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Abstract: In this paper, we consider the Bayes estimators of the unknown parameters of the exponentiated Weibull 

distribution (EWD) under the assumptions of gamma priors on both shape parameters. Point estimation and confidence 

intervals based on maximum likelihood and bootstrap methods are proposed. The Bayes estimators cannot be obtained in 

explicit forms. So we propose Markov chain Monte Carlo (MCMC) techniques to generate samples from the posterior 

distributions and in turn computing the Bayes estimators. The approximate Bayes estimators obtained under the assumptions of 

non-informative priors are compared with the maximum likelihood estimators using Monte Carlo simulations. A numerical 

example is also presented for illustrative purposes. 
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1. Introduction 

Record data and the associated statistics are of interest and 

importance in many areas of real life applications involving 

datd relating to meteorlogy, sport, economics, athletic events, 

oil, mining surveys and lifetesting. Many authors have 

studied records and associated statistics. Among them are 

Arnold et al. [1,2], Resnick [3], Raqab and Ahsanulla [4], 

Nagaraja [5], Ahsanulla [6,7], Raqab [8], Abd Ellah [9,10], 

Sultan and Balakrishnan [11], Preda and Panaitescu [12] and 

Mahmoud et al. [13]. Let 1 2
, ,...X X  be an infinite sequence 

of independent identically (iid) continuous random variables 

(r.v.'s). An observation jX  will be called an lower record 

value if jX <  i
X  for every i j<  . We will assume that jX  

occurs at time j  , then the record time sequence is defined as, 

0
1T =  and min{

n
T j= : jX

1
}.

nTX
−

<  The lower record value 

sequence 0
,R  1

,R  ..., nR  is defined as 
nn TR X=  

, 0,1,2,...n =  . For more detail and references see Nagaraja 

[5], Ahsanullah [7] and Arnold et al. [2]. 

Mudholkar and Srivastava [14] introduced a two parameter 

Exponentiated Weibull distribution (EWD), an extension of 

the well-known Weibull distribution. The beauty and 

importance of this distribution lies in its ability to model 

monotone as well as non-monotone failure rates which are 

quite common in reliability and biological studies. The form 

of the probability density function (pdf) and cumulative 

distribution function (cdf), with two shape parameters, α  

and β  of the Exponentiated Weibull distribution denoted by 

( , )EWD α β  are given, respectively, by 

���� = ����	
����−����1 − ����−�����	
, �›0, �, �›0,  (1) ���� = �1 − ����−����� , �›0, �, �›0,                (2) 

Exponential, generalized exponential, Rayleigh, 

exponentiated Rayleigh and Weibull distributions can be 

deduced as special cases from EWD ( , )α β . The rest of the 

paper is organized as follows. In Section 2, we derive point 

estimation and confidence interval based on maximum 

likelihood estimation. The parametric bootstrap confidence 

intervals are discussed in Section 3. Section 4 describes 

Bayes estimates and construction of credible intervals using 

the MCMC techniques. Section 5 contains the analysis of a 

numerical example to illustrate our proposed methods. A 

simulation studies are reported in order to give an assessment 
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of the performance of the different estimation methods in 

Section 6. Finally a conclusion is presented with some 

comments in Section 7. 

2. Maximum Likelihood Estimation 

In this section, we estimate α  and ,β  by considering the 

maximum likelihood and we compute the observed Fisher 

information based on the likelihood equations. These will 

enable us to develop pivotal quantities based on the limiting 

normal distribution, the resulting pivotal quantities can be 

used to develop interval estimates. Suppose that 
(1)

,
L

x x=

( 2)
,

L
x  ...,

( )L n
x  be the lower record values of size n  from 

exponentiated Weibull distribution ( , )EWD α β . The 

likelihood function for observed record x  given by see 

Arnold et al. [2]  

ℓ� �, �|�� = �������� ∏ ��� �!��"�� �!���	
#$
 ,                    (3) 

where (.)f  and (.)F  are given respectively, by (1) and (2), 

the likelihood function can be obtained by substituting from 

(1) and (1) in (3) and written as  ℓ��, �|�� =������� %� log )1 − ����−������ �*+ ∏ � �!�,-./�0)	� �!�, *
	/�0)	� �!�, *�	
#$
 ,(4) 

