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Abstract: Analysis of mean absolute deviation (ANOMAD) for randomized block design is derived where the total sum of 

absolute deviation (TSA) is partition into exact block sum of absolute deviation (BLSA), exact treatment sum of absolute 

deviation (TRSA) and within sum of absolute deviation (WSA). The exact partitions are derived by getting rid of the absolute 

function from MAD by using the idea of re-expressing the mean absolute deviation as a weighted average of data with sum of 

weights zero. ANOMAD has advantages: offers meaningful measure of dispersion, does not square data, and can be extended to 

other location measures such as median. Two ANOMAD graphs are proposed. However, the variance-gamma distribution is used 

to fit the sampling distributions for the mean of BLSA and the mean of TRSA. Consequently, two tests of equal means and 

medians are proposed under the assumption of Laplace distribution. 
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1. Introduction 

There has been an increasing interest in properties and 

applications of a Laplace distribution (see, for example, [2], 

[12], [13], [10] and [23]. A Laplace distribution possesses a 

number of favourable characteristics which make it attractive 

for many applications; see, [12]. In particular, a simple closed 

form, stability and robustness to model misspecification. 

Laplace distribution is found to be especially appealing in 

modelling heavy tailed processes in finance, engineering, 

astronomy and environmental sciences ([9], [16], [15] and 

[21]. It may also offer certain pedagogical advantages; see, [1] 

and [7]. For extensive discussion and comparisons; see, [19] 

and [6]. 
A random variable has a Laplace distribution with location 

parameter −∞ < � < ∞ and scale Δ > 0 if its probability 

density function is 

�	
� = 1
2Δ ��|���|� ,   − ∞ < 
 < ∞ 

The Laplace distribution has  

�	�� = �, �	�� = 2Δ�   and   ���	�� = Δ 

The probability density function of the Laplace distribution 

is also reminiscent of the normal distribution; whereas the 

normal distribution is expressed in terms of the squared 

difference from the mean while the Laplace density is 

expressed in terms of the absolute difference from the mean or 

median.  

A randomized complete block design is a restricted 

randomization design in which the experimental units are first 

sorted into homogeneous rows, called blocks, and the groups 

(treatments) are then assigned at random within the blocks; 

see, [17]. The model for a randomized complete block design 

containing the comparison of no interaction effects, when both 

the block and treatment effects are fixed and there are � 

blocks (BL) and � groups (TR), is as 

� ! = � + # + $! + % ! 

� is a constant, #  are constants for the block (row) effects, $! are constants for the group (column) effects and % ! are 

independent &	0, Δ�.  

Analysis of mean absolute deviation (ANOMAD) for a 

randomized complete block design is derived where the total 

sum of absolute deviation (TSA) is partition into exact block 

sum of absolute deviation (BLSA), exact treatment sum of 

absolute deviation (TRSA) and within sum of absolute 

deviation (WSA). The exact partitions are derived by getting 
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rid of the absolute function by using the idea of re-expressing 

the mean absolute deviation as a weighted average of data 

with sum of weights zero. Since the MAD is a natural 

parameter of the Laplace distribution, the sampling 

distributions of scaled BLSA and TRSA are studied under the 

assumption of Laplace distribution using the variance-gamma 

distribution (generalized Laplace distribution). Consequently, 

an analysis of mean absolute deviation is proposed to test for 

equal population means and medians and two measures of 

effect sizes are extended to ANOMAD test.  

Representation of MAD as a weighted average is presented 

in Section 2. The partitions of TSA into exact BLSA, exact 

WSA and ANOMAD tables are derived in Section 3. The 

sampling distributions for block and treatment are introduced 

in Section 4. Two graphs are suggested in Section 5. 

ANOMAD tests for equal means and median with effect sizes 

are studied in Section 6. Section 7 is devoted to conclusion. 

2. Representation of MAD as a Weighted 

Average 

Let �', ��, … , �) be a random sample from a continuous 

distribution with, density function �	
� , quantile function 
	*� = *�'	
� = +	*�, 0 < * < 1, cumulative distribution 

function *	
� = *, � = �	�� and , = ��-	��. 

