6 gives the heteroscedasticity and 

autocorrelation consistent standard errors (HAC-SEs) for the 

least squares estimates as shown in table 7 

Table 7. Standard errors for HAC Estimate. 

 Value Capital 

HAC-SEs 0.014606457 0.071033368 

From the results in table 7 we note that HAC-SEs for the 

parameter estimates are bigger than the biggest HC estimates 

for the corresponding variables despite considering 

autocorrelation of the errors. This however, supports the results 

of the Hausman test on our data sets which implied that 

endogeneity is not a problem for the random effects estimator. 

4.7. Measure of Performance 

To find out which model fits our data sets better, the study 

considered two performance measures; Residual Sum of 

Squares (RSS) and the Non-parametric R-squared. The 

results of this assessment are shown in table 8. 

Table 8. Performance Measure for the different Models. 

 RSS R2 

POOLED OLS 1938557 80.58% 

GLS 2119923 78.29% 

FGLS 2155038 80.75% 

From the results in table 8, 80.58% of the dependent 

variable (investment) was explained by the regressor 

variables (value and capital) according to the OLS model 

fitted under robust covariance estimation (sandwich). This 

model also returned the smallest residual sum of squares, 

1938557, implying a smaller distance between the original 

observations and the fitted values as compared with the other 

models. Generalized least squares model was also fitted by 

specifying the structure of the correlation. 78.29% of the 

dependent variable was explained by the regressors under 

this model and the resulting residuals summed to 2119923. 

By first estimating the variance covariance matrix of the 

residuals, feasible generalized least squares model was fitted 

and 80.75% of the dependent variable was explained by the 

regressors. However, this model returned the highest residual 

sum of squares, 2155038, implying a larger deviation 

between the original observations and the predicted values. 

The study therefore concludes that, in terms of the 

non-parametric R squared, Feasible GLS gives a good fit of 

our datasets while in terms of residual sum of squares, 

pooled ordinary least squares performed better than both 

generalized least squares and feasible generalized least 

squares. 

5. Conclusion and Recommendations 

The main aim of this study was to model panel data using 

the conventional regression based techniques and to compare 

the efficiency of the estimates returned by the suggested 

models. We squabble that the use of robust standard 

estimators instead of ignoring heteroscedasticity and 

autocorrelation when carrying out inferential tests in OLS 

regression, guarantees the researcher gratifying comfort in 

the legitimacy and power of those tests. This is why we argue 

that robust covariance matrix estimation and generalized 

least squares methods should be routinely used in panel data 

analysis to make sure that conclusions drawn on such 

research works are not compromised by heteroscedasticity. 

This study considered the basic panel linear model pooled 

across all the cross-sections. The scope of this research can 

therefore, be expanded by considering panel linear models 

for each cross-section (firm) without pooling them. The 

detection of heteroscedasticity can also function as an 

impulsion for future research to realize the process 

producing heteroscedasticity in this data set. 

Nomenclature 

FGLS: Feasible Generalized Lest Squares 

GLS: Generalized Least Squares 

HAC: Heteroscedasticity and Autocorrelation Consistent 

HC: Heteroscedasticity Consistent 

HCSE: Heteroscedasticity Consistent Standard Errors 

OLS: Ordinary Least Squares 

RSS: Residual Sum of Squares 
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