The logarithm of the likelihood function (4) is given by 

1��, �|�� =  2 log � + 2 log � + � log )1 − ����−������ �* +                       �� − 1� 4 log ���#��#$
 − 5 ���#���
#$
 −

                       5 log )1 − ����−���#�� �* .�
#$
                           (5) 

Differentiating (5) with respect to α  and β  and equating 

the results to zero, we obtain the likelihood equations for the 

parameters α  and β  as 

7���,�|��7� = �� − 4 log ���#��#$
 − 5 ���#���
#$
 log ���#� −�8������, �� − 9����#�, �� = 0,               (6) 

where  

8������, �� = ������ ����−������ � log �����1 − ����−������ �    
and 9����#�, �� =  = � �!�, /�0)	� �!�, * >?@ � �!�
	/�0)	� �!�, * ,�

#$
        (7) 

7���,�|��7� = �� − log )1 − ����−������ �* = 0.          (8) 

The maximum likelihood estimate (MLE) of β  say β̂ , 

can be obtained as 

�A = 	�>?@B
	/�0)	� �C�, *D,                            (9) 

and the MLE of the α  say α̂  can be obtained by solving the 

non-linear likelihood equation  

���� =     �� − 4 log ���#��#$
 − 5 ���#���
#$
 log ���#� +

 �E�� �C�,��>?@B
	/�0)	� �C�, *D − 9����#�, ��,               (10) 

where 
( )

( , )
L n

x αΦ  and 
( )

( , )
L i

x αΨ  are given in (7). Therefore, 

α̂  can be obtained as the solution of the non-linear equation 

in the form ℎ��� = �,                           (11) 

where 

ℎ��� = 2 GHH
HI5 ���#���

#$
 log ���#� − 4 log ���#��#$
 −
�E�� �C�,��>?@B
	/�0)	� �C�, *D + 9����#�, �� JKK

KL	

.   (12) 

Since α̂  is a fixed point solution of non-linear equation 

(10), therefore, it can be obtained by using a simple iterative 

scheme as follows ℎ��M� = �MN
,                                      (13) 

where 
jα  is the jth  iterate of α̂ . The iteration procedure 

should be stopped when 
1

ˆ ˆ| |j jα α+ −  is sufficiently small. 

Once we obtain α̂  from (10) , and the MLE of β  say β̂  

becomes  �A = 	�>?@B
	/�0)	� �C�,O *D.                         (14) 

2.1. Observed Fisher Information 

The asymptotic variances - covariance of the MLEs for 

parameters α  and β  are given by elements of the inverse 

of the Fisher information matrix  

IQR = S %− 7T�7�7�+ , U, V = 1,2.                    (15) 

Unfortunately, the exact mathematical expressions for the 

above expectations are very difficult to obtain. Therefore, we 

give the approximate (observed) asymptotic variance-

covariance matrix for the MLEs, which is obtained by 

dropping the expectation operator E  

X YZ[��\� ]^_��\, �A�]^_��A, �\, � YZ[��A� ` = a7T���,�|��7�T 7T���,�|��7�7�7T���,�|��7�7� 7T���,�|��7�T
b

	

,    (16) 

with  
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7T���,�|��7�T = − ��T − 5 ���#���
#$
 log ���#� c − �d������, �� −          e����#�, ��,                                                  (17) 

where  

d������, �� = �� �C�, /�0)	� �C�, * >?@ � �C�T%
	� �C�, 	/�0)	� �C�, *+
%
	/�0)	� �C�, *+T ,  (18) 

e����#�, �� = �� �!�, /�0)	� �!�, * >?@ � �!�T%
	� �!�, 	/�0)	� �!�, *+
%
	/�0)	� �!�, *+T ,  (19) 

7T���,�|��7�7� = 7T���,�|��7�7� =  8������, ��,              (20) 

where 8������, �� is given in (7)  

7T���,�|��7�T = 	��T .                               (21) 

The asymptotic normality of the MLE can be used to 

compute the approximate confidence intervals for parameters 

,α  and β . Therefore, (1 )100%δ−  confidence intervals for 

parameters ,α  and β  become, respectively, as  

�\ ± gh/cjYZ[��\� Z2k �A ± gh/clYZ[��A� ,              (22) 

where gh/c  is the percentile of the standard normal 

distribution with right-tail probability m/2. 