Elamir (2012) and [11] defined MAD about mean and 

median as  

Δμ = �|� − �| = �/021� − 21 2�3�4 
and 

Δ5 = �|� − ,| = �6	217 − 21 27��8 
where 

1� = 91, � > �0, � ≤ �             and       17 = ;1, � > ,0, � ≤ , 

From [5] this can be estimated as  

Δ<μ = =' = 1
> ?021�@ − 21 2�@3


)

AB'
 

and 

Δ<5 = =� = 1
> ?021�C − 21 2�C 3


)

AB'
 

where 

1�@ = 91, 
 > 
@0, 
 ≤ 
@             and       1�C = 91, 
 > 
C0, 
 ≤ 
C 

3. Exact MAD Partitions Mean and 

Median 

Assume there are �  different groups (treatments) with 

individuals in each group 
 !, with block D = 1,2, … , �, and 

> = �� . Let 
 ! − 
@  is the total deviation ( 
@ =∑ ∑ 
 !F G! /> ), 
@! − 
@  is the deviation of group mean 

( 
@! = ∑ 
 !/�F B' ) around total mean, 
@ − 
@  is the 

deviation of block mean ( 
@ = ∑ 
 !/�G!B' ) around total 

mean and 
 ! − 
@ − 
@! + 
@ is the error or within. 

The sample MAD about mean is 

=' = 1
> ?021�@ − 21 2�@3
 = 1

> ? IA�A
)

AB'

)

AB'
 

This is a weighted average form where 

IA = 021A�@ − 21 2�@3 

Note that,  

? IA = 0
)

AB'
 

Therefore, the total sum of absolute value is considered to 

be  

JK� = ?|�A − �@|
)

AB'
= ? IA�A

)

AB'
 

This is the most important equation to obtain the exact 

analysis of mean absolute deviations about mean and median. 

3.1. Theorem 1 

In a randomized complete block design the total sum of 

absolute deviations about mean is partitions as  

JK� = �&K� + JLK� + MK� 

where 

JK� = ? ?N� ! − �@N
F

 B'

G

!B'
= ? ? I !0� ! − �@3

F

 B'

G

!B'
, 

�&K� = ? ? I !
F

 B'

G

!B'
	�@ − �@�, 

JLK� = ? ? I !
F

 B'

G

!B'
0�@! − �@3 

MK� = ? ? I !0� ! − �@ − �@! + �@3
F

 B'

G

!B'
 

and 

I ! = 021 ! − 21 2�@3 

Proof: 

Where ∑ I = 0, the total sum of absolute deviations is 
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JK� = ? IA�A
)

AB'
= ? IA	�A −

)

AB'
�@� 

By adding and subtracting �@ , �@!  and �@  and taking the 

summation over both O and D then 

JK� = ? ? I !0� ! − �@ + �@ −�@! + �@! − �@ + �@ − �@3
F

AB'

G

!B'
 

Therefore,  

? ? I !0� ! − �@3
F

 B'

G

!B'
= ? ? I !

F

 B'

G

!B'
	�@ − �@�

+ ? ? I !
F

 B'

G

!B'
0�@! − �@3

+ ? ? I !0� ! − �@ − �@! + �@3
F

 B'

G

!B'
 

3.2. Theorem 2 

In a randomized complete block design the total sum of 

absolute deviations about median is partitions as  

JK� = �&K� + �K� + MK� 

where 

JK� = ? ?N� ! − YQN
F

 B'

G

!B'
= ? ? I !0� ! − �R3

F

 B'

G

!B'
, 

�&K� = ? ? I !
F

 B'

G

!B'
0�R − �S3, 

JLK� = ? ? I !
F

 B'

G

!B'
0�R! − �R3 

MK� = ? ? I !0� ! − �R − �R@! + �R3
F

 B'

G

!B'
 

and 

I ! = 021 ! − 21 2�C 3 

Proof: same as mean. 

3.3. Comparison with ANOVA 

The analysis of variance (ANOVA) for a randomized 

complete block design is  

? ?0� ! − �@3�F

 B'

G

!B'
= ? ?	�@ − �@��

F

 B'

G

!B'
+ ? ?0�@! − �@3�F

 B'

G

!B'

+ ? ?0� ! − �@ − �@! + �@3�F

 B'

G

!B'
 

See; for example, [17]. 

The analysis of mean absolute deviation (ANOMAD) for a 

randomized complete block design is 

? ? I !0� ! − �@3
F

 B'

G

!B'

= ? ? I !
F

 B'

G

!B'
	�@ − �@�

+ ? ? I !
F

 B'

G

!B'
0�@! − �@3

+ ? ? I !0� ! − �@ − �@! + �@3
F

 B'

G

!B'
 

Note that: 

1. ANOMAD replaces the square in ANOVA by weight 

and that ensures stability in statistical inferences. 

2. ANOMAD can be extended to other measures of 

location easily, for example, median.  