3. Bootstrap Confidence Intervals 

In this section, confidence intervals based on the 

parametric bootstrap methods are proposed (i) percentile 

bootstrap method (Boot-p) based on the idea of Efron [15]. 

(ii) bootstrap-t method (Boot-t) based on the idea of Hall [16]. 

The algorithms for estimating the confidence intervals using 

both methods are illustrated as follows 

3.1. Percentile Bootstrap Method 

Algorithm 1 

� From the original data 
(1)

,
L

x x=  
( 2)

,
L

x  ...,
( )L n

x  compute 

the ML estimates of the parameters 
⌢

α  and 
⌢

β  by (10) 

and (14). 

� Use 
⌢

α  and 
⌢

β  to generate a bootstrap sample 

(1)
,

L
x x∗∗ =  

( 2)
,

L
x∗

...,  
( )L n

x∗
 . 

� As in Step 1, based on x
∗

 compute the bootstrap sample 

estimates of α  and ,β  say 
⌢

α
∗
 and 
⌢

.β
∗

  

� Repeat Steps 2-3 N  times representing N  bootstrap 

MLE's of ( , )α β  based on N  different bootstrap 

samples. 

� Arrange all 
⌢

sα
∗′

 and 
⌢

,sβ
∗′

 in an ascending order to 

obtain the bootstrap sample ( [1] ,lφ  [2] ,lφ  [ ]..., ),N

lφ  

1, 2l =  (where 
⌢ ⌢

1 2, ).φ α φ β
∗ ∗

≡ ≡   

Let ( ) ( )
l

G z P zφ= ≤  be the cumulative distribution 

function of 
1
.φ  Define 1( )lboot G zφ −=  for given .z  The 

approximate bootstrap 100(1 )%δ−  confidence interval of 
l

φ  

is given by 

%nopqqr )hc* , nopqqr )
	hc *+.                     (23) 

3.2. Bootstrap-t Method 

Algorithm 2 

� From the original data 
(1)

,
L

x x=
( 2)

,
L

x ...,
( )L n

x  compute 

the ML estimates of the parameters 
⌢

α  and 
⌢

β  by 

equations (10) and (14). 

� Using 
⌢

α  and 
⌢

β  generate a bootstrap sample 

(1) (2) ( ){ , ,..., }.L L L nx x x∗ ∗ ∗
 Based on these data, compute the 

bootstrap estimate of α  and β  using (10) and (14), say 
⌢

α
∗
 and 
⌢

β
∗

 and following statistics 

s
∗ = √���O∗	�O�jvwx��O∗�  Z2k sc∗ = √���y∗	�y�lvwx��y∗� ,  
where YZ[��\∗� and YZ[��A∗� are obtained using the Fisher 

information matrix. 

� Repeat Step 2, N boot times. 

� For the 
1T ∗

 and 
2T ∗  values obtained in Step 2, determine 

the upper and lower bounds of the 100(1 )%δ−  

confidence interval of α  and β  as follows: let 

( ) ( ), 1, 2iH x P T x i∗= ≤ =  be the cumulative distribution 

function of 
1T ∗  and 

2T ∗ . For a given x , define 

�\pqqr	r��� = �\ + �2	
/c�jYZ[��\�z	
 

Z2k �Apqqr	r��� = �A + �2	
/c�lYZ[��A�z	
 . 
Here also, YZ[��\� and YZ[��A� can be computed as same 

as computing the
⌢

( )Var α
∗

 and 
⌢

( )Var β
∗

 . The approximate 

100(1 )%δ−  confidence interval of α  and β  are given by 

%�\pqqr	r )hc* , �\pqqr	r )
	hc *+ Z2k %�Apqqr	r )hc* , �Apqqr	r )
	hc *+. (24) 

4. Bayes Estimation using MCMC 

This section describes Bayesian MCMC methods that have 

been used to estimate the parameters of the exponentiated 

Weibull distribution (EWD). The Bayesian approach is 

introduced and its computational implementation with 

MCMC algorithms is described. Gibbs sampling procedure 

(see Geman and Geman [17], Smith and Roberrs [18]) and 

the Metropolis-Hastings (MH) method (see Metropolis et al. 

[19] and Hastings [20]) are used to generate samples from the 



 American Journal of Theoretical and Applied Statistics 2015; 4(1): 26-32  29 

 

posterior density function and in turn compute the Bayes 

point estimates and also construct the corresponding credible 

intervals based on the generated posterior samples. By 

considering model (1), assume the following gamma prior 

densities for α  and β  as  

{
��|Z, |� = } ~���w� ����|�� U� � ≥ 00                      U� � < 0�,          (25) 

and 

{c��|�, k� = } ������ ��	
����k�� U� � ≥ 00                             U� � < 0 �.          (26) 

The joint prior density of α  and β  can be written as  

{��, �� = {
��|Z, |�{c��|�, k� 

              = ~�����w����� �w	
��	
����−|� − k��.                    (27) 

Based on the likelihood function of the observed sample is 

given by (4) and the joint prior in (27), the joint posterior 

density of α  and β  given the data, denoted by {∗��, �|��, 

can be written as  

{∗��, �|�� = ℓ��,�|��×���,��� � ℓ��,�|�����,���������� .                (28) 

Therefore, the Bayes estimate of any function of α  and 

β  say ( , )g α β  , under squared error loss function is 

����, �� = S�,�|�wrw����, ��� = � � ���,��ℓ��,�|�����,���������� � � ℓ��,�|�����,���������� .  (29) 

Generally, the ratio of two integrals given by (29) cannot 

be obtained in a closed form. In this case, we use the MCMC 

method to generate samples from the posterior distributions 

and then compute the Bayes estimator of ( , )g α β  under the 

squared errors loss (SEL) function. Therefore, we propose 

the approaches of MCMC technique to approximate (29). See, 

for example, Robert and Casella [21] and, Rezaei et al. [22]. 

4.1 MCMC Technique 

In this subsection we consider the MCMC method to 

generate samples from the posterior distributions and then 

compute the Bayes estimates of the parameters α  and β  

under the squared errors loss (SEL) function. A wide variety 

of MCMC schemes are available. An important sub-class of 

MCMC methods is Gibbs sampling and more general 

Metropolis-within-Gibbs samplers. The advantage of using 

the MCMC method over the MLE method is that we can 

always obtain a reasonable interval estimate of the 

parameters by constructing the probability intervals based on 

the empirical posterior distribution. This is often unavailable 

in maximum likelihood estimation. Indeed, the MCMC 

samples may be used to completely summarize the posterior 

uncertainty about the parameters through a kernel estimate of 

the posterior distribution. This is also true of any function of 

the parameters. 

The expression for the joint posterior can be obtained up to 

proportionality by multiplying the likelihood with the joint 

prior and this can be written as 

{∗��, �� ∝ ��Nw	
��N�	
��� %− )|� + k� − � log )1 −
     ����−������ �**+ ∏ � �!�,-./�0)	� �!�, *
	/�0)	� �!�, *�	
#$
 ,       (30) 

from (30) it is clear that the posterior density function of β  

given α  is 

{
∗��|�� ∝ ��N�	
��� %−� )k − log )1 − ����−������ �**+.  (31) 

Therefore, the posterior density function of β  given α  , 

is gamma with parameters �2 + �� and 

 k − log )1 − ����−������ �*, therefore, samples of β  can be 

easily generated using any gamma generating routine. 