3.4. Illustrative Example 

To have an idea on how the method work. Table 1 shows 

TSA partition for a hypothetical data. Note that, JK� = 57, �&K� = 9 , �K� = 10  and MK� = 38  and the total 9 + 10 + 38 = 57 that gives exact partitions 

3.5. Divisors and ANOMAD Tables 

ANOMAD is introduced and used to test for equal 

population means and medians under the following 

assumptions.  

1. The observations are random and independent samples 

from the populations. 

2. The distributions of the populations from which the 

samples are selected are Laplace distribution. 

3. The ∆’s of the distributions in the populations are equal. 

A simulation study is conducted to compute the suitable 

divisors for scaled BLSA, TRSA and WSA using the 

following steps: 

1. For selected design simulate data from Laplace 

distribution using a very large number Y. 

2. Compute �&K�/∆, JLK�/∆, and MK�/∆ for each � 
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and �. 

3. Compute the average for each one. 

From the simulation results in Table 2, the proposed 

ANOMAD table about mean is summarized in Table 3. A 

simulation study is conducted to compute the suitable divisors 

for scaled BLSA, TRSA and WSA using the following steps: 

1. For selected design simulate data from Laplace 

distribution using a very large number Y. 

2. Compute �&K�/∆, JLK�/∆, and MK�/∆ for each � 

and �. 

3. Compute the average for each one. 

From the simulation results in Table 2, the proposed 

ANOMAD table about mean is summarized in Table 3. Also, 

from the simulation results in Table 2, the proposed 

ANOMAD table about median is summarized in Table 4. 

Table 1. JK� partition into �&K�, JLK� and MK� for a hypothetical data. 

Z  |Z − Z[|  \  ]  ]Z  ]	Z[^ − Z[�  ]0Z[_ − Z[3  ]0Z − Z[_ − Z[^ + Z[3  

Group 1        

8  0.5 1 1.167 9.336 2.917  2.917 -5.25 
11  3.5 1 1.167 12.837 -0.583 2.917 1.75 

18 10.5 1 1.167 21.006 0.583 2.917 8.75 

3 4.5 0 -0.833 -2.499 2.083 -2.082 3.75 
Group 2        

20 12.5 1 1.167 23.34 2.917 0 11.67 

1  6.5 0 -0.833 -0.833 0.417 0 5.00 
4  3.5 0 -0.833 -3.332 -0.417 0 3.33 

5  2.5 0 -0.833 -4.165 2.083 0 0.00 

Group 3        
2  5.5 0 -0.833 -1.666 -2.083 2.082 4.58 

9  1.5 1 1.167 10.503 -0.583 -2.917 5.25 

2  5.5 0 -0.833 -1.666 -0.417 2.082 2.91 
7  0.5 0 -0.833 -5.831 2.083 2.082 -3.75 

Total 57   57 9 10 38 

Table 2. simulated averages for �&K�/`, JLK�/` and MK�/` with different values of � and � from Laplace distribution and the number of replications is 

10000. 

a 3 5 7 10  3 5 7 10 3 5 7 10 

b  bc    de   f  

     using mean      

5 4.166 4.11 4.08 4.07  2.11 4.15 6.18 9.24 8.45 16.45 24.50 36.54 

10 9.230 9.19 9.07 9.03  2.06 4.09 6.11 9.11 18.48 36.60 54.68 81.75 

15 14.11 14.15 14.08 14.02  1.98 4.08 6.05 9.06 28.57 56.80 84.76 126.7 

20 19.30 19.20 19.11 19.12  2.06 4.05 6.02 9.07 38.52 76.74 114.8 171.5 

30 29.29 29.17 29.12 29.09  2.05 4.01 6.02 8.99 58.72 116.8 174.8 261.8 

50 49.30 49.12 49.13 49.07  2.02 3.99 6.02 8.99 98.70 197.0 294.8 441.6 

100 99.35 99.12 99.15 99.11  1.99 4.01 5.95 9.02 198.7 397.2 594.5 892.1 

    Using median      

5 4.17 4.15 4.13 4.13  2.15 4.13 6.19 9.20 8.15 16.20 24.23 36.12 

10 9.12 9.21 9.15 9.11  2.10 4.10 6.12 9.08 18.16 36.11 54.10 81.27 

15 14.20 14.16 14.13 14.10  2.05 4.09 6.07 9.10 28.12 56.17 84.17 126.6 

20 19.81 19.15 19.10 19.05  2.07 4.07 6.04 9.06 38.23 76.10 114.3 171.32 

30 29.18 29.16 29.12 29.07  2.06 4.02 6.01 9.03 58.27 116.3 174.4 261.25 

50 49.30 49.16 49.13 49.12  2.03 4.01 6.03 8.97 97.9 196.3 294.3 441.27 

100 99.23 99.06 99.08 99.17  2.01 3.99 5.97 9.03 198.1 396.2 594.4 891.58 

Table 3. summary of ANOMAD table about mean.  

Variation Sum of absolute Divisor MAD estimate e 

Block �&K�  -1 = 	� − 1� + '
G  ��& = Fghi

j'   L' = kFg
kl   

Treatment JLK�  -2 = 	� − 1� + '
F  �JL = mnhi

j�   L� = kmn
kl   

Within MK�  -3 = 	� − 1�	� − 1� + GoF
GF   �M = lhi

jp    

Total JK�     

Table 4. summary of ANOMD table about median. 

Variation Sum of absolute Divisor MAD estimate e 

Block �&K�  -1 = 	� − 1� + '
G  ��& = Fghi

j'   Lp = kFg
kl   

Treatment JLK�  -2 = 	� − 1� + '
F  �JL = mnhi

j�   Lq = kmn
kl   

Within MK�  -3 = 	� − 1�	� − 1� + GoF
GF   �M = lhi

jp    

Total JK�     
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Table 5. simulated critical right tail values for L' and L� using Laplace distribution for different � and � and the number of replications is 10000. 

r − s = t. vw a 3 4 5 8 10 3 4 5 8 10 b   er     ex   

10 3.01 2.58 2.50 2.26 2.25 4.41 3.46 3.08 2.48 2.25 

15 2.40 2.23 2.14 1.98 1.92 3.90 3.27 2.86 2.38 2.17 
20 2.12 2.00 1.92 1.83 1.77 3.78 3.15 2.81 2.31 2.15 

25 1.99 1.86 1.78 1.73 1.70 3.76 3.10 2.81 2.29 2.14 

30 1.84 1.76 1.70 1.65 1.64 3.73 3.08 2.78 2.28 2.11 
50 1.61 1.55 1.51 1.48 1.48 3.54 3.00 2.75 2.21 2.10 

100 1.40 1.38 1.34 1.33 1.32 3.42 2.99 2.73 2.20 2.10 1 − y = 0.99 

10 4.25 3.93 3.60 3.13 3.18 7.50 6.20 4.77 3.50 3.07 
15 3.94 3.17 2.80 2.63 2.49 6.99 5.24 4.40 3.28 2.88 

20 2.87 2.64 2.48 2.26 2.23 6.34 4.81 4.22 3.20 2.85 

25 3.00 2.35 2.25 2.14 2.08 6.23 4.74 4.15 3.10 2.84 
30 2.33 2.19 2.17 2.00 2.00 5.83 4.84 4.14 3.10 2.82 

50 1.96 1.88 1.80 1.74 1.72 5.65 4.65 4.05 3.07 2.77 

100 1.59 1.58 1.53 1.49 1.48 5.53 4.45 3.98 3.06 2.72 

Table 6. simulated critical right tail values for Lp and Lq using Laplace distribution for different � and � and the number of replications is 10000.  

1 − y = 0.95 a 3 4 5 8 10 3 4 5 8 10 b   ez     e{   

10 2.73 2.36 2.27 2.04 2.02 3.79 3.02 2.69 2.17 2.02 
15 2.17 1.98 1.95 1.81 1.78 3.44 2.90 2.62 2.13 1.96 

20 1.96 1.81 1.76 1.67 1.64 3.31 2.79 2.51 2.10 1.94 

25 1.79 1.70 1.67 1.58 1.56 3.29 2.70 2.50 2.06 1.94 
30 1.70 1.64 1.58 1.52 1.52 3.25 2.69 2.48 2.05 1.91 

50 1.51 1.45 1.43 1.39 1.37 3.12 2.65 2.43 2.03 1.91 

100 1.33 1.31 1.29 1.26 1.25 3.03 2.62 2.42 2.02 1.90 1 − y = 0.99 

10 3.99 3.36 3.28 2.74 2.72 6.35 4.79 4.21 3.08 2.64 
15 3.12 2.68 2.56 2.32 2.28 5.90 4.64 3.99 2.84 2.61 

20 2.69 2.42 2.20 2.08 2.02 5.40 4.37 3.61 2.83 2.56 

25 2.38 2.15 2.07 1.91 1.89 5.24 4.11 3.50 2.77 2.51 
30 2.19 2.00 1.95 1.81 1.78 5.23 4.06 3.49 2.74 2.46 

50 1.81 1.72 1.65 1.60 1.60 4.82 3.87 3.48 2.72 2.46 
100 1.49 1.47 1.44 1.40 1.40 4.77 3.85 3.47 2.69 2.45 

 

4. Fitting Sampling Distributions 

Two approaches are used to obtain the approximations of 

the sampling distributions for L', L�, Lp, and Lq. 