The posterior density function of α  given β  can be 

written as 

{c∗��|�� ∝ ��Nw	
��� �−|� + � log )1 − ����−������ �* +
�� − 1� 4 log ���#��#$
 − 5 ���#���

#$
 − 5 log )1 −�
#$
����−���#�� �*�.                               (32) 

The posterior distribution of α  given β  Eq. (32) cannot 

be reduced analytically to well known distributions and 

therefore it is not possible to sample directly by standard 

methods, but the plot of it (see Figure. 1) show that it is 

similar to normal distribution. So to generate random 

numbers from this distribution, we use the Metropolis-

Hastings method with normal proposal distribution.The 

choice of the hyper-parameters , ,a b c  and d  which make 

(32) close to the proposal distribution and obviously more 

convergence the MCMC iteration. We propose the following 

MCMC algorithm to draw samples from the posterior density 

functions; in turn compute the Bayes estimates and also, 

construct the corresponding credible intervals. 

Algorithm 3 

� 
⌢

0 ,α α=  M nburn=  . 

� Generate 
1

β  from gamma distribution 
1 ( | ).π β α∗  

� Generate 
1

α  from 
2 ( | )π α β∗  using (MH) algorithm in 

Metropolis et al. [19] and Hastings [20]. 

� Compute ( )tβ  and 
( )

.
tα  

� Repeat steps 2-4 N  times. 

� Obtain the Bayes estimates of α  and β  with respect to 

the SEL function as 

S���|kZ�Z� = 1� − � 5 �#
�

#$�N
 , 
S���|kZ�Z� = 1� − � 5 �#

�
#$�N
 . 
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� To compute the credible intervals of α  and β  , 

1
,...,

N
α α  order and 

1
,...,

N
β β  as 

(1) ( )... Nα α< <  and 

(1) ( )... Nβ β< <  . Then the 100(1 )%δ−  symmetric 

credible intervals of α  and β  become 

��)��T*, ���)
	�T*�� Z2k ��)��T*, ���)
	�T*��.          (33) 

5. Numerical Example 

To illustrate the inferential procedures developed in the 

preceding sections, let us consider the first seven lower 

record values simulated from a two-parameter exponentiated 

Weibull distribution (1) with shape parameters 2.001α =  

and 3.121β = , as follows 

1.3423 1.2578 0.8559 0.7335 0.5145 0.3953 0.3649

Based on these lower record values, we compute the 

approximate MLEs, Bootstrap (Boot-p, Boot-t) and Bayes 

estimates of α  and β  using MCMC method, we assume 

that informative priors 2, 1.5, 3.5a b c= = =  and 1.5)d =  on 

both α  and .β  The density function of 
2 ( | )π α β∗  as given 

in (32) is plotted in Figure 1. It can be approximated by 

normal distribution function as mentioned in Subsection 4.1. 

Also the 95%  , approximate maximum likelihood estimation 

(AMLE) confidence intervals, Bootstrap confidence intervals 

and approximate credible intervals based on the MCMC 

samples, the results are given in Table 1. Figures 2 and 3 plot 

the MCMC output of α  and β , using 10000  MCMC 

samples (dashed line represent means and red lines represent 

lower and upper bounds of 95% probability intervals.). The 

plot of histogram of α  and β  generated by MCMC method 

are given in Figures 4 and 5. This was done with 1000  

bootstrap sample and 10000  MCMC sample and discard the 

first 1000  values as `burn-in'. 

 

Fig. 1. Posterior density function of α  given β  

 

Fig. 2. Trace plot MCMC output of α  

 

Fig. 3. Trace plot MCMC output of β  

 

Fig. 4. Histogram of α  generated by MCMC method. 