4.1. Simulation Approach 

The following steps are used to obtain the critical values: 

1. For any given design simulate data from Laplace 

distribution using large number Y. 

2. Compute L for each Y. 

3. Use quantile function in software R to obtain the 

required quantile for L. 

Tables 5 and 6 give the simulated critical right tail values 

for L' , L� , Lp  and Lq  based on Laplace distribution for 

different � and � for y = 0.05 and 0.01.. 

4.2. Variance Gamma Approach 

The random variable � is said to have Variance-Gamma 

(VG) with parameters |, } ∈ L, ,, � > 0, if it has probability 

density function given by 

�	
; |, �, }, ,� = 	�'/���	�p/�q��� 6	��/���8, 
 ∈ L 

where 

�' = 2 exp	}	
 − |�/��� , �� = σ√2πν'5Γ	1/�� 

�p = |
 − ||,   �q = �	2��/� + }�� 

� = 1/� − 1, D = 1/� − 1/2 

�� = �p�q/��, �2 = σ�2πν1νΓ	1/�� 

Where �7	�� is a modified Bessel function of the third 

kind; see, for example, [22], and [8].  

Note that there are other versions of this distribution 

available but this version is chosen because there is a software 

package in R called gamma-variance based on this version. 

The first two moments of this distribution are used to obtain a 

suitable fit for L', L�, Lp and Lq. The first two moments are 

�	�� = | + }   �>-    �	�� = �� + ,}� 

This distribution is defined over the real line and has many 

distributions as special cases or limiting distributions such as 

Gamma distribution in the limit � ↓ 0 and | = 0, Laplace 

distribution as } = 0 and � = 2 and normal distribution as } = 0 , , = 1/�  and � → ∞ . By using the variances of L' , L�, Lp and Lq  in Table 7 a very good fitting could be 
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obtained. This fitting is given in Table 8. 

Table 7. simulated variances for L', L�, Lp and Lq with different values of � and � from Laplace distribution and the number of replications is 10000. 

a 3 5 7 10 3 5 7 10 �   L'    L�  

10 1.132 0.572 0.417 0.410 3.482 1.124 0.629 0.391 

20 0.313 0.213 0.198 0.182 1.997 0.831 0.576 0.356 
30 0.188 0.141 0.124 0.120 1.816 0.800 0.545 0.345 

50 0.100 0.081 0.073 0.070 1.662 0.761 0.509 0.344 

100 0.048 0.039 0.035 0.034 1.570 0.777 0.505 0.352 

   Lp  Lq  

10 0.893 0.377 0.319 0.292 2.496 0.751 0.445 0.274 
20 0.270 0.152 0.139 0.123 1.473 0.601 0.396 0.245 

30 0.135 0.098 0.880 0.079 1.253 0.556 0.361 0.237 
50 0.071 0.056 0.051 0.046 1.129 0.527 0.361 0.235 

100 0.034 0.027 0.025 0.023 1.044 0.522 0.350 0.237 

Table 8. variance gamma distribution approximation to ratio L', L�, Lp and Lq by using the simulated first two moments. 

Ratio Variance gamma fitting 

L' �� �| = 0, � = � �	F�'�
6	F�'�	G�'�8� + '

	F�'� , } = 1, , = �.�
	F�'��  

L� �� �| = 0, � = � �	G�'�
6	F�'�	G�'�8� + '

	G�'� , } = 1, , = �.�
	G�'��  

Lp �� �| = 0, � = � )
6	F�'�	G�'�8�o'/G , } = 1, , = �.��

	F�'��  

Lq �� �| = 0, � = � )
6	F�'�	G�'�8�o'/F , } = 1, , = �.��

	G�'��  

 

Figure 1. histogram of L' and L� based on simulated data from Laplace distribution with VG distribution superimposed and (a) � = 5 and � = 10(b) � = 5 

and � = 20 (c) � = 4 and � = 25  and (d) � = 7 and � = 25. 
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Figure 2. histogram of Lp and Lq based on simulated data from Laplace distribution with VG distribution superimposed and (a) � = 5 and � = 10(b) � = 7 

and � = 15 (c) � = 4 and � = 20  and (d) � = 7 and � = 25. 

Figures 1 and 2 show the histograms of L', L�, Lp and Lq 

using simulated data from Laplace distribution with VG 

distribution superimposed for different values of � and >. It 

is clear that the variance gamma distribution gives a very good 

fit for the ratios. 

5. Graphic Presentation 

5.1. ANOMAD General Plot 

This plot is for all groups to detect shifts in mean or median. 

The � −axis contains the index of the groups and the � −axis 

contains the heights for the sum of ℎ' = I	
@! −

@�/		O − 1�Δ� , and ℎ� = I	
 − 
@! − 
@ + 
@�/		D −
1�	O − 1��Δ) for each group. Separate curves are drawn for 

sums of ℎ' and ℎ�. The points on each curve are connected 

by lines. This graph should reflect the heights, shifts, and 

patterns among all groups.  

5.2. ANOMAD Individual Plot 

This plot is for each group to detect shift inside the group. 

The �-axis contains the index of the data for each group 	1,2, … , >!, O = 1,2, . . , ��  and the � -axis contains the 

heights, ℎp = I	
@! − 
@�/		O − 1�Δ�  and ℎq = I	
 −
@! − 
@ + 
@�/		D − 1�	O − 1��Δ  for each value. Separate 

curves are drawn ℎp and ℎq. The points on each curve are 

connected by lines. This graph should reflect the heights, 

shifts and patterns in each group. 

Figures 3, 4 and 5 show that:  

1. When means or medians are equals the two lines will be 

near from each other and most likely that there will be 

interference among them or the treatment line may be 

down the within line; see, Figure 3 a0. In this case it will 

not be clear pattern in each group and the heights will be 

almost the same for on each group; see, Figure 3 a1, a2, 

a3, a4 and a5. This may be indicating a strong evidence 

for no shifting in means or medians. 

2. When mean(s) or median(s) are not equals the treatment 

line will start to go up until it may be separated from the 

within line; see, Figure 5 a0. In this case it will be clear 

pattern in group(s) with clear different gaps or heights; 

see, Figue 5 a1,a2,a3,a4 and a5. It is clear that the group 

three has a different pattern from others. This may give a 

strong evidence for shift(s) in mean(s) or median(s). 

3. If much more points of between line lies under within 

line with small gap; see, Figure 4 a0. In this case there is 

not enough evidence for shift and it will not be clear 

pattern in each group; see, Figure 4 a1, a2, a3, a4 and a5. 
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Figure 3. ANOMAD plot for simulated data from &	10,1�: (a0) all groups and (a1), (a2), (a3), (a4) and (a5) for each group and � = 5, > = 50. Red line is 

treatment and blue line is within. 

 

Figure 4. ANOMAD plot for simulated four groups L(10,1) and one group &	11,1�: (a0) all groups and (a1), (a2), (a3), (a4) and (a5) for each group and � = 5, > = 50. Red line is treatment and blue line is within. 
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Figure 5. ANOMAD plot for simulated four groups L(10,1) and one group &	11,1�: (a0) all groups and (a1), (a2), (a3), (a4) and (a5) for each group and � = 5, > = 50. Red line is treatment and blue line is within. 

6. Test for mean and median 

For mean the null hypothesis �  is that  

Blocks 

� : �' = �� = �p = ⋯ = �F 

Treatments 

� : �' = �� = �p = ⋯ = �G 

For median the null hypothesis is that  

Blocks 

� : ,' = ,� = ,p = ⋯ = ,F 

Treatments 

� : ,' = ,� = ,p = ⋯ = ,G  

Bukhari is a food chain with four outlets in Bahrain. The 

owner is interested in determine if the average service quality 

at the four outlets is the same. Twelve people are selected and 

they asked to eat at each of the four outlets. The order of visits 

to the four outlets was randomized, but each customer visited 

each outlet one time. After each visit, each customer rated the 

service on a scale of 1 to 100. The data is given in Table 9. 

To test for the assumption of Laplace distribution, the 

function laplace.test() in package lawstat in R-software is 

used where it gives five goodness of fit for the Laplace 

distribution based on the work of [20]. Table 9 gives the 

sample data with means, medians, MAD and 

Kolmogorov-Smirnov (D) test for Laplace distribution. The 

results for the four groups are given in Table 9 where £-values 

more than 0.01, 0.05 and 0.10, therefore, the assumption of 

Laplace cannot be rejected. Because the maximum MAD to 

minimum MAD is 1.3, the assumption of homogeneity of 

MAD’s may not be rejected. 

From Table 10, since L' = 1.9 < 2.10 the null hypothesis 

could not be rejected, .i.e., blocking is not effective while L� = 6.2 > 3.14 , therefore, the outlets are different in 

averages. 