 

Fig. 5. Histogram of β  generated by MCMC method. 
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Table 1. Results obtained by MLE, Bootstrap and MCMC method of α  and 

.β  

Method Parameter Point Interval Length 

MLEs 
α  2.1741 [-0.0166,4.3649] 4.3815 

β  3.1153 [-0.5861,6.8168] 7.4029 

Boot-p 
α  2.0938 [0.1518,3.9557] 3.8039 

β  2.9777 [0.6380,5.9440] 5.3060 

Boot-t 
α  2.1810 [0.1831,3.6436] 3.4605 

β  3.1162 [0.0744,5.0567] 4.9823 

MCMC 
α  2.0563 [0.9442,3.5859] 2.6417 

β  2.9667 [1.3008,5.4599] 4.1591 

6. Simulation Study 

Table 2. Average values of the different estimators, the corresponding MSEs 

and coverage percentages when ( , ) (2,3)α β = . 

n 
MLE MCMC(Prior 0) MCMC(Prior 1) 

α  β  α  β  α  β  

5 2.1289 3.2814 2.1143 3.0633 2.1075 2.9414 

 (0.1193) (0.2347) (0.1184) (0.2286) (0.1132) (0.2131) 

 0.945 0.965 0.951 0.962 0.969 0.953 

7 2.148 3.1736 2.1603 3.0202 2.1043 3.0133 

 (0.1066) (0.2315) (0.1111) (0.2237) (0.1109) (0.2117) 

 0.942 0.949 0.957 0.961 0.970 0.964 

9 2.0544 3.2825 2.0079 3.0711 2.0991 3.1000 

 (0.0928) (0.2246) (0.0955) (0.2231) (0.0946) (0.2037) 

 0.949 0.957 0.948 0.964 0.955 0.973 

12 2.1412 3.1068 2.1427 2.9168 2.0885 3.0979 

 (0.0921) (0.2132) (0.0922) (0.2128) (0.0912) (0.1988) 

 0.961 0.964 0.951 0.958 0.972 0.949 

15 2.1410 3.0482 2.0007 3.06632 2.1707 3.1410 

 (0.0917) (0.2103) (0.0910) (0.2105) (0.0908) (0.1953) 

 0.951 0.963 0.946 0.958 0.963 0.954 

18 2.1581 3.0609 2.0864 2.9813 2.0829 2.9962 

 (0.0861) (0.2057) (0.0862) (0.2054) (0.0812) (0.1806) 

 0.953 0.949 0.952 0.961 0.973 0.956 

20 2.0271 2.8826 1.9975 2.9367 2.0135 3.0149 

 (0.0807) (0.1777) (0.0808) (0.1774) (0.0756) (0.1569) 

 0.954 0.943 0.947 0.949 0.951 0.956 

23 1.9574 3.0367 1.9871 3.0279 1.9514 2.9829 

 (0.0729) (0.1528) (0.0721) (0.1518) (0.0613) (0.1404) 

 0.961 0.943 0.954 0.956 0.972 0.963 

25 1.9924 2.9654 2.0214 3.1202 2.0581 2.9965 

 (0.0622) (0.1465) (0.0615) (0.1466) (0.0498) (0.1304) 

 0.955 0.961 0.953 0.958 0.941 0.971 

Note: The first figure represents the average estimates, with the 

corresponding MSEs and coverage percentages reported below it in 

parentheses. 

In order to evaluate the behavior of the proposed methods, 

Monte Carlo simulations were performed utilizing 1000  

lower record samples from exponentiated Weibull 

distribution (EWD) for each simulation. The mean square 

error (MSE) is used to compare the estimators. The samples 

were generated by using ( )( , ) 2,3 ,α β =  ( )1.5,4 , with 

different sample of sizes ( )n . For computing Bayes 

estimators, we used the non-informative gamma priors for 

both the parameters, that is, when the hyper-parameters are 

0 . We call it prior 0: 0.a b c d= = = =  Note that as the 

hyper-parameters go to 0, the prior density becomes inversely 

proportional to its argument and also becomes improper. This 

density is commonly used as an improper prior for 

parameters in the range of 0  to infinity, and this prior is not 

specifically related to the gamma density. For computing 

Bayes estimators, other than prior 0, we also used 

informative prior, including prior 1, 1,a =  1,b =  2c =  and 

1d = , also we used the squared error loss (SEL) function to 

compute the Bayes estimates. 