Figure 6 shows that 

1. Most of the points of treatment line are above the within 

line with a big gap at the point 3. This might give a visual 

evidence of shift in average for group 3; see, Figure 6 a0. 

2. The second group is stable while the first and fourth 

groups almost have the same patterns. The third group 

has pattern near from first and fourth groups but the gap 

is much more than the other groups. This may indicate 

that the third group is different from others; see, Figure 6 

a1, a2, a3 and a4.  

3. Table 11 shows that the block and treatment are 

significance in terms of equal medians. Care needs to be 

used in interpreting the implication of block effects. 
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Figure 6. ANOMAD plots for the service quality data for four outlets. 

Table 9. service quality score for four outlets and Laplace goodness of fit using Kolmogorov-Smirnov (KS) test. 

  Outlets        

Customer O1 O2 O3 O4 means Med.     

1 71 73 94 83 77.25 72.0 Laplace test(KS)   

2 72 75 81 78 75.00 73.5  p-value =' =� 

3 90 81 92 74 88.25 90.0 O1 0.51 4.54 4.5 
4 74 77 64 81 72.25 74.0 O 2 0.34 4.67 4.7 

5 76 85 91 80 82.00 80.5 O3 0.51 6.00 6.1 

6 61 90 84 71 74.00 72.5 O4 0.50 4.53 4.5 
7 75 67 82 66 74.75 75.0     

8 73 78 89 76 78.25 75.5     

9 78 71 90 86 79.25 78.0     
10 73 76 85 89 76.75 74.5     

11 81 79 75 69 79.00 80.0     

12 78 72 88 79 79.00 78.0     
Means 75.2 77 84.6 75.1 78.91      

Med. 74.5 76.5 86.5 74.5  78     

 

Table 10. ANOMAD for testing equal means for quality service.  

Varia. SA Divisor MAD est. e ¥¦at.vw∗  

Block 86.96 11.25 7.73 1.9 2.10 
Treatment 77.29 3.08 25.1 6.2 3.14 

Within 134.71 33.33 4.04   

Total 298.96     

*This value from Variance-Gamma package in R-software. 

Table 11. ANOMAD for testing equal medians for quality service.  

Vari. SA Divisor MAD est. e ¥¦at.vw∗  

Block 94 11.25 8.35 2.60 1.93 

Treatment 96 3.08 31.17 9.71 2.80 
Within 107 33.33 3.21   

Total 297     

*This value from Variance-Gamma package in R-software. 

Effect sizes 

Effect sizes (ES) provide another measure of the magnitude 

of the difference expressed in standard variation units in the 

original measurement. Thus, with the test of statistical 

significance and the interpretation of the effect size (ES), the 

researcher can address issues of both statistical significance 

and practical importance. The most direct one is  

¨� = KK©ªª©«¬KKm­¬�®
 

where KK is the sum of squares. ¨� measures the proportion 

of the variation in � that is associated with membership of the 

different groups defined by � . ¨�  is an uncorrected effect 

size estimate that estimates the amount of variance explained 

based on the sample, and not based on the entire 
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population. ¯� has been suggested to correct for this bias as  

¯� = -�©ªª©«¬0�K©ªª©«¬ − �K©°°­°3
KKm­¬�® + �K©°°­°

 

See; for example, [3], [4], [18], [2] and [14]. 

These two measures could be extended to ANOMAD as  

¨ki± = K�©ªª©«¬K�m­¬�®
 

and 

¯ki± = �²�³´�©ªª©«¬0�K�©ªª©«¬ − �K�©°°­°3
K�m­¬�® + �K�©°°­°

 

Where ¨ki± measures the proportion of MAD in � that is 

associated with membership of the different groups defined by �. For the above data, Table 12 gives the computations of 

these measures. 

Table 12. The effect sizes for ANOMAD test. 

 Using mean Using median 

 ¨ki± ¯ki± ¨ki± ¯ki± 

BLSA 0.291 0.137 0.31 0.19 

TRSA 0.258 0.214 0.32 0.29 

From Table 12, note that ANOMAD for testing equal 

median explains more variation in dependent variable than 

ANOMAD for testing equal mean. 

7. Conclusion 

The Laplace distribution provides a good approximation to 

many applications. In these cases, when the tests of equal 

means or medians are needed, the ANOMAD will be 

appropriate. The ANOMAD had a very important property 

where it had been extended to test for equal medians. 

Moreover, it had given weights to the data rather than square 

and that ensured stability in statistical inferences.  