We also computed the Bayes estimates and 95%  credible 

intervals based on 10 000  MCMC samples and discard the 

first 1000  values as `burn-in'. We report the average Bayes 

estimates, mean squared errors ( MSEs )  and coverage 

percentages. For comparison purposes, we also computed the 

MLEs and the 95%  confidence intervals based on the 

observed Fisher information matrix. Finally, we used the 

same 1000  replicates to compute different estimates Tables 2 

and 3 report the results based on MLEs and the Bayes 

estimators (using MCMC technique) using informative prior 

on both α  and β  . 

Table 3. Average values of the different estimators, the corresponding MSEs 

and coverage percentages when ( , ) (1.5,4).α β =  

n MLE MCMC(Prior 0) MCMC(Prior 1) 

α  β
 

α  β
 

α  β
 

5 1.6317 3.8784 1.4719 3.9650 1.4339 4.0668 

 (0.0852) (0.2604) (0.0867) (0.2659) (0.0708) (0.2345) 

 0.962 0.958 0.941 0.953 0.961 0.955 

7 1.5757 4.1241 1.4952 3.9759 1.7371 4.1880 

 (0.0849) (0.2491) (0.0842) (0.2427) (0.0662) (0.2287) 

 0.958 0.941 0.953 0.971 0.942 0.959 

9 1.5245 3.8819 1.4981 3.9705 1.3914 3.7998 

 (0.0789) (0.2309) (0.0770) (0.2302) (0.0649) (0.2181) 

 0.941 0.966 0.954 0.964 0.950 0.975 

12 1.4083 3.9512 1.5127 3.8733 1.4447 3.8999 

 (0.0517) (0.2177) (0.0519) (0.2161) (0.0507) (0.1904) 

 0.964 0.956 0.967 0.950 0.967 0.956 

15 1.4263 4.1285 1.4286 4.023 1.5075 3.9815 

 (0.0444) (0.1836) (0.0423) (0.1820) (0.0412) (0.1751) 

 0.954 0.957 0.951 0.958 0.963 0.961 

18 1.6061 4.0660 1.6476 4.0798 1.5417 4.0634 

 (0.0373) (0.1532) (0.0378) (0.1597) (0.0326) (0.1394) 

 0.956 0.941 0.946 0.953 0.958 0.970 

20 1.3995 3.9371 1.5554 3.8954 1.6709 3.8847 

 (0.0319) (0.1303) (0.0320) (0.1302) (0.0279) (0.1238) 

 0.959 0.952 0.959 0.949 0.956 0.963 

23 1.7735 3.9715 1.737 4.125 1.5764 3.9278 

 (0.0308) (0.1293) (0.0302) (0.1256) (0.0197) (0.1168) 

 0.964 0.954 0.957 0.952 0.961 0.966 

25 1.6240 3.9845 1.4875 4.0972 1.5278 3.9641 

 (0.0231) (0.1098) (0.0234) (0.1108) (0.0165) (0.0922) 

 0.949 0.962 0.955 0.959 0.961 0.959 

Note: The first figure represents the average estimates with the 

corresponding MSEs and coverage percentages reported below it in 

parentheses. 

7. Conclusion 

This paper consider the Bayes estimation of the unknown 

parameters of the exponentiated Weibull distribution when 

the data are lower record values. We assume the gamma 

priors on the unknown parameters and provide the Bayes 

estimators under the assumptions of squared error loss 

functions. It is observed that the Bayes estimators cannot be 

obtained in explicit forms and they can be obtained using the 

numerical integration. Because of that we have used MCMC 
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technique to generate posterior sample. we observe the 

following: 

� From the results obtained in Tables 2 and 3. It can be 

seen that the performance of the Bayes estimators with 

respect to the non-informative prior (prior 0) is quite 

close to that of the MLEs. 

� Tables 2 and 4 report the results based on non-

informative prior (prior 0) and informative prior, (prior 

1) also in these case the results based on using the Gibbs 

sampling procedure are quite similar in nature when 

comparing the Bayes estimators based on informative 

prior clearly shows that the Bayes estimators based on 

prior 1 perform better than the MLEs, in terms of MSEs. 

� From Tables 2-3, it is clear that the Bayes estimators 

based on informative prior perform more better than 

non-informative prior and the MLEs in terms of MSEs. 
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