The ANOMAD had important information about the shifts 

in means and medians that studied by fitting variance-gamma 

distribution to L', L�, Lp and Lq and tested for equal means 

or medians.  Also, it offered a very effective way to find out 

the shifts in means and medians graphically. Actually, the 

graph is a very strong point if one can obtain the right 

conclusion from it. Two effect size measures are extended to 

ANOMAD.  

 

References 

[1] Algina, J., Keselman, H.J., & Penfield, R.D. “An alternative to 
Cohen’s standardized mean difference effect size: A robust 
parameter and confidence interval in the two independent 
group’s case” Psychological Methods,10, 317-328 (2005). 

[2] Bakeman, R. “Recommended effect size statistics for repeated 
measures designs”, Behaiour Research Methods, 37, 379–384 
(2005). 

[3] Cohen, J. “Statistical power analysis for the behavioral 
sciences”, (2nd ed.), Hillsdale, NJ: Erlbaum (1988). 

[4] Cohen, J. “The earth is round (p< .05)”, American Psychologist, 
49, 997-1003 (1994). 

[5] Elamir, E.A.H. “On uses of mean absolute deviation: 
decomposition, skewness and correlation coefficients”, Metron: 
International Journal of Statistic, LXX, n.2-3, 145-164 (2012). 

[6] Gorard S. “Revisiting a 90-year-old debate: the advantages of 
the mean deviation”, British Journal of Educational Studies, 53, 
417-430 (2005) 

[7] Gorard, S. “Introducing the mean absolute deviation 'effect' 
size”, International Journal of Research & Method in 
Education 38(2): 105-114 (2015). 

[8] Gradshteyn, I.S., and Ryzhik, I.M., “Table of Integrals, Series, 
and Products”, Academic Press (1980). 

[9] Granger, C.W.J. and Z. Ding, “Some properties of absolute 
return”, Annales D’economie et de Statistique, 40, 67–91 
(1995). 

[10] Haas, M., Mittnik, S. and M.S. Paolella, “Modelling and 
predicting market risk with Laplace-Gaussian mixture 
distributions” Applied Financial Economics, 16, 1145–1162 
(2006). 

[11] Habib, E.A.E “Correlation coefficients based on mean absolute 
deviation about median” International Journal of Statistics and 
Systems, 6, 413-428 (2011). 

[12] Kotz, S, Kozubowski, T. J., and Podgórski, K. “The Laplace 
Distribution and Generalizations” Birkhauser, Boston (2001). 

[13] Kozubowski,, T. and K. Podgorski, “Asymmetric Laplace laws 
and modelling financial data” Mathematical and Computer 
Modelling - special issue, Eds, Mitnik, S., Rachev, S.T.,: Stable 
non-Gaussian models in finance and econometrics, 34, 
1003–1021 (2001). 

[14] Lakens, D. “Calculating and reporting effect sizes to facilitate 
cumulative science: a practical primer for t-tests and ANOVAs” 
Frontiers in Psychology, 4, 1-12 (2013). 

[15] Linden, M., “A model for stock return distribution” 
International Journal of Finance and Economics, 6, 159–169 
(2001). 

[16] Mittnik, S., Paolella, M.S. and S.T. Rachev, “Unconditional 
and conditional distributional models for the Nikkei Index”, 
Asia Pacific Financial Markets, 5, 99–128 (1998). 

[17] Neter, J., Kutner, H., Nachtsheim, C. and Wasserman, W.  
“Applied linear statistical models” 4th ed., McGraw-Hill 
(1996). 

[18] Olejnik,S.,and Algina, “Measures of effect size for 
comparative studies: applications, interpretations, and 
limitations” Contemporary Educational Psychology, 25, 
241–286 (2000).  

[19] Pham-Gia, T. and T. L. Hung “The mean and median absolute 
deviations” Mathematical and Computer Modeling 34, 
921–936 (2001). 

[20] Puig, P. and Stephens, M. A. “Tests of fit for the Laplace 
distribution, with applications” Technometrics 42, 417-424 
(2000). 



 American Journal of Theoretical and Applied Statistics 2015; 4(3): 138-149  149 

 

[21] Sabarinath, A. and A.K. Anilkumar.  “Modeling of sunspot 
numbers by a modified binary mixture of Laplace distribution 
functions”, Solar Physics, 250, 183–197 (2008). 

[22] Seneta, E. “Fitting the variance-gamma model to financial 
data”, Journal of Applied Probability. 41A:177-187 (2004). 

[23] Srivastava, H.M., Nadarajah, S. and S. Kotz,. “Some 
generalizations of the Laplace distribution”, Applied 
Mathematics and Computation, 182, 223–231(2006). 

 

 


